aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp172
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp178
-rw-r--r--test/Transforms/InstCombine/memcpy-from-global.ll (renamed from test/Transforms/ScalarRepl/memcpy-from-global.ll)30
3 files changed, 181 insertions, 199 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index c485844..6ecb4c5 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -20,7 +20,154 @@
#include "llvm/ADT/Statistic.h"
using namespace llvm;
-STATISTIC(NumDeadStore, "Number of dead stores eliminated");
+STATISTIC(NumDeadStore, "Number of dead stores eliminated");
+STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
+
+/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
+/// some part of a constant global variable. This intentionally only accepts
+/// constant expressions because we can't rewrite arbitrary instructions.
+static bool pointsToConstantGlobal(Value *V) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return GV->isConstant();
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::BitCast ||
+ CE->getOpcode() == Instruction::GetElementPtr)
+ return pointsToConstantGlobal(CE->getOperand(0));
+ return false;
+}
+
+/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
+/// pointer to an alloca. Ignore any reads of the pointer, return false if we
+/// see any stores or other unknown uses. If we see pointer arithmetic, keep
+/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
+/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
+/// the alloca, and if the source pointer is a pointer to a constant global, we
+/// can optimize this.
+static bool
+isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
+ SmallVectorImpl<Instruction *> &ToDelete,
+ bool IsOffset = false) {
+ // We track lifetime intrinsics as we encounter them. If we decide to go
+ // ahead and replace the value with the global, this lets the caller quickly
+ // eliminate the markers.
+
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
+ User *U = cast<Instruction>(*UI);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ // Ignore non-volatile loads, they are always ok.
+ if (!LI->isSimple()) return false;
+ continue;
+ }
+
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
+ // If uses of the bitcast are ok, we are ok.
+ if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
+ return false;
+ continue;
+ }
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
+ // If the GEP has all zero indices, it doesn't offset the pointer. If it
+ // doesn't, it does.
+ if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, ToDelete,
+ IsOffset || !GEP->hasAllZeroIndices()))
+ return false;
+ continue;
+ }
+
+ if (CallSite CS = U) {
+ // If this is the function being called then we treat it like a load and
+ // ignore it.
+ if (CS.isCallee(UI))
+ continue;
+
+ // If this is a readonly/readnone call site, then we know it is just a
+ // load (but one that potentially returns the value itself), so we can
+ // ignore it if we know that the value isn't captured.
+ unsigned ArgNo = CS.getArgumentNo(UI);
+ if (CS.onlyReadsMemory() &&
+ (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
+ continue;
+
+ // If this is being passed as a byval argument, the caller is making a
+ // copy, so it is only a read of the alloca.
+ if (CS.isByValArgument(ArgNo))
+ continue;
+ }
+
+ // Lifetime intrinsics can be handled by the caller.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
+ if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
+ II->getIntrinsicID() == Intrinsic::lifetime_end) {
+ assert(II->use_empty() && "Lifetime markers have no result to use!");
+ ToDelete.push_back(II);
+ continue;
+ }
+ }
+
+ // If this is isn't our memcpy/memmove, reject it as something we can't
+ // handle.
+ MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
+ if (MI == 0)
+ return false;
+
+ // If the transfer is using the alloca as a source of the transfer, then
+ // ignore it since it is a load (unless the transfer is volatile).
+ if (UI.getOperandNo() == 1) {
+ if (MI->isVolatile()) return false;
+ continue;
+ }
+
+ // If we already have seen a copy, reject the second one.
+ if (TheCopy) return false;
+
+ // If the pointer has been offset from the start of the alloca, we can't
+ // safely handle this.
+ if (IsOffset) return false;
+
+ // If the memintrinsic isn't using the alloca as the dest, reject it.
+ if (UI.getOperandNo() != 0) return false;
+
+ // If the source of the memcpy/move is not a constant global, reject it.
+ if (!pointsToConstantGlobal(MI->getSource()))
+ return false;
+
+ // Otherwise, the transform is safe. Remember the copy instruction.
+ TheCopy = MI;
+ }
+ return true;
+}
+
+/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
+/// modified by a copy from a constant global. If we can prove this, we can
+/// replace any uses of the alloca with uses of the global directly.
+static MemTransferInst *
+isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
+ SmallVectorImpl<Instruction *> &ToDelete) {
+ MemTransferInst *TheCopy = 0;
+ if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
+ return TheCopy;
+ return 0;
+}
+
+/// getPointeeAlignment - Compute the minimum alignment of the value pointed
+/// to by the given pointer.
+static unsigned getPointeeAlignment(Value *V, const TargetData &TD) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::BitCast ||
+ (CE->getOpcode() == Instruction::GetElementPtr &&
+ cast<GEPOperator>(CE)->hasAllZeroIndices()))
+ return getPointeeAlignment(CE->getOperand(0), TD);
+
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ if (!GV->isDeclaration())
+ return TD.getPreferredAlignment(GV);
+
+ if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
+ return TD.getABITypeAlignment(PT->getElementType());
+
+ return 0;
+}
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
@@ -113,6 +260,29 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
}
}
+ // Check to see if this allocation is only modified by a memcpy/memmove from
+ // a constant global whose alignment is equal to or exceeds that of the
+ // allocation. If this is the case, we can change all users to use
+ // the constant global instead. This is commonly produced by the CFE by
+ // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
+ // is only subsequently read.
+ SmallVector<Instruction *, 4> ToDelete;
+ if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
+ if (AI.getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
+ DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
+ DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
+ for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
+ EraseInstFromFunction(*ToDelete[i]);
+ Constant *TheSrc = cast<Constant>(Copy->getSource());
+ Instruction *NewI
+ = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
+ AI.getType()));
+ EraseInstFromFunction(*Copy);
+ ++NumGlobalCopies;
+ return NewI;
+ }
+ }
+
// At last, use the generic allocation site handler to aggressively remove
// unused allocas.
return visitAllocSite(AI);
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index 6637126..8090fdf 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -56,7 +56,6 @@ STATISTIC(NumReplaced, "Number of allocas broken up");
STATISTIC(NumPromoted, "Number of allocas promoted");
STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
-STATISTIC(NumGlobals, "Number of allocas copied from constant global");
namespace {
struct SROA : public FunctionPass {
@@ -183,9 +182,6 @@ namespace {
void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts);
bool ShouldAttemptScalarRepl(AllocaInst *AI);
-
- static MemTransferInst *isOnlyCopiedFromConstantGlobal(
- AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
};
// SROA_DT - SROA that uses DominatorTree.
@@ -1465,26 +1461,6 @@ bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
return false;
}
-/// getPointeeAlignment - Compute the minimum alignment of the value pointed
-/// to by the given pointer.
-static unsigned getPointeeAlignment(Value *V, const TargetData &TD) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::BitCast ||
- (CE->getOpcode() == Instruction::GetElementPtr &&
- cast<GEPOperator>(CE)->hasAllZeroIndices()))
- return getPointeeAlignment(CE->getOperand(0), TD);
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- if (!GV->isDeclaration())
- return TD.getPreferredAlignment(GV);
-
- if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
- return TD.getABITypeAlignment(PT->getElementType());
-
- return 0;
-}
-
-
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the alloca instructions in the function, removing them
// if they are only used by getelementptr instructions.
@@ -1516,29 +1492,6 @@ bool SROA::performScalarRepl(Function &F) {
if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
continue;
- // Check to see if this allocation is only modified by a memcpy/memmove from
- // a constant global whose alignment is equal to or exceeds that of the
- // allocation. If this is the case, we can change all users to use
- // the constant global instead. This is commonly produced by the CFE by
- // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
- // is only subsequently read.
- SmallVector<Instruction *, 4> ToDelete;
- if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
- if (AI->getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
- DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
- DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
- for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
- ToDelete[i]->eraseFromParent();
- Constant *TheSrc = cast<Constant>(Copy->getSource());
- AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
- Copy->eraseFromParent(); // Don't mutate the global.
- AI->eraseFromParent();
- ++NumGlobals;
- Changed = true;
- continue;
- }
- }
-
// Check to see if we can perform the core SROA transformation. We cannot
// transform the allocation instruction if it is an array allocation
// (allocations OF arrays are ok though), and an allocation of a scalar
@@ -2656,134 +2609,3 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
return true;
}
-
-
-
-/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
-/// some part of a constant global variable. This intentionally only accepts
-/// constant expressions because we don't can't rewrite arbitrary instructions.
-static bool PointsToConstantGlobal(Value *V) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return GV->isConstant();
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::BitCast ||
- CE->getOpcode() == Instruction::GetElementPtr)
- return PointsToConstantGlobal(CE->getOperand(0));
- return false;
-}
-
-/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
-/// pointer to an alloca. Ignore any reads of the pointer, return false if we
-/// see any stores or other unknown uses. If we see pointer arithmetic, keep
-/// track of whether it moves the pointer (with isOffset) but otherwise traverse
-/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
-/// the alloca, and if the source pointer is a pointer to a constant global, we
-/// can optimize this.
-static bool
-isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
- bool isOffset,
- SmallVector<Instruction *, 4> &LifetimeMarkers) {
- // We track lifetime intrinsics as we encounter them. If we decide to go
- // ahead and replace the value with the global, this lets the caller quickly
- // eliminate the markers.
-
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
- User *U = cast<Instruction>(*UI);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- // Ignore non-volatile loads, they are always ok.
- if (!LI->isSimple()) return false;
- continue;
- }
-
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
- // If uses of the bitcast are ok, we are ok.
- if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
- LifetimeMarkers))
- return false;
- continue;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
- // If the GEP has all zero indices, it doesn't offset the pointer. If it
- // doesn't, it does.
- if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
- isOffset || !GEP->hasAllZeroIndices(),
- LifetimeMarkers))
- return false;
- continue;
- }
-
- if (CallSite CS = U) {
- // If this is the function being called then we treat it like a load and
- // ignore it.
- if (CS.isCallee(UI))
- continue;
-
- // If this is a readonly/readnone call site, then we know it is just a
- // load (but one that potentially returns the value itself), so we can
- // ignore it if we know that the value isn't captured.
- unsigned ArgNo = CS.getArgumentNo(UI);
- if (CS.onlyReadsMemory() &&
- (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
- continue;
-
- // If this is being passed as a byval argument, the caller is making a
- // copy, so it is only a read of the alloca.
- if (CS.isByValArgument(ArgNo))
- continue;
- }
-
- // Lifetime intrinsics can be handled by the caller.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- assert(II->use_empty() && "Lifetime markers have no result to use!");
- LifetimeMarkers.push_back(II);
- continue;
- }
- }
-
- // If this is isn't our memcpy/memmove, reject it as something we can't
- // handle.
- MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
- if (MI == 0)
- return false;
-
- // If the transfer is using the alloca as a source of the transfer, then
- // ignore it since it is a load (unless the transfer is volatile).
- if (UI.getOperandNo() == 1) {
- if (MI->isVolatile()) return false;
- continue;
- }
-
- // If we already have seen a copy, reject the second one.
- if (TheCopy) return false;
-
- // If the pointer has been offset from the start of the alloca, we can't
- // safely handle this.
- if (isOffset) return false;
-
- // If the memintrinsic isn't using the alloca as the dest, reject it.
- if (UI.getOperandNo() != 0) return false;
-
- // If the source of the memcpy/move is not a constant global, reject it.
- if (!PointsToConstantGlobal(MI->getSource()))
- return false;
-
- // Otherwise, the transform is safe. Remember the copy instruction.
- TheCopy = MI;
- }
- return true;
-}
-
-/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
-/// modified by a copy from a constant global. If we can prove this, we can
-/// replace any uses of the alloca with uses of the global directly.
-MemTransferInst *
-SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
- SmallVector<Instruction*, 4> &ToDelete) {
- MemTransferInst *TheCopy = 0;
- if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
- return TheCopy;
- return 0;
-}
diff --git a/test/Transforms/ScalarRepl/memcpy-from-global.ll b/test/Transforms/InstCombine/memcpy-from-global.ll
index 5557a8f..83c893e 100644
--- a/test/Transforms/ScalarRepl/memcpy-from-global.ll
+++ b/test/Transforms/InstCombine/memcpy-from-global.ll
@@ -1,4 +1,4 @@
-; RUN: opt < %s -scalarrepl -S | FileCheck %s
+; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64"
@C.0.1248 = internal constant [128 x float] [ float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00 ], align 32 ; <[128 x float]*> [#uses=1]
@@ -6,13 +6,11 @@ define float @test1(i32 %hash, float %x, float %y, float %z, float %w) {
entry:
%lookupTable = alloca [128 x float], align 16 ; <[128 x float]*> [#uses=5]
%lookupTable1 = bitcast [128 x float]* %lookupTable to i8* ; <i8*> [#uses=1]
- call void @llvm.memcpy.i32( i8* %lookupTable1, i8* bitcast ([128 x float]* @C.0.1248 to i8*), i32 512, i32 16 )
+ call void @llvm.memcpy.p0i8.p0i8.i64(i8* %lookupTable1, i8* bitcast ([128 x float]* @C.0.1248 to i8*), i64 512, i32 16, i1 false)
; CHECK: @test1
; CHECK-NOT: alloca
; CHECK-NOT: call{{.*}}@llvm.memcpy
-; CHECK: %lookupTable1 = bitcast [128 x float]* @C.0.1248 to i8*
-; CHECK-NOT: call{{.*}}@llvm.memcpy
%tmp3 = shl i32 %hash, 2 ; <i32> [#uses=1]
%tmp5 = and i32 %tmp3, 124 ; <i32> [#uses=4]
@@ -38,10 +36,6 @@ entry:
ret float %tmp43
}
-declare void @llvm.memcpy.i32(i8*, i8*, i32, i32)
-
-
-
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i32, i1) nounwind
%T = type { i8, [123 x i8] }
@@ -59,10 +53,11 @@ define void @test2() {
; CHECK: @test2
; %A alloca is deleted
-; CHECK-NEXT: %B = alloca %T
+; CHECK-NEXT: alloca [124 x i8]
+; CHECK-NEXT: getelementptr inbounds [124 x i8]*
; use @G instead of %A
-; CHECK-NEXT: %a = bitcast %T* @G to i8*
+; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* %{{.*}}, i8* getelementptr inbounds (%T* @G, i64 0, i32 0)
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %a, i8* bitcast (%T* @G to i8*), i64 124, i32 4, i1 false)
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %b, i8* %a, i64 124, i32 4, i1 false)
call void @bar(i8* %b)
@@ -79,8 +74,7 @@ define void @test3() {
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %a, i8* bitcast (%T* @G to i8*), i64 124, i32 4, i1 false)
call void @bar(i8* %a) readonly
; CHECK: @test3
-; CHECK-NEXT: %a = bitcast %T* @G to i8*
-; CHECK-NEXT: call void @bar(i8* %a)
+; CHECK-NEXT: call void @bar(i8* getelementptr inbounds (%T* @G, i64 0, i32 0))
ret void
}
@@ -90,8 +84,7 @@ define void @test4() {
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %a, i8* bitcast (%T* @G to i8*), i64 124, i32 4, i1 false)
call void @baz(i8* byval %a)
; CHECK: @test4
-; CHECK-NEXT: %a = bitcast %T* @G to i8*
-; CHECK-NEXT: call void @baz(i8* byval %a)
+; CHECK-NEXT: call void @baz(i8* byval getelementptr inbounds (%T* @G, i64 0, i32 0))
ret void
}
@@ -103,8 +96,7 @@ define void @test5() {
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %a, i8* bitcast (%T* @G to i8*), i64 124, i32 4, i1 false)
call void @baz(i8* byval %a)
; CHECK: @test5
-; CHECK-NEXT: %a = bitcast %T* @G to i8*
-; CHECK-NEXT: call void @baz(i8* byval %a)
+; CHECK-NEXT: call void @baz(i8* byval getelementptr inbounds (%T* @G, i64 0, i32 0))
ret void
}
@@ -118,8 +110,7 @@ define void @test6() {
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %a, i8* bitcast ([2 x %U]* @H to i8*), i64 20, i32 16, i1 false)
call void @bar(i8* %a) readonly
; CHECK: @test6
-; CHECK-NEXT: %a = bitcast
-; CHECK-NEXT: call void @bar(i8* %a)
+; CHECK-NEXT: call void @bar(i8* bitcast ([2 x %U]* @H to i8*))
ret void
}
@@ -129,8 +120,7 @@ define void @test7() {
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %a, i8* bitcast (%U* getelementptr ([2 x %U]* @H, i64 0, i32 0) to i8*), i64 20, i32 4, i1 false)
call void @bar(i8* %a) readonly
; CHECK: @test7
-; CHECK-NEXT: %a = bitcast
-; CHECK-NEXT: call void @bar(i8* %a)
+; CHECK-NEXT: call void @bar(i8* bitcast ([2 x %U]* @H to i8*))
ret void
}