aboutsummaryrefslogtreecommitdiffstats
path: root/docs/TableGen/index.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/TableGen/index.rst')
-rw-r--r--docs/TableGen/index.rst309
1 files changed, 309 insertions, 0 deletions
diff --git a/docs/TableGen/index.rst b/docs/TableGen/index.rst
new file mode 100644
index 0000000..0860afa
--- /dev/null
+++ b/docs/TableGen/index.rst
@@ -0,0 +1,309 @@
+========
+TableGen
+========
+
+.. contents::
+ :local:
+
+.. toctree::
+ :hidden:
+
+ BackEnds
+ LangRef
+ LangIntro
+ Deficiencies
+
+Introduction
+============
+
+TableGen's purpose is to help a human develop and maintain records of
+domain-specific information. Because there may be a large number of these
+records, it is specifically designed to allow writing flexible descriptions and
+for common features of these records to be factored out. This reduces the
+amount of duplication in the description, reduces the chance of error, and makes
+it easier to structure domain specific information.
+
+The core part of TableGen parses a file, instantiates the declarations, and
+hands the result off to a domain-specific `backend`_ for processing.
+
+The current major users of TableGen are :doc:`../CodeGenerator`
+and the
+`Clang diagnostics and attributes <http://clang.llvm.org/docs/UsersManual.html#controlling-errors-and-warnings>`_.
+
+Note that if you work on TableGen much, and use emacs or vim, that you can find
+an emacs "TableGen mode" and a vim language file in the ``llvm/utils/emacs`` and
+``llvm/utils/vim`` directories of your LLVM distribution, respectively.
+
+.. _intro:
+
+
+The TableGen program
+====================
+
+TableGen files are interpreted by the TableGen program: `llvm-tblgen` available
+on your build directory under `bin`. It is not installed in the system (or where
+your sysroot is set to), since it has no use beyond LLVM's build process.
+
+Running TableGen
+----------------
+
+TableGen runs just like any other LLVM tool. The first (optional) argument
+specifies the file to read. If a filename is not specified, ``llvm-tblgen``
+reads from standard input.
+
+To be useful, one of the `backends`_ must be used. These backends are
+selectable on the command line (type '``llvm-tblgen -help``' for a list). For
+example, to get a list of all of the definitions that subclass a particular type
+(which can be useful for building up an enum list of these records), use the
+``-print-enums`` option:
+
+.. code-block:: bash
+
+ $ llvm-tblgen X86.td -print-enums -class=Register
+ AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
+ ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
+ R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
+ R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
+ RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
+ XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
+ XMM6, XMM7, XMM8, XMM9,
+
+ $ llvm-tblgen X86.td -print-enums -class=Instruction
+ ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
+ ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
+ ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
+ ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
+ ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...
+
+The default backend prints out all of the records.
+
+If you plan to use TableGen, you will most likely have to write a `backend`_
+that extracts the information specific to what you need and formats it in the
+appropriate way.
+
+Example
+-------
+
+With no other arguments, `llvm-tblgen` parses the specified file and prints out all
+of the classes, then all of the definitions. This is a good way to see what the
+various definitions expand to fully. Running this on the ``X86.td`` file prints
+this (at the time of this writing):
+
+.. code-block:: llvm
+
+ ...
+ def ADD32rr { // Instruction X86Inst I
+ string Namespace = "X86";
+ dag OutOperandList = (outs GR32:$dst);
+ dag InOperandList = (ins GR32:$src1, GR32:$src2);
+ string AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
+ list<dag> Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
+ list<Register> Uses = [];
+ list<Register> Defs = [EFLAGS];
+ list<Predicate> Predicates = [];
+ int CodeSize = 3;
+ int AddedComplexity = 0;
+ bit isReturn = 0;
+ bit isBranch = 0;
+ bit isIndirectBranch = 0;
+ bit isBarrier = 0;
+ bit isCall = 0;
+ bit canFoldAsLoad = 0;
+ bit mayLoad = 0;
+ bit mayStore = 0;
+ bit isImplicitDef = 0;
+ bit isConvertibleToThreeAddress = 1;
+ bit isCommutable = 1;
+ bit isTerminator = 0;
+ bit isReMaterializable = 0;
+ bit isPredicable = 0;
+ bit hasDelaySlot = 0;
+ bit usesCustomInserter = 0;
+ bit hasCtrlDep = 0;
+ bit isNotDuplicable = 0;
+ bit hasSideEffects = 0;
+ bit neverHasSideEffects = 0;
+ InstrItinClass Itinerary = NoItinerary;
+ string Constraints = "";
+ string DisableEncoding = "";
+ bits<8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
+ Format Form = MRMDestReg;
+ bits<6> FormBits = { 0, 0, 0, 0, 1, 1 };
+ ImmType ImmT = NoImm;
+ bits<3> ImmTypeBits = { 0, 0, 0 };
+ bit hasOpSizePrefix = 0;
+ bit hasAdSizePrefix = 0;
+ bits<4> Prefix = { 0, 0, 0, 0 };
+ bit hasREX_WPrefix = 0;
+ FPFormat FPForm = ?;
+ bits<3> FPFormBits = { 0, 0, 0 };
+ }
+ ...
+
+This definition corresponds to the 32-bit register-register ``add`` instruction
+of the x86 architecture. ``def ADD32rr`` defines a record named
+``ADD32rr``, and the comment at the end of the line indicates the superclasses
+of the definition. The body of the record contains all of the data that
+TableGen assembled for the record, indicating that the instruction is part of
+the "X86" namespace, the pattern indicating how the instruction is selected by
+the code generator, that it is a two-address instruction, has a particular
+encoding, etc. The contents and semantics of the information in the record are
+specific to the needs of the X86 backend, and are only shown as an example.
+
+As you can see, a lot of information is needed for every instruction supported
+by the code generator, and specifying it all manually would be unmaintainable,
+prone to bugs, and tiring to do in the first place. Because we are using
+TableGen, all of the information was derived from the following definition:
+
+.. code-block:: llvm
+
+ let Defs = [EFLAGS],
+ isCommutable = 1, // X = ADD Y,Z --> X = ADD Z,Y
+ isConvertibleToThreeAddress = 1 in // Can transform into LEA.
+ def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst),
+ (ins GR32:$src1, GR32:$src2),
+ "add{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
+
+This definition makes use of the custom class ``I`` (extended from the custom
+class ``X86Inst``), which is defined in the X86-specific TableGen file, to
+factor out the common features that instructions of its class share. A key
+feature of TableGen is that it allows the end-user to define the abstractions
+they prefer to use when describing their information.
+
+Each ``def`` record has a special entry called "NAME". This is the name of the
+record ("``ADD32rr``" above). In the general case ``def`` names can be formed
+from various kinds of string processing expressions and ``NAME`` resolves to the
+final value obtained after resolving all of those expressions. The user may
+refer to ``NAME`` anywhere she desires to use the ultimate name of the ``def``.
+``NAME`` should not be defined anywhere else in user code to avoid conflicts.
+
+Syntax
+======
+
+TableGen has a syntax that is loosely based on C++ templates, with built-in
+types and specification. In addition, TableGen's syntax introduces some
+automation concepts like multiclass, foreach, let, etc.
+
+Basic concepts
+--------------
+
+TableGen files consist of two key parts: 'classes' and 'definitions', both of
+which are considered 'records'.
+
+**TableGen records** have a unique name, a list of values, and a list of
+superclasses. The list of values is the main data that TableGen builds for each
+record; it is this that holds the domain specific information for the
+application. The interpretation of this data is left to a specific `backend`_,
+but the structure and format rules are taken care of and are fixed by
+TableGen.
+
+**TableGen definitions** are the concrete form of 'records'. These generally do
+not have any undefined values, and are marked with the '``def``' keyword.
+
+.. code-block:: llvm
+
+ def FeatureFPARMv8 : SubtargetFeature<"fp-armv8", "HasFPARMv8", "true",
+ "Enable ARMv8 FP">;
+
+In this example, FeatureFPARMv8 is ``SubtargetFeature`` record initialised
+with some values. The names of the classes are defined via the
+keyword `class` either on the same file or some other included. Most target
+TableGen files include the generic ones in ``include/llvm/Target``.
+
+**TableGen classes** are abstract records that are used to build and describe
+other records. These classes allow the end-user to build abstractions for
+either the domain they are targeting (such as "Register", "RegisterClass", and
+"Instruction" in the LLVM code generator) or for the implementor to help factor
+out common properties of records (such as "FPInst", which is used to represent
+floating point instructions in the X86 backend). TableGen keeps track of all of
+the classes that are used to build up a definition, so the backend can find all
+definitions of a particular class, such as "Instruction".
+
+.. code-block:: llvm
+
+ class ProcNoItin<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+Here, the class ProcNoItin, receiving parameters `Name` of type `string` and
+a list of target features is specializing the class Processor by passing the
+arguments down as well as hard-coding NoItineraries.
+
+**TableGen multiclasses** are groups of abstract records that are instantiated
+all at once. Each instantiation can result in multiple TableGen definitions.
+If a multiclass inherits from another multiclass, the definitions in the
+sub-multiclass become part of the current multiclass, as if they were declared
+in the current multiclass.
+
+.. code-block:: llvm
+
+ multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
+ dag address, ValueType sty> {
+ def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
+ (!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
+ Base, Offset, Extend)>;
+
+ def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
+ (!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
+ Base, Offset, Extend)>;
+ }
+
+ defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
+ !foreach(decls.pattern, address,
+ !subst(SHIFT, imm_eq0, decls.pattern)),
+ i8>;
+
+
+
+See the :doc:`TableGen Language Introduction <LangIntro>` for more generic
+information on the usage of the language, and the
+:doc:`TableGen Language Reference <LangRef>` for more in-depth description
+of the formal language specification.
+
+.. _backend:
+.. _backends:
+
+TableGen backends
+=================
+
+TableGen files have no real meaning without a back-end. The default operation
+of running ``llvm-tblgen`` is to print the information in a textual format, but
+that's only useful for debugging of the TableGen files themselves. The power
+in TableGen is, however, to interpret the source files into an internal
+representation that can be generated into anything you want.
+
+Current usage of TableGen is to create include huge files with tables that you
+can either include directly (if the output is in the language you're coding),
+or be used in pre-processing via macros surrounding the include of the file.
+
+Direct output can be used if the back-end already prints a table in C format
+or if the output is just a list of strings (for error and warning messages).
+Pre-processed output should be used if the same information needs to be used
+in different contexts (like Instruction names), so your back-end should print
+a meta-information list that can be shaped into different compile-time formats.
+
+See the `TableGen BackEnds <BackEnds.html>`_ for more information.
+
+TableGen Deficiencies
+=====================
+
+Despite being very generic, TableGen has some deficiencies that have been
+pointed out numerous times. The common theme is that, while TableGen allows
+you to build Domain-Specific-Languages, the final languages that you create
+lack the power of other DSLs, which in turn increase considerably the size
+and complecity of TableGen files.
+
+At the same time, TableGen allows you to create virtually any meaning of
+the basic concepts via custom-made back-ends, which can pervert the original
+design and make it very hard for newcomers to understand the evil TableGen
+file.
+
+There are some in favour of extending the semantics even more, but making sure
+back-ends adhere to strict rules. Others are suggesting we should move to less,
+more powerful DSLs designed with specific purposes, or even re-using existing
+DSLs.
+
+Either way, this is a discussion that will likely span across several years,
+if not decades. You can read more in the `TableGen Deficiencies <Deficiencies.html>`_
+document.