aboutsummaryrefslogtreecommitdiffstats
path: root/docs/main/tutorial/LangImpl6.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/main/tutorial/LangImpl6.html')
-rw-r--r--docs/main/tutorial/LangImpl6.html1814
1 files changed, 1814 insertions, 0 deletions
diff --git a/docs/main/tutorial/LangImpl6.html b/docs/main/tutorial/LangImpl6.html
new file mode 100644
index 0000000..5fae906
--- /dev/null
+++ b/docs/main/tutorial/LangImpl6.html
@@ -0,0 +1,1814 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+
+<html>
+<head>
+ <title>Kaleidoscope: Extending the Language: User-defined Operators</title>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <meta name="author" content="Chris Lattner">
+ <link rel="stylesheet" href="../llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div>
+
+<ul>
+<li><a href="index.html">Up to Tutorial Index</a></li>
+<li>Chapter 6
+ <ol>
+ <li><a href="#intro">Chapter 6 Introduction</a></li>
+ <li><a href="#idea">User-defined Operators: the Idea</a></li>
+ <li><a href="#binary">User-defined Binary Operators</a></li>
+ <li><a href="#unary">User-defined Unary Operators</a></li>
+ <li><a href="#example">Kicking the Tires</a></li>
+ <li><a href="#code">Full Code Listing</a></li>
+ </ol>
+</li>
+<li><a href="LangImpl7.html">Chapter 7</a>: Extending the Language: Mutable
+Variables / SSA Construction</li>
+</ul>
+
+<div class="doc_author">
+ <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language
+with LLVM</a>" tutorial. At this point in our tutorial, we now have a fully
+functional language that is fairly minimal, but also useful. There
+is still one big problem with it, however. Our language doesn't have many
+useful operators (like division, logical negation, or even any comparisons
+besides less-than).</p>
+
+<p>This chapter of the tutorial takes a wild digression into adding user-defined
+operators to the simple and beautiful Kaleidoscope language. This digression now gives
+us a simple and ugly language in some ways, but also a powerful one at the same time.
+One of the great things about creating your own language is that you get to
+decide what is good or bad. In this tutorial we'll assume that it is okay to
+use this as a way to show some interesting parsing techniques.</p>
+
+<p>At the end of this tutorial, we'll run through an example Kaleidoscope
+application that <a href="#example">renders the Mandelbrot set</a>. This gives
+an example of what you can build with Kaleidoscope and its feature set.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+The "operator overloading" that we will add to Kaleidoscope is more general than
+languages like C++. In C++, you are only allowed to redefine existing
+operators: you can't programatically change the grammar, introduce new
+operators, change precedence levels, etc. In this chapter, we will add this
+capability to Kaleidoscope, which will let the user round out the set of
+operators that are supported.</p>
+
+<p>The point of going into user-defined operators in a tutorial like this is to
+show the power and flexibility of using a hand-written parser. Thus far, the parser
+we have been implementing uses recursive descent for most parts of the grammar and
+operator precedence parsing for the expressions. See <a
+href="LangImpl2.html">Chapter 2</a> for details. Without using operator
+precedence parsing, it would be very difficult to allow the programmer to
+introduce new operators into the grammar: the grammar is dynamically extensible
+as the JIT runs.</p>
+
+<p>The two specific features we'll add are programmable unary operators (right
+now, Kaleidoscope has no unary operators at all) as well as binary operators.
+An example of this is:</p>
+
+<div class="doc_code">
+<pre>
+# Logical unary not.
+def unary!(v)
+ if v then
+ 0
+ else
+ 1;
+
+# Define &gt; with the same precedence as &lt;.
+def binary&gt; 10 (LHS RHS)
+ RHS &lt; LHS;
+
+# Binary "logical or", (note that it does not "short circuit")
+def binary| 5 (LHS RHS)
+ if LHS then
+ 1
+ else if RHS then
+ 1
+ else
+ 0;
+
+# Define = with slightly lower precedence than relationals.
+def binary= 9 (LHS RHS)
+ !(LHS &lt; RHS | LHS &gt; RHS);
+</pre>
+</div>
+
+<p>Many languages aspire to being able to implement their standard runtime
+library in the language itself. In Kaleidoscope, we can implement significant
+parts of the language in the library!</p>
+
+<p>We will break down implementation of these features into two parts:
+implementing support for user-defined binary operators and adding unary
+operators.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="binary">User-defined Binary Operators</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Adding support for user-defined binary operators is pretty simple with our
+current framework. We'll first add support for the unary/binary keywords:</p>
+
+<div class="doc_code">
+<pre>
+enum Token {
+ ...
+ <b>// operators
+ tok_binary = -11, tok_unary = -12</b>
+};
+...
+static int gettok() {
+...
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ <b>if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;</b>
+ return tok_identifier;
+</pre>
+</div>
+
+<p>This just adds lexer support for the unary and binary keywords, like we
+did in <a href="LangImpl5.html#iflexer">previous chapters</a>. One nice thing
+about our current AST, is that we represent binary operators with full generalisation
+by using their ASCII code as the opcode. For our extended operators, we'll use this
+same representation, so we don't need any new AST or parser support.</p>
+
+<p>On the other hand, we have to be able to represent the definitions of these
+new operators, in the "def binary| 5" part of the function definition. In our
+grammar so far, the "name" for the function definition is parsed as the
+"prototype" production and into the <tt>PrototypeAST</tt> AST node. To
+represent our new user-defined operators as prototypes, we have to extend
+the <tt>PrototypeAST</tt> AST node like this:</p>
+
+<div class="doc_code">
+<pre>
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector&lt;std::string&gt; Args;
+ <b>bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.</b>
+public:
+ PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args,
+ <b>bool isoperator = false, unsigned prec = 0</b>)
+ : Name(name), Args(args), <b>isOperator(isoperator), Precedence(prec)</b> {}
+
+ <b>bool isUnaryOp() const { return isOperator &amp;&amp; Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator &amp;&amp; Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }</b>
+
+ Function *Codegen();
+};
+</pre>
+</div>
+
+<p>Basically, in addition to knowing a name for the prototype, we now keep track
+of whether it was an operator, and if it was, what precedence level the operator
+is at. The precedence is only used for binary operators (as you'll see below,
+it just doesn't apply for unary operators). Now that we have a way to represent
+the prototype for a user-defined operator, we need to parse it:</p>
+
+<div class="doc_code">
+<pre>
+/// prototype
+/// ::= id '(' id* ')'
+<b>/// ::= binary LETTER number? (id, id)</b>
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ <b>unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;</b>
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ <b>case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal &lt; 1 || NumVal &gt; 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;</b>
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector&lt;std::string&gt; ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ <b>// Verify right number of names for operator.
+ if (Kind &amp;&amp; ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);</b>
+}
+</pre>
+</div>
+
+<p>This is all fairly straightforward parsing code, and we have already seen
+a lot of similar code in the past. One interesting part about the code above is
+the couple lines that set up <tt>FnName</tt> for binary operators. This builds names
+like "binary@" for a newly defined "@" operator. This then takes advantage of the
+fact that symbol names in the LLVM symbol table are allowed to have any character in
+them, including embedded nul characters.</p>
+
+<p>The next interesting thing to add, is codegen support for these binary operators.
+Given our current structure, this is a simple addition of a default case for our
+existing binary operator node:</p>
+
+<div class="doc_code">
+<pre>
+Value *BinaryExprAST::Codegen() {
+ Value *L = LHS-&gt;Codegen();
+ Value *R = RHS-&gt;Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateAdd(L, R, "addtmp");
+ case '-': return Builder.CreateSub(L, R, "subtmp");
+ case '*': return Builder.CreateMul(L, R, "multmp");
+ case '&lt;':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ <b>default: break;</b>
+ }
+
+ <b>// If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheModule-&gt;getFunction(std::string("binary")+Op);
+ assert(F &amp;&amp; "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, Ops+2, "binop");</b>
+}
+
+</pre>
+</div>
+
+<p>As you can see above, the new code is actually really simple. It just does
+a lookup for the appropriate operator in the symbol table and generates a
+function call to it. Since user-defined operators are just built as normal
+functions (because the "prototype" boils down to a function with the right
+name) everything falls into place.</p>
+
+<p>The final piece of code we are missing, is a bit of top-level magic:</p>
+
+<div class="doc_code">
+<pre>
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ <b>// If this is an operator, install it.
+ if (Proto-&gt;isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();</b>
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ if (Value *RetVal = Body-&gt;Codegen()) {
+ ...
+</pre>
+</div>
+
+<p>Basically, before codegening a function, if it is a user-defined operator, we
+register it in the precedence table. This allows the binary operator parsing
+logic we already have in place to handle it. Since we are working on a fully-general operator precedence parser, this is all we need to do to "extend the grammar".</p>
+
+<p>Now we have useful user-defined binary operators. This builds a lot
+on the previous framework we built for other operators. Adding unary operators
+is a bit more challenging, because we don't have any framework for it yet - lets
+see what it takes.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="unary">User-defined Unary Operators</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Since we don't currently support unary operators in the Kaleidoscope
+language, we'll need to add everything to support them. Above, we added simple
+support for the 'unary' keyword to the lexer. In addition to that, we need an
+AST node:</p>
+
+<div class="doc_code">
+<pre>
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+</pre>
+</div>
+
+<p>This AST node is very simple and obvious by now. It directly mirrors the
+binary operator AST node, except that it only has one child. With this, we
+need to add the parsing logic. Parsing a unary operator is pretty simple: we'll
+add a new function to do it:</p>
+
+<div class="doc_code">
+<pre>
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+</pre>
+</div>
+
+<p>The grammar we add is pretty straightforward here. If we see a unary
+operator when parsing a primary operator, we eat the operator as a prefix and
+parse the remaining piece as another unary operator. This allows us to handle
+multiple unary operators (e.g. "!!x"). Note that unary operators can't have
+ambiguous parses like binary operators can, so there is no need for precedence
+information.</p>
+
+<p>The problem with this function, is that we need to call ParseUnary from somewhere.
+To do this, we change previous callers of ParsePrimary to call ParseUnary
+instead:</p>
+
+<div class="doc_code">
+<pre>
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ ...
+ <b>// Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;</b>
+ ...
+}
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ <b>ExprAST *LHS = ParseUnary();</b>
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+</pre>
+</div>
+
+<p>With these two simple changes, we are now able to parse unary operators and build the
+AST for them. Next up, we need to add parser support for prototypes, to parse
+the unary operator prototype. We extend the binary operator code above
+with:</p>
+
+<div class="doc_code">
+<pre>
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+<b>/// ::= unary LETTER (id)</b>
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ <b>case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;</b>
+ case tok_binary:
+ ...
+</pre>
+</div>
+
+<p>As with binary operators, we name unary operators with a name that includes
+the operator character. This assists us at code generation time. Speaking of,
+the final piece we need to add is codegen support for unary operators. It looks
+like this:</p>
+
+<div class="doc_code">
+<pre>
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+</pre>
+</div>
+
+<p>This code is similar to, but simpler than, the code for binary operators. It
+is simpler primarily because it doesn't need to handle any predefined operators.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="example">Kicking the Tires</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>It is somewhat hard to believe, but with a few simple extensions we've
+covered in the last chapters, we have grown a real-ish language. With this, we
+can do a lot of interesting things, including I/O, math, and a bunch of other
+things. For example, we can now add a nice sequencing operator (printd is
+defined to print out the specified value and a newline):</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>extern printd(x);</b>
+Read extern: declare double @printd(double)
+ready&gt; <b>def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.</b>
+..
+ready&gt; <b>printd(123) : printd(456) : printd(789);</b>
+123.000000
+456.000000
+789.000000
+Evaluated to 0.000000
+</pre>
+</div>
+
+<p>We can also define a bunch of other "primitive" operations, such as:</p>
+
+<div class="doc_code">
+<pre>
+# Logical unary not.
+def unary!(v)
+ if v then
+ 0
+ else
+ 1;
+
+# Unary negate.
+def unary-(v)
+ 0-v;
+
+# Define &gt; with the same precedence as &gt;.
+def binary&gt; 10 (LHS RHS)
+ RHS &lt; LHS;
+
+# Binary logical or, which does not short circuit.
+def binary| 5 (LHS RHS)
+ if LHS then
+ 1
+ else if RHS then
+ 1
+ else
+ 0;
+
+# Binary logical and, which does not short circuit.
+def binary&amp; 6 (LHS RHS)
+ if !LHS then
+ 0
+ else
+ !!RHS;
+
+# Define = with slightly lower precedence than relationals.
+def binary = 9 (LHS RHS)
+ !(LHS &lt; RHS | LHS &gt; RHS);
+
+</pre>
+</div>
+
+
+<p>Given the previous if/then/else support, we can also define interesting
+functions for I/O. For example, the following prints out a character whose
+"density" reflects the value passed in: the lower the value, the denser the
+character:</p>
+
+<div class="doc_code">
+<pre>
+ready&gt;
+<b>
+extern putchard(char)
+def printdensity(d)
+ if d &gt; 8 then
+ putchard(32) # ' '
+ else if d &gt; 4 then
+ putchard(46) # '.'
+ else if d &gt; 2 then
+ putchard(43) # '+'
+ else
+ putchard(42); # '*'</b>
+...
+ready&gt; <b>printdensity(1): printdensity(2): printdensity(3) :
+ printdensity(4): printdensity(5): printdensity(9): putchard(10);</b>
+*++..
+Evaluated to 0.000000
+</pre>
+</div>
+
+<p>Based on these simple primitive operations, we can start to define more
+interesting things. For example, here's a little function that solves for the
+number of iterations it takes a function in the complex plane to
+converge:</p>
+
+<div class="doc_code">
+<pre>
+# determine whether the specific location diverges.
+# Solve for z = z^2 + c in the complex plane.
+def mandleconverger(real imag iters creal cimag)
+ if iters &gt; 255 | (real*real + imag*imag &gt; 4) then
+ iters
+ else
+ mandleconverger(real*real - imag*imag + creal,
+ 2*real*imag + cimag,
+ iters+1, creal, cimag);
+
+# return the number of iterations required for the iteration to escape
+def mandleconverge(real imag)
+ mandleconverger(real, imag, 0, real, imag);
+</pre>
+</div>
+
+<p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
+for computation of the <a
+href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>. Our
+<tt>mandelconverge</tt> function returns the number of iterations that it takes
+for a complex orbit to escape, saturating to 255. This is not a very useful
+function by itself, but if you plot its value over a two-dimensional plane,
+you can see the Mandelbrot set. Given that we are limited to using putchard
+here, our amazing graphical output is limited, but we can whip together
+something using the density plotter above:</p>
+
+<div class="doc_code">
+<pre>
+# compute and plot the mandlebrot set with the specified 2 dimensional range
+# info.
+def mandelhelp(xmin xmax xstep ymin ymax ystep)
+ for y = ymin, y &lt; ymax, ystep in (
+ (for x = xmin, x &lt; xmax, xstep in
+ printdensity(mandleconverge(x,y)))
+ : putchard(10)
+ )
+
+# mandel - This is a convenient helper function for ploting the mandelbrot set
+# from the specified position with the specified Magnification.
+def mandel(realstart imagstart realmag imagmag)
+ mandelhelp(realstart, realstart+realmag*78, realmag,
+ imagstart, imagstart+imagmag*40, imagmag);
+</pre>
+</div>
+
+<p>Given this, we can try plotting out the mandlebrot set! Lets try it out:</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
+*******************************+++++++++++*************************************
+*************************+++++++++++++++++++++++*******************************
+**********************+++++++++++++++++++++++++++++****************************
+*******************+++++++++++++++++++++.. ...++++++++*************************
+*****************++++++++++++++++++++++.... ...+++++++++***********************
+***************+++++++++++++++++++++++..... ...+++++++++*********************
+**************+++++++++++++++++++++++.... ....+++++++++********************
+*************++++++++++++++++++++++...... .....++++++++*******************
+************+++++++++++++++++++++....... .......+++++++******************
+***********+++++++++++++++++++.... ... .+++++++*****************
+**********+++++++++++++++++....... .+++++++****************
+*********++++++++++++++........... ...+++++++***************
+********++++++++++++............ ...++++++++**************
+********++++++++++... .......... .++++++++**************
+*******+++++++++..... .+++++++++*************
+*******++++++++...... ..+++++++++*************
+*******++++++....... ..+++++++++*************
+*******+++++...... ..+++++++++*************
+*******.... .... ...+++++++++*************
+*******.... . ...+++++++++*************
+*******+++++...... ...+++++++++*************
+*******++++++....... ..+++++++++*************
+*******++++++++...... .+++++++++*************
+*******+++++++++..... ..+++++++++*************
+********++++++++++... .......... .++++++++**************
+********++++++++++++............ ...++++++++**************
+*********++++++++++++++.......... ...+++++++***************
+**********++++++++++++++++........ .+++++++****************
+**********++++++++++++++++++++.... ... ..+++++++****************
+***********++++++++++++++++++++++....... .......++++++++*****************
+************+++++++++++++++++++++++...... ......++++++++******************
+**************+++++++++++++++++++++++.... ....++++++++********************
+***************+++++++++++++++++++++++..... ...+++++++++*********************
+*****************++++++++++++++++++++++.... ...++++++++***********************
+*******************+++++++++++++++++++++......++++++++*************************
+*********************++++++++++++++++++++++.++++++++***************************
+*************************+++++++++++++++++++++++*******************************
+******************************+++++++++++++************************************
+*******************************************************************************
+*******************************************************************************
+*******************************************************************************
+Evaluated to 0.000000
+ready&gt; <b>mandel(-2, -1, 0.02, 0.04);</b>
+**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
+***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
+*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
+*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
+***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
+**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
+************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
+***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
+**********++++++++++++++++++++++++++++++++++++++++++++++.............
+********+++++++++++++++++++++++++++++++++++++++++++..................
+*******+++++++++++++++++++++++++++++++++++++++.......................
+******+++++++++++++++++++++++++++++++++++...........................
+*****++++++++++++++++++++++++++++++++............................
+*****++++++++++++++++++++++++++++...............................
+****++++++++++++++++++++++++++...... .........................
+***++++++++++++++++++++++++......... ...... ...........
+***++++++++++++++++++++++............
+**+++++++++++++++++++++..............
+**+++++++++++++++++++................
+*++++++++++++++++++.................
+*++++++++++++++++............ ...
+*++++++++++++++..............
+*+++....++++................
+*.......... ...........
+*
+*.......... ...........
+*+++....++++................
+*++++++++++++++..............
+*++++++++++++++++............ ...
+*++++++++++++++++++.................
+**+++++++++++++++++++................
+**+++++++++++++++++++++..............
+***++++++++++++++++++++++............
+***++++++++++++++++++++++++......... ...... ...........
+****++++++++++++++++++++++++++...... .........................
+*****++++++++++++++++++++++++++++...............................
+*****++++++++++++++++++++++++++++++++............................
+******+++++++++++++++++++++++++++++++++++...........................
+*******+++++++++++++++++++++++++++++++++++++++.......................
+********+++++++++++++++++++++++++++++++++++++++++++..................
+Evaluated to 0.000000
+ready&gt; <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
+*******************************************************************************
+*******************************************************************************
+*******************************************************************************
+**********+++++++++++++++++++++************************************************
+*+++++++++++++++++++++++++++++++++++++++***************************************
++++++++++++++++++++++++++++++++++++++++++++++**********************************
+++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
+++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
++++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
++++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
++++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
+++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
++++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
+++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
+++++++++++++++++++++++++............. .......++++++++++++++++++++++******
++++++++++++++++++++++++............. ........+++++++++++++++++++++++****
+++++++++++++++++++++++........... ..........++++++++++++++++++++++***
+++++++++++++++++++++........... .........++++++++++++++++++++++*
+++++++++++++++++++............ ...........++++++++++++++++++++
+++++++++++++++++............... .............++++++++++++++++++
+++++++++++++++................. ...............++++++++++++++++
+++++++++++++.................. .................++++++++++++++
++++++++++.................. .................+++++++++++++
+++++++........ . ......... ..++++++++++++
+++............ ...... ....++++++++++
+.............. ...++++++++++
+.............. ....+++++++++
+.............. .....++++++++
+............. ......++++++++
+........... .......++++++++
+......... ........+++++++
+......... ........+++++++
+......... ....+++++++
+........ ...+++++++
+....... ...+++++++
+ ....+++++++
+ .....+++++++
+ ....+++++++
+ ....+++++++
+ ....+++++++
+Evaluated to 0.000000
+ready&gt; <b>^D</b>
+</pre>
+</div>
+
+<p>At this point, you may be starting to realize that Kaleidoscope is a real
+and powerful language. It may not be self-similar :), but it can be used to
+plot things that are!</p>
+
+<p>With this, we conclude the "adding user-defined operators" chapter of the
+tutorial. We have successfully augmented our language, adding the ability to extend the
+language in the library, and we have shown how this can be used to build a simple but
+interesting end-user application in Kaleidoscope. At this point, Kaleidoscope
+can build a variety of applications that are functional and can call functions
+with side-effects, but it can't actually define and mutate a variable itself.
+</p>
+
+<p>Strikingly, variable mutation is an important feature of some
+languages, and it is not at all obvious how to <a href="LangImpl7.html">add
+support for mutable variables</a> without having to add an "SSA construction"
+phase to your front-end. In the next chapter, we will describe how you can
+add variable mutation without building SSA in your front-end.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Full Code Listing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Here is the complete code listing for our running example, enhanced with the
+if/then/else and for expressions.. To build this example, use:
+</p>
+
+<div class="doc_code">
+<pre>
+ # Compile
+ g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
+ # Run
+ ./toy
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
+<div class="doc_code">
+<pre>
+#include "llvm/DerivedTypes.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/IRBuilder.h"
+#include &lt;cstdio&gt;
+#include &lt;string&gt;
+#include &lt;map&gt;
+#include &lt;vector&gt;
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &amp;name) : Name(name) {}
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector&lt;ExprAST*&gt; Args;
+public:
+ CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its name, and its argument names (thus implicitly the number
+/// of arguments the function takes), as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector&lt;std::string&gt; Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator &amp;&amp; Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator &amp;&amp; Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map&lt;char, int&gt; BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec &lt;= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector&lt;ExprAST*&gt; Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec &lt; ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec &lt; NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal &lt; 1 || NumVal &gt; 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector&lt;std::string&gt; ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind &amp;&amp; ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static IRBuilder&lt;&gt; Builder(getGlobalContext());
+static std::map&lt;std::string, Value*&gt; NamedValues;
+static FunctionPassManager *TheFPM;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ return V ? V : ErrorV("Unknown variable name");
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand-&gt;Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheModule-&gt;getFunction(std::string("unary")+Opcode);
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ Value *L = LHS-&gt;Codegen();
+ Value *R = RHS-&gt;Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateAdd(L, R, "addtmp");
+ case '-': return Builder.CreateSub(L, R, "subtmp");
+ case '*': return Builder.CreateMul(L, R, "multmp");
+ case '&lt;':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheModule-&gt;getFunction(std::string("binary")+Op);
+ assert(F &amp;&amp; "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, Ops+2, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheModule-&gt;getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF-&gt;arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector&lt;Value*&gt; ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]-&gt;Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond-&gt;Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then-&gt;Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else-&gt;Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
+ "iftmp");
+
+ PN-&gt;addIncoming(ThenV, ThenBB);
+ PN-&gt;addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // ...
+ // start = startexpr
+ // goto loop
+ // loop:
+ // variable = phi [start, loopheader], [nextvariable, loopend]
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // nextvariable = variable + step
+ // endcond = endexpr
+ // br endcond, loop, endloop
+ // outloop:
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start-&gt;Codegen();
+ if (StartVal == 0) return 0;
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
+ BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Start the PHI node with an entry for Start.
+ PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
+ Variable-&gt;addIncoming(StartVal, PreheaderBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ Value *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Variable;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body-&gt;Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step-&gt;Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
+
+ // Compute the end condition.
+ Value *EndCond = End-&gt;Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Add a new entry to the PHI node for the backedge.
+ Variable-&gt;addIncoming(NextVar, LoopEndBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector&lt;const Type*&gt; Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F-&gt;getName() != Name) {
+ // Delete the one we just made and get the existing one.
+ F-&gt;eraseFromParent();
+ F = TheModule-&gt;getFunction(Name);
+
+ // If F already has a body, reject this.
+ if (!F-&gt;empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F-&gt;arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
+ ++AI, ++Idx) {
+ AI-&gt;setName(Args[Idx]);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = AI;
+ }
+
+ return F;
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto-&gt;Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto-&gt;isBinaryOp())
+ BinopPrecedence[Proto-&gt;getOperatorName()] = Proto-&gt;getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ if (Value *RetVal = Body-&gt;Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ // Optimize the function.
+ TheFPM-&gt;run(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction-&gt;eraseFromParent();
+
+ if (Proto-&gt;isBinaryOp())
+ BinopPrecedence.erase(Proto-&gt;getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static ExecutionEngine *TheExecutionEngine;
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (Function *LF = F-&gt;Codegen()) {
+ fprintf(stderr, "Read function definition:");
+ LF-&gt;dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P-&gt;Codegen()) {
+ fprintf(stderr, "Read extern: ");
+ F-&gt;dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F-&gt;Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
+
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+ fprintf(stderr, "Evaluated to %f\n", FP());
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+ fprintf(stderr, "ready&gt; ");
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f\n", X);
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+ InitializeNativeTarget();
+ LLVMContext &amp;Context = getGlobalContext();
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['&lt;'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Prime the first token.
+ fprintf(stderr, "ready&gt; ");
+ getNextToken();
+
+ // Make the module, which holds all the code.
+ TheModule = new Module("my cool jit", Context);
+
+ // Create the JIT. This takes ownership of the module.
+ std::string ErrStr;
+ TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+ if (!TheExecutionEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ FunctionPassManager OurFPM(TheModule);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ OurFPM.add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ OurFPM.add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ OurFPM.add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ OurFPM.add(createCFGSimplificationPass());
+
+ OurFPM.doInitialization();
+
+ // Set the global so the code gen can use this.
+ TheFPM = &amp;OurFPM;
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ TheFPM = 0;
+
+ // Print out all of the generated code.
+ TheModule-&gt;dump();
+
+ return 0;
+}
+</pre>
+</div>
+
+<a href="LangImpl7.html">Next: Extending the language: mutable variables / SSA construction</a>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
+
+ <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
+ <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date$
+</address>
+</body>
+</html>