aboutsummaryrefslogtreecommitdiffstats
path: root/docs/tutorial/LangImpl7.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/tutorial/LangImpl7.html')
-rw-r--r--docs/tutorial/LangImpl7.html2164
1 files changed, 0 insertions, 2164 deletions
diff --git a/docs/tutorial/LangImpl7.html b/docs/tutorial/LangImpl7.html
deleted file mode 100644
index 0b46ba5..0000000
--- a/docs/tutorial/LangImpl7.html
+++ /dev/null
@@ -1,2164 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-
-<html>
-<head>
- <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
- construction</title>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="author" content="Chris Lattner">
- <link rel="stylesheet" href="../llvm.css" type="text/css">
-</head>
-
-<body>
-
-<div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
-
-<ul>
-<li><a href="index.html">Up to Tutorial Index</a></li>
-<li>Chapter 7
- <ol>
- <li><a href="#intro">Chapter 7 Introduction</a></li>
- <li><a href="#why">Why is this a hard problem?</a></li>
- <li><a href="#memory">Memory in LLVM</a></li>
- <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
- <li><a href="#adjustments">Adjusting Existing Variables for
- Mutation</a></li>
- <li><a href="#assignment">New Assignment Operator</a></li>
- <li><a href="#localvars">User-defined Local Variables</a></li>
- <li><a href="#code">Full Code Listing</a></li>
- </ol>
-</li>
-<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
- tidbits</li>
-</ul>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
-with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very
-respectable, albeit simple, <a
-href="http://en.wikipedia.org/wiki/Functional_programming">functional
-programming language</a>. In our journey, we learned some parsing techniques,
-how to build and represent an AST, how to build LLVM IR, and how to optimize
-the resultant code as well as JIT compile it.</p>
-
-<p>While Kaleidoscope is interesting as a functional language, the fact that it
-is functional makes it "too easy" to generate LLVM IR for it. In particular, a
-functional language makes it very easy to build LLVM IR directly in <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
-Since LLVM requires that the input code be in SSA form, this is a very nice
-property and it is often unclear to newcomers how to generate code for an
-imperative language with mutable variables.</p>
-
-<p>The short (and happy) summary of this chapter is that there is no need for
-your front-end to build SSA form: LLVM provides highly tuned and well tested
-support for this, though the way it works is a bit unexpected for some.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-To understand why mutable variables cause complexities in SSA construction,
-consider this extremely simple C example:
-</p>
-
-<div class="doc_code">
-<pre>
-int G, H;
-int test(_Bool Condition) {
- int X;
- if (Condition)
- X = G;
- else
- X = H;
- return X;
-}
-</pre>
-</div>
-
-<p>In this case, we have the variable "X", whose value depends on the path
-executed in the program. Because there are two different possible values for X
-before the return instruction, a PHI node is inserted to merge the two values.
-The LLVM IR that we want for this example looks like this:</p>
-
-<div class="doc_code">
-<pre>
-@G = weak global i32 0 ; type of @G is i32*
-@H = weak global i32 0 ; type of @H is i32*
-
-define i32 @test(i1 %Condition) {
-entry:
- br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
- %X.0 = load i32* @G
- br label %cond_next
-
-cond_false:
- %X.1 = load i32* @H
- br label %cond_next
-
-cond_next:
- %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
- ret i32 %X.2
-}
-</pre>
-</div>
-
-<p>In this example, the loads from the G and H global variables are explicit in
-the LLVM IR, and they live in the then/else branches of the if statement
-(cond_true/cond_false). In order to merge the incoming values, the X.2 phi node
-in the cond_next block selects the right value to use based on where control
-flow is coming from: if control flow comes from the cond_false block, X.2 gets
-the value of X.1. Alternatively, if control flow comes from cond_true, it gets
-the value of X.0. The intent of this chapter is not to explain the details of
-SSA form. For more information, see one of the many <a
-href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
-references</a>.</p>
-
-<p>The question for this article is "who places the phi nodes when lowering
-assignments to mutable variables?". The issue here is that LLVM
-<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
-However, SSA construction requires non-trivial algorithms and data structures,
-so it is inconvenient and wasteful for every front-end to have to reproduce this
-logic.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="memory">Memory in LLVM</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>The 'trick' here is that while LLVM does require all register values to be
-in SSA form, it does not require (or permit) memory objects to be in SSA form.
-In the example above, note that the loads from G and H are direct accesses to
-G and H: they are not renamed or versioned. This differs from some other
-compiler systems, which do try to version memory objects. In LLVM, instead of
-encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
-href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
-demand.</p>
-
-<p>
-With this in mind, the high-level idea is that we want to make a stack variable
-(which lives in memory, because it is on the stack) for each mutable object in
-a function. To take advantage of this trick, we need to talk about how LLVM
-represents stack variables.
-</p>
-
-<p>In LLVM, all memory accesses are explicit with load/store instructions, and
-it is carefully designed not to have (or need) an "address-of" operator. Notice
-how the type of the @G/@H global variables is actually "i32*" even though the
-variable is defined as "i32". What this means is that @G defines <em>space</em>
-for an i32 in the global data area, but its <em>name</em> actually refers to the
-address for that space. Stack variables work the same way, except that instead of
-being declared with global variable definitions, they are declared with the
-<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
-
-<div class="doc_code">
-<pre>
-define i32 @example() {
-entry:
- %X = alloca i32 ; type of %X is i32*.
- ...
- %tmp = load i32* %X ; load the stack value %X from the stack.
- %tmp2 = add i32 %tmp, 1 ; increment it
- store i32 %tmp2, i32* %X ; store it back
- ...
-</pre>
-</div>
-
-<p>This code shows an example of how you can declare and manipulate a stack
-variable in the LLVM IR. Stack memory allocated with the alloca instruction is
-fully general: you can pass the address of the stack slot to functions, you can
-store it in other variables, etc. In our example above, we could rewrite the
-example to use the alloca technique to avoid using a PHI node:</p>
-
-<div class="doc_code">
-<pre>
-@G = weak global i32 0 ; type of @G is i32*
-@H = weak global i32 0 ; type of @H is i32*
-
-define i32 @test(i1 %Condition) {
-entry:
- %X = alloca i32 ; type of %X is i32*.
- br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
- %X.0 = load i32* @G
- store i32 %X.0, i32* %X ; Update X
- br label %cond_next
-
-cond_false:
- %X.1 = load i32* @H
- store i32 %X.1, i32* %X ; Update X
- br label %cond_next
-
-cond_next:
- %X.2 = load i32* %X ; Read X
- ret i32 %X.2
-}
-</pre>
-</div>
-
-<p>With this, we have discovered a way to handle arbitrary mutable variables
-without the need to create Phi nodes at all:</p>
-
-<ol>
-<li>Each mutable variable becomes a stack allocation.</li>
-<li>Each read of the variable becomes a load from the stack.</li>
-<li>Each update of the variable becomes a store to the stack.</li>
-<li>Taking the address of a variable just uses the stack address directly.</li>
-</ol>
-
-<p>While this solution has solved our immediate problem, it introduced another
-one: we have now apparently introduced a lot of stack traffic for very simple
-and common operations, a major performance problem. Fortunately for us, the
-LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
-this case, promoting allocas like this into SSA registers, inserting Phi nodes
-as appropriate. If you run this example through the pass, for example, you'll
-get:</p>
-
-<div class="doc_code">
-<pre>
-$ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
-@G = weak global i32 0
-@H = weak global i32 0
-
-define i32 @test(i1 %Condition) {
-entry:
- br i1 %Condition, label %cond_true, label %cond_false
-
-cond_true:
- %X.0 = load i32* @G
- br label %cond_next
-
-cond_false:
- %X.1 = load i32* @H
- br label %cond_next
-
-cond_next:
- %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
- ret i32 %X.01
-}
-</pre>
-</div>
-
-<p>The mem2reg pass implements the standard "iterated dominance frontier"
-algorithm for constructing SSA form and has a number of optimizations that speed
-up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing
-with mutable variables, and we highly recommend that you depend on it. Note that
-mem2reg only works on variables in certain circumstances:</p>
-
-<ol>
-<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
-promotes them. It does not apply to global variables or heap allocations.</li>
-
-<li>mem2reg only looks for alloca instructions in the entry block of the
-function. Being in the entry block guarantees that the alloca is only executed
-once, which makes analysis simpler.</li>
-
-<li>mem2reg only promotes allocas whose uses are direct loads and stores. If
-the address of the stack object is passed to a function, or if any funny pointer
-arithmetic is involved, the alloca will not be promoted.</li>
-
-<li>mem2reg only works on allocas of <a
-href="../LangRef.html#t_classifications">first class</a>
-values (such as pointers, scalars and vectors), and only if the array size
-of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of
-promoting structs or arrays to registers. Note that the "scalarrepl" pass is
-more powerful and can promote structs, "unions", and arrays in many cases.</li>
-
-</ol>
-
-<p>
-All of these properties are easy to satisfy for most imperative languages, and
-we'll illustrate it below with Kaleidoscope. The final question you may be
-asking is: should I bother with this nonsense for my front-end? Wouldn't it be
-better if I just did SSA construction directly, avoiding use of the mem2reg
-optimization pass? In short, we strongly recommend that you use this technique
-for building SSA form, unless there is an extremely good reason not to. Using
-this technique is:</p>
-
-<ul>
-<li>Proven and well tested: llvm-gcc and clang both use this technique for local
-mutable variables. As such, the most common clients of LLVM are using this to
-handle a bulk of their variables. You can be sure that bugs are found fast and
-fixed early.</li>
-
-<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
-common cases as well as fully general. For example, it has fast-paths for
-variables that are only used in a single block, variables that only have one
-assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
-</li>
-
-<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
-Debug information in LLVM</a> relies on having the address of the variable
-exposed so that debug info can be attached to it. This technique dovetails
-very naturally with this style of debug info.</li>
-</ul>
-
-<p>If nothing else, this makes it much easier to get your front-end up and
-running, and is very simple to implement. Lets extend Kaleidoscope with mutable
-variables now!
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="kalvars">Mutable Variables in
-Kaleidoscope</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>Now that we know the sort of problem we want to tackle, lets see what this
-looks like in the context of our little Kaleidoscope language. We're going to
-add two features:</p>
-
-<ol>
-<li>The ability to mutate variables with the '=' operator.</li>
-<li>The ability to define new variables.</li>
-</ol>
-
-<p>While the first item is really what this is about, we only have variables
-for incoming arguments as well as for induction variables, and redefining those only
-goes so far :). Also, the ability to define new variables is a
-useful thing regardless of whether you will be mutating them. Here's a
-motivating example that shows how we could use these:</p>
-
-<div class="doc_code">
-<pre>
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-
-# Recursive fib, we could do this before.
-def fib(x)
- if (x &lt; 3) then
- 1
- else
- fib(x-1)+fib(x-2);
-
-# Iterative fib.
-def fibi(x)
- <b>var a = 1, b = 1, c in</b>
- (for i = 3, i &lt; x in
- <b>c = a + b</b> :
- <b>a = b</b> :
- <b>b = c</b>) :
- b;
-
-# Call it.
-fibi(10);
-</pre>
-</div>
-
-<p>
-In order to mutate variables, we have to change our existing variables to use
-the "alloca trick". Once we have that, we'll add our new operator, then extend
-Kaleidoscope to support new variable definitions.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
-Mutation</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-The symbol table in Kaleidoscope is managed at code generation time by the
-'<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*"
-that holds the double value for the named variable. In order to support
-mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
-the <em>memory location</em> of the variable in question. Note that this
-change is a refactoring: it changes the structure of the code, but does not
-(by itself) change the behavior of the compiler. All of these changes are
-isolated in the Kaleidoscope code generator.</p>
-
-<p>
-At this point in Kaleidoscope's development, it only supports variables for two
-things: incoming arguments to functions and the induction variable of 'for'
-loops. For consistency, we'll allow mutation of these variables in addition to
-other user-defined variables. This means that these will both need memory
-locations.
-</p>
-
-<p>To start our transformation of Kaleidoscope, we'll change the NamedValues
-map so that it maps to AllocaInst* instead of Value*. Once we do this, the C++
-compiler will tell us what parts of the code we need to update:</p>
-
-<div class="doc_code">
-<pre>
-static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
-</pre>
-</div>
-
-<p>Also, since we will need to create these alloca's, we'll use a helper
-function that ensures that the allocas are created in the entry block of the
-function:</p>
-
-<div class="doc_code">
-<pre>
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function. This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
- const std::string &amp;VarName) {
- IRBuilder&lt;&gt; TmpB(&amp;TheFunction-&gt;getEntryBlock(),
- TheFunction-&gt;getEntryBlock().begin());
- return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
- VarName.c_str());
-}
-</pre>
-</div>
-
-<p>This funny looking code creates an IRBuilder object that is pointing at
-the first instruction (.begin()) of the entry block. It then creates an alloca
-with the expected name and returns it. Because all values in Kaleidoscope are
-doubles, there is no need to pass in a type to use.</p>
-
-<p>With this in place, the first functionality change we want to make is to
-variable references. In our new scheme, variables live on the stack, so code
-generating a reference to them actually needs to produce a load from the stack
-slot:</p>
-
-<div class="doc_code">
-<pre>
-Value *VariableExprAST::Codegen() {
- // Look this variable up in the function.
- Value *V = NamedValues[Name];
- if (V == 0) return ErrorV("Unknown variable name");
-
- <b>// Load the value.
- return Builder.CreateLoad(V, Name.c_str());</b>
-}
-</pre>
-</div>
-
-<p>As you can see, this is pretty straightforward. Now we need to update the
-things that define the variables to set up the alloca. We'll start with
-<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
-the unabridged code):</p>
-
-<div class="doc_code">
-<pre>
- Function *TheFunction = Builder.GetInsertBlock()->getParent();
-
- <b>// Create an alloca for the variable in the entry block.
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start-&gt;Codegen();
- if (StartVal == 0) return 0;
-
- <b>// Store the value into the alloca.
- Builder.CreateStore(StartVal, Alloca);</b>
- ...
-
- // Compute the end condition.
- Value *EndCond = End-&gt;Codegen();
- if (EndCond == 0) return EndCond;
-
- <b>// Reload, increment, and restore the alloca. This handles the case where
- // the body of the loop mutates the variable.
- Value *CurVar = Builder.CreateLoad(Alloca);
- Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
- Builder.CreateStore(NextVar, Alloca);</b>
- ...
-</pre>
-</div>
-
-<p>This code is virtually identical to the code <a
-href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The
-big difference is that we no longer have to construct a PHI node, and we use
-load/store to access the variable as needed.</p>
-
-<p>To support mutable argument variables, we need to also make allocas for them.
-The code for this is also pretty simple:</p>
-
-<div class="doc_code">
-<pre>
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F) {
- Function::arg_iterator AI = F-&gt;arg_begin();
- for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
- // Create an alloca for this variable.
- AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
- // Store the initial value into the alloca.
- Builder.CreateStore(AI, Alloca);
-
- // Add arguments to variable symbol table.
- NamedValues[Args[Idx]] = Alloca;
- }
-}
-</pre>
-</div>
-
-<p>For each argument, we make an alloca, store the input value to the function
-into the alloca, and register the alloca as the memory location for the
-argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
-it sets up the entry block for the function.</p>
-
-<p>The final missing piece is adding the mem2reg pass, which allows us to get
-good codegen once again:</p>
-
-<div class="doc_code">
-<pre>
- // Set up the optimizer pipeline. Start with registering info about how the
- // target lays out data structures.
- OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
- <b>// Promote allocas to registers.
- OurFPM.add(createPromoteMemoryToRegisterPass());</b>
- // Do simple "peephole" optimizations and bit-twiddling optzns.
- OurFPM.add(createInstructionCombiningPass());
- // Reassociate expressions.
- OurFPM.add(createReassociatePass());
-</pre>
-</div>
-
-<p>It is interesting to see what the code looks like before and after the
-mem2reg optimization runs. For example, this is the before/after code for our
-recursive fib function. Before the optimization:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
- <b>%x1 = alloca double
- store double %x, double* %x1
- %x2 = load double* %x1</b>
- %cmptmp = fcmp ult double %x2, 3.000000e+00
- %booltmp = uitofp i1 %cmptmp to double
- %ifcond = fcmp one double %booltmp, 0.000000e+00
- br i1 %ifcond, label %then, label %else
-
-then: ; preds = %entry
- br label %ifcont
-
-else: ; preds = %entry
- <b>%x3 = load double* %x1</b>
- %subtmp = fsub double %x3, 1.000000e+00
- %calltmp = call double @fib( double %subtmp )
- <b>%x4 = load double* %x1</b>
- %subtmp5 = fsub double %x4, 2.000000e+00
- %calltmp6 = call double @fib( double %subtmp5 )
- %addtmp = fadd double %calltmp, %calltmp6
- br label %ifcont
-
-ifcont: ; preds = %else, %then
- %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
- ret double %iftmp
-}
-</pre>
-</div>
-
-<p>Here there is only one variable (x, the input argument) but you can still
-see the extremely simple-minded code generation strategy we are using. In the
-entry block, an alloca is created, and the initial input value is stored into
-it. Each reference to the variable does a reload from the stack. Also, note
-that we didn't modify the if/then/else expression, so it still inserts a PHI
-node. While we could make an alloca for it, it is actually easier to create a
-PHI node for it, so we still just make the PHI.</p>
-
-<p>Here is the code after the mem2reg pass runs:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
- %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
- %booltmp = uitofp i1 %cmptmp to double
- %ifcond = fcmp one double %booltmp, 0.000000e+00
- br i1 %ifcond, label %then, label %else
-
-then:
- br label %ifcont
-
-else:
- %subtmp = fsub double <b>%x</b>, 1.000000e+00
- %calltmp = call double @fib( double %subtmp )
- %subtmp5 = fsub double <b>%x</b>, 2.000000e+00
- %calltmp6 = call double @fib( double %subtmp5 )
- %addtmp = fadd double %calltmp, %calltmp6
- br label %ifcont
-
-ifcont: ; preds = %else, %then
- %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
- ret double %iftmp
-}
-</pre>
-</div>
-
-<p>This is a trivial case for mem2reg, since there are no redefinitions of the
-variable. The point of showing this is to calm your tension about inserting
-such blatent inefficiencies :).</p>
-
-<p>After the rest of the optimizers run, we get:</p>
-
-<div class="doc_code">
-<pre>
-define double @fib(double %x) {
-entry:
- %cmptmp = fcmp ult double %x, 3.000000e+00
- %booltmp = uitofp i1 %cmptmp to double
- %ifcond = fcmp ueq double %booltmp, 0.000000e+00
- br i1 %ifcond, label %else, label %ifcont
-
-else:
- %subtmp = fsub double %x, 1.000000e+00
- %calltmp = call double @fib( double %subtmp )
- %subtmp5 = fsub double %x, 2.000000e+00
- %calltmp6 = call double @fib( double %subtmp5 )
- %addtmp = fadd double %calltmp, %calltmp6
- ret double %addtmp
-
-ifcont:
- ret double 1.000000e+00
-}
-</pre>
-</div>
-
-<p>Here we see that the simplifycfg pass decided to clone the return instruction
-into the end of the 'else' block. This allowed it to eliminate some branches
-and the PHI node.</p>
-
-<p>Now that all symbol table references are updated to use stack variables,
-we'll add the assignment operator.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>With our current framework, adding a new assignment operator is really
-simple. We will parse it just like any other binary operator, but handle it
-internally (instead of allowing the user to define it). The first step is to
-set a precedence:</p>
-
-<div class="doc_code">
-<pre>
- int main() {
- // Install standard binary operators.
- // 1 is lowest precedence.
- <b>BinopPrecedence['='] = 2;</b>
- BinopPrecedence['&lt;'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
-</pre>
-</div>
-
-<p>Now that the parser knows the precedence of the binary operator, it takes
-care of all the parsing and AST generation. We just need to implement codegen
-for the assignment operator. This looks like:</p>
-
-<div class="doc_code">
-<pre>
-Value *BinaryExprAST::Codegen() {
- // Special case '=' because we don't want to emit the LHS as an expression.
- if (Op == '=') {
- // Assignment requires the LHS to be an identifier.
- VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
- if (!LHSE)
- return ErrorV("destination of '=' must be a variable");
-</pre>
-</div>
-
-<p>Unlike the rest of the binary operators, our assignment operator doesn't
-follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
-as a special case before the other binary operators are handled. The other
-strange thing is that it requires the LHS to be a variable. It is invalid to
-have "(x+1) = expr" - only things like "x = expr" are allowed.
-</p>
-
-<div class="doc_code">
-<pre>
- // Codegen the RHS.
- Value *Val = RHS-&gt;Codegen();
- if (Val == 0) return 0;
-
- // Look up the name.
- Value *Variable = NamedValues[LHSE-&gt;getName()];
- if (Variable == 0) return ErrorV("Unknown variable name");
-
- Builder.CreateStore(Val, Variable);
- return Val;
- }
- ...
-</pre>
-</div>
-
-<p>Once we have the variable, codegen'ing the assignment is straightforward:
-we emit the RHS of the assignment, create a store, and return the computed
-value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
-
-<p>Now that we have an assignment operator, we can mutate loop variables and
-arguments. For example, we can now run code like this:</p>
-
-<div class="doc_code">
-<pre>
-# Function to print a double.
-extern printd(x);
-
-# Define ':' for sequencing: as a low-precedence operator that ignores operands
-# and just returns the RHS.
-def binary : 1 (x y) y;
-
-def test(x)
- printd(x) :
- x = 4 :
- printd(x);
-
-test(123);
-</pre>
-</div>
-
-<p>When run, this example prints "123" and then "4", showing that we did
-actually mutate the value! Okay, we have now officially implemented our goal:
-getting this to work requires SSA construction in the general case. However,
-to be really useful, we want the ability to define our own local variables, lets
-add this next!
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="localvars">User-defined Local
-Variables</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>Adding var/in is just like any other other extensions we made to
-Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
-The first step for adding our new 'var/in' construct is to extend the lexer.
-As before, this is pretty trivial, the code looks like this:</p>
-
-<div class="doc_code">
-<pre>
-enum Token {
- ...
- <b>// var definition
- tok_var = -13</b>
-...
-}
-...
-static int gettok() {
-...
- if (IdentifierStr == "in") return tok_in;
- if (IdentifierStr == "binary") return tok_binary;
- if (IdentifierStr == "unary") return tok_unary;
- <b>if (IdentifierStr == "var") return tok_var;</b>
- return tok_identifier;
-...
-</pre>
-</div>
-
-<p>The next step is to define the AST node that we will construct. For var/in,
-it looks like this:</p>
-
-<div class="doc_code">
-<pre>
-/// VarExprAST - Expression class for var/in
-class VarExprAST : public ExprAST {
- std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
- ExprAST *Body;
-public:
- VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
- ExprAST *body)
- : VarNames(varnames), Body(body) {}
-
- virtual Value *Codegen();
-};
-</pre>
-</div>
-
-<p>var/in allows a list of names to be defined all at once, and each name can
-optionally have an initializer value. As such, we capture this information in
-the VarNames vector. Also, var/in has a body, this body is allowed to access
-the variables defined by the var/in.</p>
-
-<p>With this in place, we can define the parser pieces. The first thing we do is add
-it as a primary expression:</p>
-
-<div class="doc_code">
-<pre>
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-<b>/// ::= varexpr</b>
-static ExprAST *ParsePrimary() {
- switch (CurTok) {
- default: return Error("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- <b>case tok_var: return ParseVarExpr();</b>
- }
-}
-</pre>
-</div>
-
-<p>Next we define ParseVarExpr:</p>
-
-<div class="doc_code">
-<pre>
-/// varexpr ::= 'var' identifier ('=' expression)?
-// (',' identifier ('=' expression)?)* 'in' expression
-static ExprAST *ParseVarExpr() {
- getNextToken(); // eat the var.
-
- std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
-
- // At least one variable name is required.
- if (CurTok != tok_identifier)
- return Error("expected identifier after var");
-</pre>
-</div>
-
-<p>The first part of this code parses the list of identifier/expr pairs into the
-local <tt>VarNames</tt> vector.
-
-<div class="doc_code">
-<pre>
- while (1) {
- std::string Name = IdentifierStr;
- getNextToken(); // eat identifier.
-
- // Read the optional initializer.
- ExprAST *Init = 0;
- if (CurTok == '=') {
- getNextToken(); // eat the '='.
-
- Init = ParseExpression();
- if (Init == 0) return 0;
- }
-
- VarNames.push_back(std::make_pair(Name, Init));
-
- // End of var list, exit loop.
- if (CurTok != ',') break;
- getNextToken(); // eat the ','.
-
- if (CurTok != tok_identifier)
- return Error("expected identifier list after var");
- }
-</pre>
-</div>
-
-<p>Once all the variables are parsed, we then parse the body and create the
-AST node:</p>
-
-<div class="doc_code">
-<pre>
- // At this point, we have to have 'in'.
- if (CurTok != tok_in)
- return Error("expected 'in' keyword after 'var'");
- getNextToken(); // eat 'in'.
-
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
-
- return new VarExprAST(VarNames, Body);
-}
-</pre>
-</div>
-
-<p>Now that we can parse and represent the code, we need to support emission of
-LLVM IR for it. This code starts out with:</p>
-
-<div class="doc_code">
-<pre>
-Value *VarExprAST::Codegen() {
- std::vector&lt;AllocaInst *&gt; OldBindings;
-
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
-
- // Register all variables and emit their initializer.
- for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
- const std::string &amp;VarName = VarNames[i].first;
- ExprAST *Init = VarNames[i].second;
-</pre>
-</div>
-
-<p>Basically it loops over all the variables, installing them one at a time.
-For each variable we put into the symbol table, we remember the previous value
-that we replace in OldBindings.</p>
-
-<div class="doc_code">
-<pre>
- // Emit the initializer before adding the variable to scope, this prevents
- // the initializer from referencing the variable itself, and permits stuff
- // like this:
- // var a = 1 in
- // var a = a in ... # refers to outer 'a'.
- Value *InitVal;
- if (Init) {
- InitVal = Init-&gt;Codegen();
- if (InitVal == 0) return 0;
- } else { // If not specified, use 0.0.
- InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
- }
-
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
- Builder.CreateStore(InitVal, Alloca);
-
- // Remember the old variable binding so that we can restore the binding when
- // we unrecurse.
- OldBindings.push_back(NamedValues[VarName]);
-
- // Remember this binding.
- NamedValues[VarName] = Alloca;
- }
-</pre>
-</div>
-
-<p>There are more comments here than code. The basic idea is that we emit the
-initializer, create the alloca, then update the symbol table to point to it.
-Once all the variables are installed in the symbol table, we evaluate the body
-of the var/in expression:</p>
-
-<div class="doc_code">
-<pre>
- // Codegen the body, now that all vars are in scope.
- Value *BodyVal = Body-&gt;Codegen();
- if (BodyVal == 0) return 0;
-</pre>
-</div>
-
-<p>Finally, before returning, we restore the previous variable bindings:</p>
-
-<div class="doc_code">
-<pre>
- // Pop all our variables from scope.
- for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
- NamedValues[VarNames[i].first] = OldBindings[i];
-
- // Return the body computation.
- return BodyVal;
-}
-</pre>
-</div>
-
-<p>The end result of all of this is that we get properly scoped variable
-definitions, and we even (trivially) allow mutation of them :).</p>
-
-<p>With this, we completed what we set out to do. Our nice iterative fib
-example from the intro compiles and runs just fine. The mem2reg pass optimizes
-all of our stack variables into SSA registers, inserting PHI nodes where needed,
-and our front-end remains simple: no "iterated dominance frontier" computation
-anywhere in sight.</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section"><a name="code">Full Code Listing</a></div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-Here is the complete code listing for our running example, enhanced with mutable
-variables and var/in support. To build this example, use:
-</p>
-
-<div class="doc_code">
-<pre>
- # Compile
- g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
- # Run
- ./toy
-</pre>
-</div>
-
-<p>Here is the code:</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/DerivedTypes.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetSelect.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Support/IRBuilder.h"
-#include &lt;cstdio&gt;
-#include &lt;string&gt;
-#include &lt;map&gt;
-#include &lt;vector&gt;
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
- tok_for = -9, tok_in = -10,
-
- // operators
- tok_binary = -11, tok_unary = -12,
-
- // var definition
- tok_var = -13
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;
- if (IdentifierStr == "binary") return tok_binary;
- if (IdentifierStr == "unary") return tok_unary;
- if (IdentifierStr == "var") return tok_var;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), 0);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-/// ExprAST - Base class for all expression nodes.
-class ExprAST {
-public:
- virtual ~ExprAST() {}
- virtual Value *Codegen() = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-class NumberExprAST : public ExprAST {
- double Val;
-public:
- NumberExprAST(double val) : Val(val) {}
- virtual Value *Codegen();
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-class VariableExprAST : public ExprAST {
- std::string Name;
-public:
- VariableExprAST(const std::string &amp;name) : Name(name) {}
- const std::string &amp;getName() const { return Name; }
- virtual Value *Codegen();
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-class UnaryExprAST : public ExprAST {
- char Opcode;
- ExprAST *Operand;
-public:
- UnaryExprAST(char opcode, ExprAST *operand)
- : Opcode(opcode), Operand(operand) {}
- virtual Value *Codegen();
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-class BinaryExprAST : public ExprAST {
- char Op;
- ExprAST *LHS, *RHS;
-public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
- virtual Value *Codegen();
-};
-
-/// CallExprAST - Expression class for function calls.
-class CallExprAST : public ExprAST {
- std::string Callee;
- std::vector&lt;ExprAST*&gt; Args;
-public:
- CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
- : Callee(callee), Args(args) {}
- virtual Value *Codegen();
-};
-
-/// IfExprAST - Expression class for if/then/else.
-class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
- virtual Value *Codegen();
-};
-
-/// ForExprAST - Expression class for for/in.
-class ForExprAST : public ExprAST {
- std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-public:
- ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
- virtual Value *Codegen();
-};
-
-/// VarExprAST - Expression class for var/in
-class VarExprAST : public ExprAST {
- std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
- ExprAST *Body;
-public:
- VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
- ExprAST *body)
- : VarNames(varnames), Body(body) {}
-
- virtual Value *Codegen();
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its name, and its argument names (thus implicitly the number
-/// of arguments the function takes), as well as if it is an operator.
-class PrototypeAST {
- std::string Name;
- std::vector&lt;std::string&gt; Args;
- bool isOperator;
- unsigned Precedence; // Precedence if a binary op.
-public:
- PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args,
- bool isoperator = false, unsigned prec = 0)
- : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
-
- bool isUnaryOp() const { return isOperator &amp;&amp; Args.size() == 1; }
- bool isBinaryOp() const { return isOperator &amp;&amp; Args.size() == 2; }
-
- char getOperatorName() const {
- assert(isUnaryOp() || isBinaryOp());
- return Name[Name.size()-1];
- }
-
- unsigned getBinaryPrecedence() const { return Precedence; }
-
- Function *Codegen();
-
- void CreateArgumentAllocas(Function *F);
-};
-
-/// FunctionAST - This class represents a function definition itself.
-class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-public:
- FunctionAST(PrototypeAST *proto, ExprAST *body)
- : Proto(proto), Body(body) {}
-
- Function *Codegen();
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map&lt;char, int&gt; BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec &lt;= 0) return -1;
- return TokPrec;
-}
-
-/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
-
-static ExprAST *ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector&lt;ExprAST*&gt; Args;
- if (CurTok != ')') {
- while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg) return 0;
- Args.push_back(Arg);
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return Error("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return new CallExprAST(IdName, Args);
-}
-
-/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
- getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
- if (!V) return 0;
-
- if (CurTok != ')')
- return Error("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- ExprAST *Cond = ParseExpression();
- if (!Cond) return 0;
-
- if (CurTok != tok_then)
- return Error("expected then");
- getNextToken(); // eat the then
-
- ExprAST *Then = ParseExpression();
- if (Then == 0) return 0;
-
- if (CurTok != tok_else)
- return Error("expected else");
-
- getNextToken();
-
- ExprAST *Else = ParseExpression();
- if (!Else) return 0;
-
- return new IfExprAST(Cond, Then, Else);
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return Error("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return Error("expected '=' after for");
- getNextToken(); // eat '='.
-
-
- ExprAST *Start = ParseExpression();
- if (Start == 0) return 0;
- if (CurTok != ',')
- return Error("expected ',' after for start value");
- getNextToken();
-
- ExprAST *End = ParseExpression();
- if (End == 0) return 0;
-
- // The step value is optional.
- ExprAST *Step = 0;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (Step == 0) return 0;
- }
-
- if (CurTok != tok_in)
- return Error("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
-
- return new ForExprAST(IdName, Start, End, Step, Body);
-}
-
-/// varexpr ::= 'var' identifier ('=' expression)?
-// (',' identifier ('=' expression)?)* 'in' expression
-static ExprAST *ParseVarExpr() {
- getNextToken(); // eat the var.
-
- std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
-
- // At least one variable name is required.
- if (CurTok != tok_identifier)
- return Error("expected identifier after var");
-
- while (1) {
- std::string Name = IdentifierStr;
- getNextToken(); // eat identifier.
-
- // Read the optional initializer.
- ExprAST *Init = 0;
- if (CurTok == '=') {
- getNextToken(); // eat the '='.
-
- Init = ParseExpression();
- if (Init == 0) return 0;
- }
-
- VarNames.push_back(std::make_pair(Name, Init));
-
- // End of var list, exit loop.
- if (CurTok != ',') break;
- getNextToken(); // eat the ','.
-
- if (CurTok != tok_identifier)
- return Error("expected identifier list after var");
- }
-
- // At this point, we have to have 'in'.
- if (CurTok != tok_in)
- return Error("expected 'in' keyword after 'var'");
- getNextToken(); // eat 'in'.
-
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
-
- return new VarExprAST(VarNames, Body);
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-/// ::= varexpr
-static ExprAST *ParsePrimary() {
- switch (CurTok) {
- default: return Error("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- case tok_var: return ParseVarExpr();
- }
-}
-
-/// unary
-/// ::= primary
-/// ::= '!' unary
-static ExprAST *ParseUnary() {
- // If the current token is not an operator, it must be a primary expr.
- if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
- return ParsePrimary();
-
- // If this is a unary operator, read it.
- int Opc = CurTok;
- getNextToken();
- if (ExprAST *Operand = ParseUnary())
- return new UnaryExprAST(Opc, Operand);
- return 0;
-}
-
-/// binoprhs
-/// ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
- // If this is a binop, find its precedence.
- while (1) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec &lt; ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the unary expression after the binary operator.
- ExprAST *RHS = ParseUnary();
- if (!RHS) return 0;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec &lt; NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, RHS);
- if (RHS == 0) return 0;
- }
-
- // Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
- }
-}
-
-/// expression
-/// ::= unary binoprhs
-///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParseUnary();
- if (!LHS) return 0;
-
- return ParseBinOpRHS(0, LHS);
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-/// ::= binary LETTER number? (id, id)
-/// ::= unary LETTER (id)
-static PrototypeAST *ParsePrototype() {
- std::string FnName;
-
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
-
- switch (CurTok) {
- default:
- return ErrorP("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_unary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorP("Expected unary operator");
- FnName = "unary";
- FnName += (char)CurTok;
- Kind = 1;
- getNextToken();
- break;
- case tok_binary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorP("Expected binary operator");
- FnName = "binary";
- FnName += (char)CurTok;
- Kind = 2;
- getNextToken();
-
- // Read the precedence if present.
- if (CurTok == tok_number) {
- if (NumVal &lt; 1 || NumVal &gt; 100)
- return ErrorP("Invalid precedecnce: must be 1..100");
- BinaryPrecedence = (unsigned)NumVal;
- getNextToken();
- }
- break;
- }
-
- if (CurTok != '(')
- return ErrorP("Expected '(' in prototype");
-
- std::vector&lt;std::string&gt; ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return ErrorP("Expected ')' in prototype");
-
- // success.
- getNextToken(); // eat ')'.
-
- // Verify right number of names for operator.
- if (Kind &amp;&amp; ArgNames.size() != Kind)
- return ErrorP("Invalid number of operands for operator");
-
- return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
- getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0) return 0;
-
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
-}
-
-/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
- // Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
- return new FunctionAST(Proto, E);
- }
- return 0;
-}
-
-/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
- getNextToken(); // eat extern.
- return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-static Module *TheModule;
-static IRBuilder&lt;&gt; Builder(getGlobalContext());
-static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
-static FunctionPassManager *TheFPM;
-
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
-
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function. This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
- const std::string &amp;VarName) {
- IRBuilder&lt;&gt; TmpB(&amp;TheFunction-&gt;getEntryBlock(),
- TheFunction-&gt;getEntryBlock().begin());
- return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
- VarName.c_str());
-}
-
-Value *NumberExprAST::Codegen() {
- return ConstantFP::get(getGlobalContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::Codegen() {
- // Look this variable up in the function.
- Value *V = NamedValues[Name];
- if (V == 0) return ErrorV("Unknown variable name");
-
- // Load the value.
- return Builder.CreateLoad(V, Name.c_str());
-}
-
-Value *UnaryExprAST::Codegen() {
- Value *OperandV = Operand-&gt;Codegen();
- if (OperandV == 0) return 0;
-
- Function *F = TheModule-&gt;getFunction(std::string("unary")+Opcode);
- if (F == 0)
- return ErrorV("Unknown unary operator");
-
- return Builder.CreateCall(F, OperandV, "unop");
-}
-
-Value *BinaryExprAST::Codegen() {
- // Special case '=' because we don't want to emit the LHS as an expression.
- if (Op == '=') {
- // Assignment requires the LHS to be an identifier.
- VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
- if (!LHSE)
- return ErrorV("destination of '=' must be a variable");
- // Codegen the RHS.
- Value *Val = RHS-&gt;Codegen();
- if (Val == 0) return 0;
-
- // Look up the name.
- Value *Variable = NamedValues[LHSE-&gt;getName()];
- if (Variable == 0) return ErrorV("Unknown variable name");
-
- Builder.CreateStore(Val, Variable);
- return Val;
- }
-
- Value *L = LHS-&gt;Codegen();
- Value *R = RHS-&gt;Codegen();
- if (L == 0 || R == 0) return 0;
-
- switch (Op) {
- case '+': return Builder.CreateAdd(L, R, "addtmp");
- case '-': return Builder.CreateSub(L, R, "subtmp");
- case '*': return Builder.CreateMul(L, R, "multmp");
- case '&lt;':
- L = Builder.CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
- "booltmp");
- default: break;
- }
-
- // If it wasn't a builtin binary operator, it must be a user defined one. Emit
- // a call to it.
- Function *F = TheModule-&gt;getFunction(std::string("binary")+Op);
- assert(F &amp;&amp; "binary operator not found!");
-
- Value *Ops[] = { L, R };
- return Builder.CreateCall(F, Ops, Ops+2, "binop");
-}
-
-Value *CallExprAST::Codegen() {
- // Look up the name in the global module table.
- Function *CalleeF = TheModule-&gt;getFunction(Callee);
- if (CalleeF == 0)
- return ErrorV("Unknown function referenced");
-
- // If argument mismatch error.
- if (CalleeF-&gt;arg_size() != Args.size())
- return ErrorV("Incorrect # arguments passed");
-
- std::vector&lt;Value*&gt; ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]-&gt;Codegen());
- if (ArgsV.back() == 0) return 0;
- }
-
- return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
-}
-
-Value *IfExprAST::Codegen() {
- Value *CondV = Cond-&gt;Codegen();
- if (CondV == 0) return 0;
-
- // Convert condition to a bool by comparing equal to 0.0.
- CondV = Builder.CreateFCmpONE(CondV,
- ConstantFP::get(getGlobalContext(), APFloat(0.0)),
- "ifcond");
-
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
-
- Builder.CreateCondBr(CondV, ThenBB, ElseBB);
-
- // Emit then value.
- Builder.SetInsertPoint(ThenBB);
-
- Value *ThenV = Then-&gt;Codegen();
- if (ThenV == 0) return 0;
-
- Builder.CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = Builder.GetInsertBlock();
-
- // Emit else block.
- TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
- Builder.SetInsertPoint(ElseBB);
-
- Value *ElseV = Else-&gt;Codegen();
- if (ElseV == 0) return 0;
-
- Builder.CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = Builder.GetInsertBlock();
-
- // Emit merge block.
- TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
- Builder.SetInsertPoint(MergeBB);
- PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
- "iftmp");
-
- PN-&gt;addIncoming(ThenV, ThenBB);
- PN-&gt;addIncoming(ElseV, ElseBB);
- return PN;
-}
-
-Value *ForExprAST::Codegen() {
- // Output this as:
- // var = alloca double
- // ...
- // start = startexpr
- // store start -&gt; var
- // goto loop
- // loop:
- // ...
- // bodyexpr
- // ...
- // loopend:
- // step = stepexpr
- // endcond = endexpr
- //
- // curvar = load var
- // nextvar = curvar + step
- // store nextvar -&gt; var
- // br endcond, loop, endloop
- // outloop:
-
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
-
- // Create an alloca for the variable in the entry block.
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start-&gt;Codegen();
- if (StartVal == 0) return 0;
-
- // Store the value into the alloca.
- Builder.CreateStore(StartVal, Alloca);
-
- // Make the new basic block for the loop header, inserting after current
- // block.
- BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- Builder.CreateBr(LoopBB);
-
- // Start insertion in LoopBB.
- Builder.SetInsertPoint(LoopBB);
-
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- AllocaInst *OldVal = NamedValues[VarName];
- NamedValues[VarName] = Alloca;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (Body-&gt;Codegen() == 0)
- return 0;
-
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step-&gt;Codegen();
- if (StepVal == 0) return 0;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
- }
-
- // Compute the end condition.
- Value *EndCond = End-&gt;Codegen();
- if (EndCond == 0) return EndCond;
-
- // Reload, increment, and restore the alloca. This handles the case where
- // the body of the loop mutates the variable.
- Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
- Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
- Builder.CreateStore(NextVar, Alloca);
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = Builder.CreateFCmpONE(EndCond,
- ConstantFP::get(getGlobalContext(), APFloat(0.0)),
- "loopcond");
-
- // Create the "after loop" block and insert it.
- BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- Builder.SetInsertPoint(AfterBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- NamedValues[VarName] = OldVal;
- else
- NamedValues.erase(VarName);
-
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
-}
-
-Value *VarExprAST::Codegen() {
- std::vector&lt;AllocaInst *&gt; OldBindings;
-
- Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
-
- // Register all variables and emit their initializer.
- for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
- const std::string &amp;VarName = VarNames[i].first;
- ExprAST *Init = VarNames[i].second;
-
- // Emit the initializer before adding the variable to scope, this prevents
- // the initializer from referencing the variable itself, and permits stuff
- // like this:
- // var a = 1 in
- // var a = a in ... # refers to outer 'a'.
- Value *InitVal;
- if (Init) {
- InitVal = Init-&gt;Codegen();
- if (InitVal == 0) return 0;
- } else { // If not specified, use 0.0.
- InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
- }
-
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
- Builder.CreateStore(InitVal, Alloca);
-
- // Remember the old variable binding so that we can restore the binding when
- // we unrecurse.
- OldBindings.push_back(NamedValues[VarName]);
-
- // Remember this binding.
- NamedValues[VarName] = Alloca;
- }
-
- // Codegen the body, now that all vars are in scope.
- Value *BodyVal = Body-&gt;Codegen();
- if (BodyVal == 0) return 0;
-
- // Pop all our variables from scope.
- for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
- NamedValues[VarNames[i].first] = OldBindings[i];
-
- // Return the body computation.
- return BodyVal;
-}
-
-Function *PrototypeAST::Codegen() {
- // Make the function type: double(double,double) etc.
- std::vector&lt;const Type*&gt; Doubles(Args.size(),
- Type::getDoubleTy(getGlobalContext()));
- FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
- Doubles, false);
-
- Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
-
- // If F conflicted, there was already something named 'Name'. If it has a
- // body, don't allow redefinition or reextern.
- if (F-&gt;getName() != Name) {
- // Delete the one we just made and get the existing one.
- F-&gt;eraseFromParent();
- F = TheModule-&gt;getFunction(Name);
-
- // If F already has a body, reject this.
- if (!F-&gt;empty()) {
- ErrorF("redefinition of function");
- return 0;
- }
-
- // If F took a different number of args, reject.
- if (F-&gt;arg_size() != Args.size()) {
- ErrorF("redefinition of function with different # args");
- return 0;
- }
- }
-
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
- ++AI, ++Idx)
- AI-&gt;setName(Args[Idx]);
-
- return F;
-}
-
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F) {
- Function::arg_iterator AI = F-&gt;arg_begin();
- for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
- // Create an alloca for this variable.
- AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
- // Store the initial value into the alloca.
- Builder.CreateStore(AI, Alloca);
-
- // Add arguments to variable symbol table.
- NamedValues[Args[Idx]] = Alloca;
- }
-}
-
-Function *FunctionAST::Codegen() {
- NamedValues.clear();
-
- Function *TheFunction = Proto-&gt;Codegen();
- if (TheFunction == 0)
- return 0;
-
- // If this is an operator, install it.
- if (Proto-&gt;isBinaryOp())
- BinopPrecedence[Proto-&gt;getOperatorName()] = Proto-&gt;getBinaryPrecedence();
-
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
- Builder.SetInsertPoint(BB);
-
- // Add all arguments to the symbol table and create their allocas.
- Proto-&gt;CreateArgumentAllocas(TheFunction);
-
- if (Value *RetVal = Body-&gt;Codegen()) {
- // Finish off the function.
- Builder.CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- // Optimize the function.
- TheFPM-&gt;run(*TheFunction);
-
- return TheFunction;
- }
-
- // Error reading body, remove function.
- TheFunction-&gt;eraseFromParent();
-
- if (Proto-&gt;isBinaryOp())
- BinopPrecedence.erase(Proto-&gt;getOperatorName());
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static ExecutionEngine *TheExecutionEngine;
-
-static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F-&gt;Codegen()) {
- fprintf(stderr, "Read function definition:");
- LF-&gt;dump();
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P-&gt;Codegen()) {
- fprintf(stderr, "Read extern: ");
- F-&gt;dump();
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleTopLevelExpression() {
- // Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F-&gt;Codegen()) {
- // JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)FPtr;
- fprintf(stderr, "Evaluated to %f\n", FP());
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
- while (1) {
- fprintf(stderr, "ready&gt; ");
- switch (CurTok) {
- case tok_eof: return;
- case ';': getNextToken(); break; // ignore top-level semicolons.
- case tok_def: HandleDefinition(); break;
- case tok_extern: HandleExtern(); break;
- default: HandleTopLevelExpression(); break;
- }
- }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
-double printd(double X) {
- printf("%f\n", X);
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
- InitializeNativeTarget();
- LLVMContext &amp;Context = getGlobalContext();
-
- // Install standard binary operators.
- // 1 is lowest precedence.
- BinopPrecedence['='] = 2;
- BinopPrecedence['&lt;'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
- BinopPrecedence['*'] = 40; // highest.
-
- // Prime the first token.
- fprintf(stderr, "ready&gt; ");
- getNextToken();
-
- // Make the module, which holds all the code.
- TheModule = new Module("my cool jit", Context);
-
- // Create the JIT. This takes ownership of the module.
- std::string ErrStr;
- TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
- if (!TheExecutionEngine) {
- fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
- exit(1);
- }
-
- FunctionPassManager OurFPM(TheModule);
-
- // Set up the optimizer pipeline. Start with registering info about how the
- // target lays out data structures.
- OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
- // Promote allocas to registers.
- OurFPM.add(createPromoteMemoryToRegisterPass());
- // Do simple "peephole" optimizations and bit-twiddling optzns.
- OurFPM.add(createInstructionCombiningPass());
- // Reassociate expressions.
- OurFPM.add(createReassociatePass());
- // Eliminate Common SubExpressions.
- OurFPM.add(createGVNPass());
- // Simplify the control flow graph (deleting unreachable blocks, etc).
- OurFPM.add(createCFGSimplificationPass());
-
- OurFPM.doInitialization();
-
- // Set the global so the code gen can use this.
- TheFPM = &amp;OurFPM;
-
- // Run the main "interpreter loop" now.
- MainLoop();
-
- TheFPM = 0;
-
- // Print out all of the generated code.
- TheModule-&gt;dump();
-
- return 0;
-}
-</pre>
-</div>
-
-<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
-</div>
-
-<!-- *********************************************************************** -->
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
- Last modified: $Date$
-</address>
-</body>
-</html>