aboutsummaryrefslogtreecommitdiffstats
path: root/examples/Kaleidoscope
diff options
context:
space:
mode:
Diffstat (limited to 'examples/Kaleidoscope')
-rw-r--r--examples/Kaleidoscope/CMakeLists.txt5
-rw-r--r--examples/Kaleidoscope/Makefile15
-rw-r--r--examples/Kaleidoscope/toy.cpp1137
3 files changed, 1157 insertions, 0 deletions
diff --git a/examples/Kaleidoscope/CMakeLists.txt b/examples/Kaleidoscope/CMakeLists.txt
new file mode 100644
index 0000000..9a18aae
--- /dev/null
+++ b/examples/Kaleidoscope/CMakeLists.txt
@@ -0,0 +1,5 @@
+set(LLVM_LINK_COMPONENTS core jit native)
+
+add_llvm_example(Kaleidoscope
+ toy.cpp
+ )
diff --git a/examples/Kaleidoscope/Makefile b/examples/Kaleidoscope/Makefile
new file mode 100644
index 0000000..c1759a0
--- /dev/null
+++ b/examples/Kaleidoscope/Makefile
@@ -0,0 +1,15 @@
+##===- examples/Kaleidoscope/Makefile ----------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../..
+TOOLNAME = Kaleidoscope
+EXAMPLE_TOOL = 1
+
+LINK_COMPONENTS := core jit native
+
+include $(LEVEL)/Makefile.common
diff --git a/examples/Kaleidoscope/toy.cpp b/examples/Kaleidoscope/toy.cpp
new file mode 100644
index 0000000..f28c274
--- /dev/null
+++ b/examples/Kaleidoscope/toy.cpp
@@ -0,0 +1,1137 @@
+#include "llvm/DerivedTypes.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/IRBuilder.h"
+#include <cstdio>
+#include <string>
+#include <map>
+#include <vector>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser it looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static IRBuilder<> Builder;
+static std::map<std::string, AllocaInst*> NamedValues;
+static FunctionPassManager *TheFPM;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
+}
+
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (V == 0) return ErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateAdd(L, R, "addtmp");
+ case '-': return Builder.CreateSub(L, R, "subtmp");
+ case '*': return Builder.CreateMul(L, R, "multmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheModule->getFunction(std::string("binary")+Op);
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, Ops+2, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheModule->getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create("then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create("else");
+ BasicBlock *MergeBB = BasicBlock::Create("ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+ BasicBlock *LoopBB = BasicBlock::Create("loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+ BasicBlock *AfterBB = BasicBlock::Create("afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::DoubleTy);
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
+ FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != Name) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = TheModule->getFunction(Name);
+
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create("entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ // Optimize the function.
+ TheFPM->run(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static ExecutionEngine *TheExecutionEngine;
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (Function *LF = F->Codegen()) {
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P->Codegen()) {
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())FPtr;
+ fprintf(stderr, "Evaluated to %f\n", FP());
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+ fprintf(stderr, "ready> ");
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f\n", X);
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Prime the first token.
+ fprintf(stderr, "ready> ");
+ getNextToken();
+
+ // Make the module, which holds all the code.
+ TheModule = new Module("my cool jit");
+
+ // Create the JIT.
+ TheExecutionEngine = ExecutionEngine::create(TheModule);
+
+ {
+ ExistingModuleProvider OurModuleProvider(TheModule);
+ FunctionPassManager OurFPM(&OurModuleProvider);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
+ // Promote allocas to registers.
+ OurFPM.add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ OurFPM.add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ OurFPM.add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ OurFPM.add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ OurFPM.add(createCFGSimplificationPass());
+
+ // Set the global so the code gen can use this.
+ TheFPM = &OurFPM;
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ TheFPM = 0;
+
+ // Print out all of the generated code.
+ TheModule->dump();
+
+ } // Free module provider (and thus the module) and pass manager.
+
+ return 0;
+}
+