aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/BlockFrequencyInfoImpl.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Analysis/BlockFrequencyInfoImpl.h')
-rw-r--r--include/llvm/Analysis/BlockFrequencyInfoImpl.h691
1 files changed, 11 insertions, 680 deletions
diff --git a/include/llvm/Analysis/BlockFrequencyInfoImpl.h b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
index bd72d3e..7340801 100644
--- a/include/llvm/Analysis/BlockFrequencyInfoImpl.h
+++ b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
@@ -22,6 +22,7 @@
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ScaledNumber.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
#include <list>
@@ -32,676 +33,6 @@
//===----------------------------------------------------------------------===//
//
-// UnsignedFloat definition.
-//
-// TODO: Make this private to BlockFrequencyInfoImpl or delete.
-//
-//===----------------------------------------------------------------------===//
-namespace llvm {
-
-class UnsignedFloatBase {
-public:
- static const int32_t MaxExponent = 16383;
- static const int32_t MinExponent = -16382;
- static const int DefaultPrecision = 10;
-
- static void dump(uint64_t D, int16_t E, int Width);
- static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static std::string toString(uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
- static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
-
- static std::pair<uint64_t, bool> splitSigned(int64_t N) {
- if (N >= 0)
- return std::make_pair(N, false);
- uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
- return std::make_pair(Unsigned, true);
- }
- static int64_t joinSigned(uint64_t U, bool IsNeg) {
- if (U > uint64_t(INT64_MAX))
- return IsNeg ? INT64_MIN : INT64_MAX;
- return IsNeg ? -int64_t(U) : int64_t(U);
- }
-
- static int32_t extractLg(const std::pair<int32_t, int> &Lg) {
- return Lg.first;
- }
- static int32_t extractLgFloor(const std::pair<int32_t, int> &Lg) {
- return Lg.first - (Lg.second > 0);
- }
- static int32_t extractLgCeiling(const std::pair<int32_t, int> &Lg) {
- return Lg.first + (Lg.second < 0);
- }
-
- static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
- static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);
-
- static int compare(uint64_t L, uint64_t R, int Shift) {
- assert(Shift >= 0);
- assert(Shift < 64);
-
- uint64_t L_adjusted = L >> Shift;
- if (L_adjusted < R)
- return -1;
- if (L_adjusted > R)
- return 1;
-
- return L > L_adjusted << Shift ? 1 : 0;
- }
-};
-
-/// \brief Simple representation of an unsigned floating point.
-///
-/// UnsignedFloat is a unsigned floating point number. It uses simple
-/// saturation arithmetic, and every operation is well-defined for every value.
-///
-/// The number is split into a signed exponent and unsigned digits. The number
-/// represented is \c getDigits()*2^getExponent(). In this way, the digits are
-/// much like the mantissa in the x87 long double, but there is no canonical
-/// form, so the same number can be represented by many bit representations
-/// (it's always in "denormal" mode).
-///
-/// UnsignedFloat is templated on the underlying integer type for digits, which
-/// is expected to be one of uint64_t, uint32_t, uint16_t or uint8_t.
-///
-/// Unlike builtin floating point types, UnsignedFloat is portable.
-///
-/// Unlike APFloat, UnsignedFloat does not model architecture floating point
-/// behaviour (this should make it a little faster), and implements most
-/// operators (this makes it usable).
-///
-/// UnsignedFloat is totally ordered. However, there is no canonical form, so
-/// there are multiple representations of most scalars. E.g.:
-///
-/// UnsignedFloat(8u, 0) == UnsignedFloat(4u, 1)
-/// UnsignedFloat(4u, 1) == UnsignedFloat(2u, 2)
-/// UnsignedFloat(2u, 2) == UnsignedFloat(1u, 3)
-///
-/// UnsignedFloat implements most arithmetic operations. Precision is kept
-/// where possible. Uses simple saturation arithmetic, so that operations
-/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
-/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
-/// Any other division by 0.0 is defined to be getLargest().
-///
-/// As a convenience for modifying the exponent, left and right shifting are
-/// both implemented, and both interpret negative shifts as positive shifts in
-/// the opposite direction.
-///
-/// Exponents are limited to the range accepted by x87 long double. This makes
-/// it trivial to add functionality to convert to APFloat (this is already
-/// relied on for the implementation of printing).
-///
-/// The current plan is to gut this and make the necessary parts of it (even
-/// more) private to BlockFrequencyInfo.
-template <class DigitsT> class UnsignedFloat : UnsignedFloatBase {
-public:
- static_assert(!std::numeric_limits<DigitsT>::is_signed,
- "only unsigned floats supported");
-
- typedef DigitsT DigitsType;
-
-private:
- typedef std::numeric_limits<DigitsType> DigitsLimits;
-
- static const int Width = sizeof(DigitsType) * 8;
- static_assert(Width <= 64, "invalid integer width for digits");
-
-private:
- DigitsType Digits;
- int16_t Exponent;
-
-public:
- UnsignedFloat() : Digits(0), Exponent(0) {}
-
- UnsignedFloat(DigitsType Digits, int16_t Exponent)
- : Digits(Digits), Exponent(Exponent) {}
-
-private:
- UnsignedFloat(const std::pair<uint64_t, int16_t> &X)
- : Digits(X.first), Exponent(X.second) {}
-
-public:
- static UnsignedFloat getZero() { return UnsignedFloat(0, 0); }
- static UnsignedFloat getOne() { return UnsignedFloat(1, 0); }
- static UnsignedFloat getLargest() {
- return UnsignedFloat(DigitsLimits::max(), MaxExponent);
- }
- static UnsignedFloat getFloat(uint64_t N) { return adjustToWidth(N, 0); }
- static UnsignedFloat getInverseFloat(uint64_t N) {
- return getFloat(N).invert();
- }
- static UnsignedFloat getFraction(DigitsType N, DigitsType D) {
- return getQuotient(N, D);
- }
-
- int16_t getExponent() const { return Exponent; }
- DigitsType getDigits() const { return Digits; }
-
- /// \brief Convert to the given integer type.
- ///
- /// Convert to \c IntT using simple saturating arithmetic, truncating if
- /// necessary.
- template <class IntT> IntT toInt() const;
-
- bool isZero() const { return !Digits; }
- bool isLargest() const { return *this == getLargest(); }
- bool isOne() const {
- if (Exponent > 0 || Exponent <= -Width)
- return false;
- return Digits == DigitsType(1) << -Exponent;
- }
-
- /// \brief The log base 2, rounded.
- ///
- /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
- int32_t lg() const { return extractLg(lgImpl()); }
-
- /// \brief The log base 2, rounded towards INT32_MIN.
- ///
- /// Get the lg floor. lg 0 is defined to be INT32_MIN.
- int32_t lgFloor() const { return extractLgFloor(lgImpl()); }
-
- /// \brief The log base 2, rounded towards INT32_MAX.
- ///
- /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
- int32_t lgCeiling() const { return extractLgCeiling(lgImpl()); }
-
- bool operator==(const UnsignedFloat &X) const { return compare(X) == 0; }
- bool operator<(const UnsignedFloat &X) const { return compare(X) < 0; }
- bool operator!=(const UnsignedFloat &X) const { return compare(X) != 0; }
- bool operator>(const UnsignedFloat &X) const { return compare(X) > 0; }
- bool operator<=(const UnsignedFloat &X) const { return compare(X) <= 0; }
- bool operator>=(const UnsignedFloat &X) const { return compare(X) >= 0; }
-
- bool operator!() const { return isZero(); }
-
- /// \brief Convert to a decimal representation in a string.
- ///
- /// Convert to a string. Uses scientific notation for very large/small
- /// numbers. Scientific notation is used roughly for numbers outside of the
- /// range 2^-64 through 2^64.
- ///
- /// \c Precision indicates the number of decimal digits of precision to use;
- /// 0 requests the maximum available.
- ///
- /// As a special case to make debugging easier, if the number is small enough
- /// to convert without scientific notation and has more than \c Precision
- /// digits before the decimal place, it's printed accurately to the first
- /// digit past zero. E.g., assuming 10 digits of precision:
- ///
- /// 98765432198.7654... => 98765432198.8
- /// 8765432198.7654... => 8765432198.8
- /// 765432198.7654... => 765432198.8
- /// 65432198.7654... => 65432198.77
- /// 5432198.7654... => 5432198.765
- std::string toString(unsigned Precision = DefaultPrecision) {
- return UnsignedFloatBase::toString(Digits, Exponent, Width, Precision);
- }
-
- /// \brief Print a decimal representation.
- ///
- /// Print a string. See toString for documentation.
- raw_ostream &print(raw_ostream &OS,
- unsigned Precision = DefaultPrecision) const {
- return UnsignedFloatBase::print(OS, Digits, Exponent, Width, Precision);
- }
- void dump() const { return UnsignedFloatBase::dump(Digits, Exponent, Width); }
-
- UnsignedFloat &operator+=(const UnsignedFloat &X);
- UnsignedFloat &operator-=(const UnsignedFloat &X);
- UnsignedFloat &operator*=(const UnsignedFloat &X);
- UnsignedFloat &operator/=(const UnsignedFloat &X);
- UnsignedFloat &operator<<=(int16_t Shift) { shiftLeft(Shift); return *this; }
- UnsignedFloat &operator>>=(int16_t Shift) { shiftRight(Shift); return *this; }
-
-private:
- void shiftLeft(int32_t Shift);
- void shiftRight(int32_t Shift);
-
- /// \brief Adjust two floats to have matching exponents.
- ///
- /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
- /// by value. Does nothing if \a isZero() for either.
- ///
- /// The value that compares smaller will lose precision, and possibly become
- /// \a isZero().
- UnsignedFloat matchExponents(UnsignedFloat X);
-
- /// \brief Increase exponent to match another float.
- ///
- /// Increases \c this to have an exponent matching \c X. May decrease the
- /// exponent of \c X in the process, and \c this may possibly become \a
- /// isZero().
- void increaseExponentToMatch(UnsignedFloat &X, int32_t ExponentDiff);
-
-public:
- /// \brief Scale a large number accurately.
- ///
- /// Scale N (multiply it by this). Uses full precision multiplication, even
- /// if Width is smaller than 64, so information is not lost.
- uint64_t scale(uint64_t N) const;
- uint64_t scaleByInverse(uint64_t N) const {
- // TODO: implement directly, rather than relying on inverse. Inverse is
- // expensive.
- return inverse().scale(N);
- }
- int64_t scale(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scale(Unsigned.first), Unsigned.second);
- }
- int64_t scaleByInverse(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
- }
-
- int compare(const UnsignedFloat &X) const;
- int compareTo(uint64_t N) const {
- UnsignedFloat Float = getFloat(N);
- int Compare = compare(Float);
- if (Width == 64 || Compare != 0)
- return Compare;
-
- // Check for precision loss. We know *this == RoundTrip.
- uint64_t RoundTrip = Float.template toInt<uint64_t>();
- return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
- }
- int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
-
- UnsignedFloat &invert() { return *this = UnsignedFloat::getFloat(1) / *this; }
- UnsignedFloat inverse() const { return UnsignedFloat(*this).invert(); }
-
-private:
- static UnsignedFloat getProduct(DigitsType L, DigitsType R);
- static UnsignedFloat getQuotient(DigitsType Dividend, DigitsType Divisor);
-
- std::pair<int32_t, int> lgImpl() const;
- static int countLeadingZerosWidth(DigitsType Digits) {
- if (Width == 64)
- return countLeadingZeros64(Digits);
- if (Width == 32)
- return countLeadingZeros32(Digits);
- return countLeadingZeros32(Digits) + Width - 32;
- }
-
- static UnsignedFloat adjustToWidth(uint64_t N, int32_t S) {
- assert(S >= MinExponent);
- assert(S <= MaxExponent);
- if (Width == 64 || N <= DigitsLimits::max())
- return UnsignedFloat(N, S);
-
- // Shift right.
- int Shift = 64 - Width - countLeadingZeros64(N);
- DigitsType Shifted = N >> Shift;
-
- // Round.
- assert(S + Shift <= MaxExponent);
- return getRounded(UnsignedFloat(Shifted, S + Shift),
- N & UINT64_C(1) << (Shift - 1));
- }
-
- static UnsignedFloat getRounded(UnsignedFloat P, bool Round) {
- if (!Round)
- return P;
- if (P.Digits == DigitsLimits::max())
- // Careful of overflow in the exponent.
- return UnsignedFloat(1, P.Exponent) <<= Width;
- return UnsignedFloat(P.Digits + 1, P.Exponent);
- }
-};
-
-#define UNSIGNED_FLOAT_BOP(op, base) \
- template <class DigitsT> \
- UnsignedFloat<DigitsT> operator op(const UnsignedFloat<DigitsT> &L, \
- const UnsignedFloat<DigitsT> &R) { \
- return UnsignedFloat<DigitsT>(L) base R; \
- }
-UNSIGNED_FLOAT_BOP(+, += )
-UNSIGNED_FLOAT_BOP(-, -= )
-UNSIGNED_FLOAT_BOP(*, *= )
-UNSIGNED_FLOAT_BOP(/, /= )
-UNSIGNED_FLOAT_BOP(<<, <<= )
-UNSIGNED_FLOAT_BOP(>>, >>= )
-#undef UNSIGNED_FLOAT_BOP
-
-template <class DigitsT>
-raw_ostream &operator<<(raw_ostream &OS, const UnsignedFloat<DigitsT> &X) {
- return X.print(OS, 10);
-}
-
-#define UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, T1, T2) \
- template <class DigitsT> \
- bool operator op(const UnsignedFloat<DigitsT> &L, T1 R) { \
- return L.compareTo(T2(R)) op 0; \
- } \
- template <class DigitsT> \
- bool operator op(T1 L, const UnsignedFloat<DigitsT> &R) { \
- return 0 op R.compareTo(T2(L)); \
- }
-#define UNSIGNED_FLOAT_COMPARE_TO(op) \
- UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
- UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
- UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, int64_t, int64_t) \
- UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, int32_t, int64_t)
-UNSIGNED_FLOAT_COMPARE_TO(< )
-UNSIGNED_FLOAT_COMPARE_TO(> )
-UNSIGNED_FLOAT_COMPARE_TO(== )
-UNSIGNED_FLOAT_COMPARE_TO(!= )
-UNSIGNED_FLOAT_COMPARE_TO(<= )
-UNSIGNED_FLOAT_COMPARE_TO(>= )
-#undef UNSIGNED_FLOAT_COMPARE_TO
-#undef UNSIGNED_FLOAT_COMPARE_TO_TYPE
-
-template <class DigitsT>
-uint64_t UnsignedFloat<DigitsT>::scale(uint64_t N) const {
- if (Width == 64 || N <= DigitsLimits::max())
- return (getFloat(N) * *this).template toInt<uint64_t>();
-
- // Defer to the 64-bit version.
- return UnsignedFloat<uint64_t>(Digits, Exponent).scale(N);
-}
-
-template <class DigitsT>
-UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::getProduct(DigitsType L,
- DigitsType R) {
- // Check for zero.
- if (!L || !R)
- return getZero();
-
- // Check for numbers that we can compute with 64-bit math.
- if (Width <= 32 || (L <= UINT32_MAX && R <= UINT32_MAX))
- return adjustToWidth(uint64_t(L) * uint64_t(R), 0);
-
- // Do the full thing.
- return UnsignedFloat(multiply64(L, R));
-}
-template <class DigitsT>
-UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::getQuotient(DigitsType Dividend,
- DigitsType Divisor) {
- // Check for zero.
- if (!Dividend)
- return getZero();
- if (!Divisor)
- return getLargest();
-
- if (Width == 64)
- return UnsignedFloat(divide64(Dividend, Divisor));
-
- // We can compute this with 64-bit math.
- int Shift = countLeadingZeros64(Dividend);
- uint64_t Shifted = uint64_t(Dividend) << Shift;
- uint64_t Quotient = Shifted / Divisor;
-
- // If Quotient needs to be shifted, then adjustToWidth will round.
- if (Quotient > DigitsLimits::max())
- return adjustToWidth(Quotient, -Shift);
-
- // Round based on the value of the next bit.
- return getRounded(UnsignedFloat(Quotient, -Shift),
- Shifted % Divisor >= getHalf(Divisor));
-}
-
-template <class DigitsT>
-template <class IntT>
-IntT UnsignedFloat<DigitsT>::toInt() const {
- typedef std::numeric_limits<IntT> Limits;
- if (*this < 1)
- return 0;
- if (*this >= Limits::max())
- return Limits::max();
-
- IntT N = Digits;
- if (Exponent > 0) {
- assert(size_t(Exponent) < sizeof(IntT) * 8);
- return N << Exponent;
- }
- if (Exponent < 0) {
- assert(size_t(-Exponent) < sizeof(IntT) * 8);
- return N >> -Exponent;
- }
- return N;
-}
-
-template <class DigitsT>
-std::pair<int32_t, int> UnsignedFloat<DigitsT>::lgImpl() const {
- if (isZero())
- return std::make_pair(INT32_MIN, 0);
-
- // Get the floor of the lg of Digits.
- int32_t LocalFloor = Width - countLeadingZerosWidth(Digits) - 1;
-
- // Get the floor of the lg of this.
- int32_t Floor = Exponent + LocalFloor;
- if (Digits == UINT64_C(1) << LocalFloor)
- return std::make_pair(Floor, 0);
-
- // Round based on the next digit.
- assert(LocalFloor >= 1);
- bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
- return std::make_pair(Floor + Round, Round ? 1 : -1);
-}
-
-template <class DigitsT>
-UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::matchExponents(UnsignedFloat X) {
- if (isZero() || X.isZero() || Exponent == X.Exponent)
- return X;
-
- int32_t Diff = int32_t(X.Exponent) - int32_t(Exponent);
- if (Diff > 0)
- increaseExponentToMatch(X, Diff);
- else
- X.increaseExponentToMatch(*this, -Diff);
- return X;
-}
-template <class DigitsT>
-void UnsignedFloat<DigitsT>::increaseExponentToMatch(UnsignedFloat &X,
- int32_t ExponentDiff) {
- assert(ExponentDiff > 0);
- if (ExponentDiff >= 2 * Width) {
- *this = getZero();
- return;
- }
-
- // Use up any leading zeros on X, and then shift this.
- int32_t ShiftX = std::min(countLeadingZerosWidth(X.Digits), ExponentDiff);
- assert(ShiftX < Width);
-
- int32_t ShiftThis = ExponentDiff - ShiftX;
- if (ShiftThis >= Width) {
- *this = getZero();
- return;
- }
-
- X.Digits <<= ShiftX;
- X.Exponent -= ShiftX;
- Digits >>= ShiftThis;
- Exponent += ShiftThis;
- return;
-}
-
-template <class DigitsT>
-UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
-operator+=(const UnsignedFloat &X) {
- if (isLargest() || X.isZero())
- return *this;
- if (isZero() || X.isLargest())
- return *this = X;
-
- // Normalize exponents.
- UnsignedFloat Scaled = matchExponents(X);
-
- // Check for zero again.
- if (isZero())
- return *this = Scaled;
- if (Scaled.isZero())
- return *this;
-
- // Compute sum.
- DigitsType Sum = Digits + Scaled.Digits;
- bool DidOverflow = Sum < Digits;
- Digits = Sum;
- if (!DidOverflow)
- return *this;
-
- if (Exponent == MaxExponent)
- return *this = getLargest();
-
- ++Exponent;
- Digits = UINT64_C(1) << (Width - 1) | Digits >> 1;
-
- return *this;
-}
-template <class DigitsT>
-UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
-operator-=(const UnsignedFloat &X) {
- if (X.isZero())
- return *this;
- if (*this <= X)
- return *this = getZero();
-
- // Normalize exponents.
- UnsignedFloat Scaled = matchExponents(X);
- assert(Digits >= Scaled.Digits);
-
- // Compute difference.
- if (!Scaled.isZero()) {
- Digits -= Scaled.Digits;
- return *this;
- }
-
- // Check if X just barely lost its last bit. E.g., for 32-bit:
- //
- // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
- if (*this == UnsignedFloat(1, X.lgFloor() + Width)) {
- Digits = DigitsType(0) - 1;
- --Exponent;
- }
- return *this;
-}
-template <class DigitsT>
-UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
-operator*=(const UnsignedFloat &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = X;
-
- // Save the exponents.
- int32_t Exponents = int32_t(Exponent) + int32_t(X.Exponent);
-
- // Get the raw product.
- *this = getProduct(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Exponents;
-}
-template <class DigitsT>
-UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
-operator/=(const UnsignedFloat &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = getLargest();
-
- // Save the exponents.
- int32_t Exponents = int32_t(Exponent) - int32_t(X.Exponent);
-
- // Get the raw quotient.
- *this = getQuotient(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Exponents;
-}
-template <class DigitsT>
-void UnsignedFloat<DigitsT>::shiftLeft(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftRight(-Shift);
- return;
- }
-
- // Shift as much as we can in the exponent.
- int32_t ExponentShift = std::min(Shift, MaxExponent - Exponent);
- Exponent += ExponentShift;
- if (ExponentShift == Shift)
- return;
-
- // Check this late, since it's rare.
- if (isLargest())
- return;
-
- // Shift the digits themselves.
- Shift -= ExponentShift;
- if (Shift > countLeadingZerosWidth(Digits)) {
- // Saturate.
- *this = getLargest();
- return;
- }
-
- Digits <<= Shift;
- return;
-}
-
-template <class DigitsT>
-void UnsignedFloat<DigitsT>::shiftRight(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftLeft(-Shift);
- return;
- }
-
- // Shift as much as we can in the exponent.
- int32_t ExponentShift = std::min(Shift, Exponent - MinExponent);
- Exponent -= ExponentShift;
- if (ExponentShift == Shift)
- return;
-
- // Shift the digits themselves.
- Shift -= ExponentShift;
- if (Shift >= Width) {
- // Saturate.
- *this = getZero();
- return;
- }
-
- Digits >>= Shift;
- return;
-}
-
-template <class DigitsT>
-int UnsignedFloat<DigitsT>::compare(const UnsignedFloat &X) const {
- // Check for zero.
- if (isZero())
- return X.isZero() ? 0 : -1;
- if (X.isZero())
- return 1;
-
- // Check for the scale. Use lgFloor to be sure that the exponent difference
- // is always lower than 64.
- int32_t lgL = lgFloor(), lgR = X.lgFloor();
- if (lgL != lgR)
- return lgL < lgR ? -1 : 1;
-
- // Compare digits.
- if (Exponent < X.Exponent)
- return UnsignedFloatBase::compare(Digits, X.Digits, X.Exponent - Exponent);
-
- return -UnsignedFloatBase::compare(X.Digits, Digits, Exponent - X.Exponent);
-}
-
-template <class T> struct isPodLike<UnsignedFloat<T>> {
- static const bool value = true;
-};
-}
-
-//===----------------------------------------------------------------------===//
-//
// BlockMass definition.
//
// TODO: Make this private to BlockFrequencyInfoImpl or delete.
@@ -770,11 +101,11 @@ public:
bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
- /// \brief Convert to floating point.
+ /// \brief Convert to scaled number.
///
- /// Convert to a float. \a isFull() gives 1.0, while \a isEmpty() gives
- /// slightly above 0.0.
- UnsignedFloat<uint64_t> toFloat() const;
+ /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
+ /// gives slightly above 0.0.
+ ScaledNumber<uint64_t> toScaled() const;
void dump() const;
raw_ostream &print(raw_ostream &OS) const;
@@ -837,7 +168,7 @@ template <class BT> struct BlockEdgesAdder;
/// BlockFrequencyInfoImpl. See there for details.
class BlockFrequencyInfoImplBase {
public:
- typedef UnsignedFloat<uint64_t> Float;
+ typedef ScaledNumber<uint64_t> Scaled64;
/// \brief Representative of a block.
///
@@ -866,7 +197,7 @@ public:
/// \brief Stats about a block itself.
struct FrequencyData {
- Float Floating;
+ Scaled64 Scaled;
uint64_t Integer;
};
@@ -884,7 +215,7 @@ public:
NodeList Nodes; ///< Header and the members of the loop.
BlockMass BackedgeMass; ///< Mass returned to loop header.
BlockMass Mass;
- Float Scale;
+ Scaled64 Scale;
LoopData(LoopData *Parent, const BlockNode &Header)
: Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
@@ -1131,7 +462,7 @@ public:
virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
void dump() const { print(dbgs()); }
- Float getFloatingBlockFreq(const BlockNode &Node) const;
+ Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
BlockFrequency getBlockFreq(const BlockNode &Node) const;
@@ -1310,7 +641,7 @@ void IrreducibleGraph::addEdges(const BlockNode &Node,
/// entries point to this block. Its successors are the headers, which split
/// the frequency evenly.
///
-/// This algorithm leverages BlockMass and UnsignedFloat to maintain precision,
+/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
/// separates mass distribution from loop scaling, and dithers to eliminate
/// probability mass loss.
///
@@ -1568,7 +899,7 @@ public:
BlockFrequency getBlockFreq(const BlockT *BB) const {
return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
}
- Float getFloatingBlockFreq(const BlockT *BB) const {
+ Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
}