aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/TargetTransformInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Analysis/TargetTransformInfo.h')
-rw-r--r--include/llvm/Analysis/TargetTransformInfo.h637
1 files changed, 516 insertions, 121 deletions
diff --git a/include/llvm/Analysis/TargetTransformInfo.h b/include/llvm/Analysis/TargetTransformInfo.h
index 9acaaa6..4998141 100644
--- a/include/llvm/Analysis/TargetTransformInfo.h
+++ b/include/llvm/Analysis/TargetTransformInfo.h
@@ -1,4 +1,4 @@
-//===- llvm/Analysis/TargetTransformInfo.h ----------------------*- C++ -*-===//
+//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -6,22 +6,24 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-//
-// This pass exposes codegen information to IR-level passes. Every
-// transformation that uses codegen information is broken into three parts:
-// 1. The IR-level analysis pass.
-// 2. The IR-level transformation interface which provides the needed
-// information.
-// 3. Codegen-level implementation which uses target-specific hooks.
-//
-// This file defines #2, which is the interface that IR-level transformations
-// use for querying the codegen.
-//
+/// \file
+/// This pass exposes codegen information to IR-level passes. Every
+/// transformation that uses codegen information is broken into three parts:
+/// 1. The IR-level analysis pass.
+/// 2. The IR-level transformation interface which provides the needed
+/// information.
+/// 3. Codegen-level implementation which uses target-specific hooks.
+///
+/// This file defines #2, which is the interface that IR-level transformations
+/// use for querying the codegen.
+///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
+#include "llvm/ADT/Optional.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Pass.h"
#include "llvm/Support/DataTypes.h"
@@ -31,41 +33,61 @@ namespace llvm {
class Function;
class GlobalValue;
class Loop;
+class PreservedAnalyses;
class Type;
class User;
class Value;
-/// TargetTransformInfo - This pass provides access to the codegen
-/// interfaces that are needed for IR-level transformations.
+/// \brief Information about a load/store intrinsic defined by the target.
+struct MemIntrinsicInfo {
+ MemIntrinsicInfo()
+ : ReadMem(false), WriteMem(false), Vol(false), MatchingId(0),
+ NumMemRefs(0), PtrVal(nullptr) {}
+ bool ReadMem;
+ bool WriteMem;
+ bool Vol;
+ // Same Id is set by the target for corresponding load/store intrinsics.
+ unsigned short MatchingId;
+ int NumMemRefs;
+ Value *PtrVal;
+};
+
+/// \brief This pass provides access to the codegen interfaces that are needed
+/// for IR-level transformations.
class TargetTransformInfo {
-protected:
- /// \brief The TTI instance one level down the stack.
+public:
+ /// \brief Construct a TTI object using a type implementing the \c Concept
+ /// API below.
///
- /// This is used to implement the default behavior all of the methods which
- /// is to delegate up through the stack of TTIs until one can answer the
- /// query.
- TargetTransformInfo *PrevTTI;
+ /// This is used by targets to construct a TTI wrapping their target-specific
+ /// implementaion that encodes appropriate costs for their target.
+ template <typename T> TargetTransformInfo(T Impl);
- /// \brief The top of the stack of TTI analyses available.
+ /// \brief Construct a baseline TTI object using a minimal implementation of
+ /// the \c Concept API below.
///
- /// This is a convenience routine maintained as TTI analyses become available
- /// that complements the PrevTTI delegation chain. When one part of an
- /// analysis pass wants to query another part of the analysis pass it can use
- /// this to start back at the top of the stack.
- TargetTransformInfo *TopTTI;
+ /// The TTI implementation will reflect the information in the DataLayout
+ /// provided if non-null.
+ explicit TargetTransformInfo(const DataLayout *DL);
- /// All pass subclasses must in their initializePass routine call
- /// pushTTIStack with themselves to update the pointers tracking the previous
- /// TTI instance in the analysis group's stack, and the top of the analysis
- /// group's stack.
- void pushTTIStack(Pass *P);
+ // Provide move semantics.
+ TargetTransformInfo(TargetTransformInfo &&Arg);
+ TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
- /// All pass subclasses must call TargetTransformInfo::getAnalysisUsage.
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ // We need to define the destructor out-of-line to define our sub-classes
+ // out-of-line.
+ ~TargetTransformInfo();
-public:
- /// This class is intended to be subclassed by real implementations.
- virtual ~TargetTransformInfo() = 0;
+ /// \brief Handle the invalidation of this information.
+ ///
+ /// When used as a result of \c TargetIRAnalysis this method will be called
+ /// when the function this was computed for changes. When it returns false,
+ /// the information is preserved across those changes.
+ bool invalidate(Function &, const PreservedAnalyses &) {
+ // FIXME: We should probably in some way ensure that the subtarget
+ // information for a function hasn't changed.
+ return false;
+ }
/// \name Generic Target Information
/// @{
@@ -86,9 +108,9 @@ public:
/// skipped by renaming the registers in the CPU, but they still are encoded
/// and thus wouldn't be considered 'free' here.
enum TargetCostConstants {
- TCC_Free = 0, ///< Expected to fold away in lowering.
- TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
- TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
+ TCC_Free = 0, ///< Expected to fold away in lowering.
+ TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
+ TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
};
/// \brief Estimate the cost of a specific operation when lowered.
@@ -105,16 +127,15 @@ public:
///
/// The returned cost is defined in terms of \c TargetCostConstants, see its
/// comments for a detailed explanation of the cost values.
- virtual unsigned getOperationCost(unsigned Opcode, Type *Ty,
- Type *OpTy = nullptr) const;
+ unsigned getOperationCost(unsigned Opcode, Type *Ty,
+ Type *OpTy = nullptr) const;
/// \brief Estimate the cost of a GEP operation when lowered.
///
/// The contract for this function is the same as \c getOperationCost except
/// that it supports an interface that provides extra information specific to
/// the GEP operation.
- virtual unsigned getGEPCost(const Value *Ptr,
- ArrayRef<const Value *> Operands) const;
+ unsigned getGEPCost(const Value *Ptr, ArrayRef<const Value *> Operands) const;
/// \brief Estimate the cost of a function call when lowered.
///
@@ -125,31 +146,31 @@ public:
/// This is the most basic query for estimating call cost: it only knows the
/// function type and (potentially) the number of arguments at the call site.
/// The latter is only interesting for varargs function types.
- virtual unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const;
+ unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const;
/// \brief Estimate the cost of calling a specific function when lowered.
///
/// This overload adds the ability to reason about the particular function
/// being called in the event it is a library call with special lowering.
- virtual unsigned getCallCost(const Function *F, int NumArgs = -1) const;
+ unsigned getCallCost(const Function *F, int NumArgs = -1) const;
/// \brief Estimate the cost of calling a specific function when lowered.
///
/// This overload allows specifying a set of candidate argument values.
- virtual unsigned getCallCost(const Function *F,
- ArrayRef<const Value *> Arguments) const;
+ unsigned getCallCost(const Function *F,
+ ArrayRef<const Value *> Arguments) const;
/// \brief Estimate the cost of an intrinsic when lowered.
///
/// Mirrors the \c getCallCost method but uses an intrinsic identifier.
- virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> ParamTys) const;
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> ParamTys) const;
/// \brief Estimate the cost of an intrinsic when lowered.
///
/// Mirrors the \c getCallCost method but uses an intrinsic identifier.
- virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<const Value *> Arguments) const;
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) const;
/// \brief Estimate the cost of a given IR user when lowered.
///
@@ -166,13 +187,13 @@ public:
///
/// The returned cost is defined in terms of \c TargetCostConstants, see its
/// comments for a detailed explanation of the cost values.
- virtual unsigned getUserCost(const User *U) const;
+ unsigned getUserCost(const User *U) const;
/// \brief hasBranchDivergence - Return true if branch divergence exists.
/// Branch divergence has a significantly negative impact on GPU performance
/// when threads in the same wavefront take different paths due to conditional
/// branches.
- virtual bool hasBranchDivergence() const;
+ bool hasBranchDivergence() const;
/// \brief Test whether calls to a function lower to actual program function
/// calls.
@@ -186,7 +207,7 @@ public:
/// and execution-speed costs. This would allow modelling the core of this
/// query more accurately as a call is a single small instruction, but
/// incurs significant execution cost.
- virtual bool isLoweredToCall(const Function *F) const;
+ bool isLoweredToCall(const Function *F) const;
/// Parameters that control the generic loop unrolling transformation.
struct UnrollingPreferences {
@@ -196,6 +217,13 @@ public:
/// exceed this cost. Set this to UINT_MAX to disable the loop body cost
/// restriction.
unsigned Threshold;
+ /// If complete unrolling could help other optimizations (e.g. InstSimplify)
+ /// to remove N% of instructions, then we can go beyond unroll threshold.
+ /// This value set the minimal percent for allowing that.
+ unsigned MinPercentOfOptimized;
+ /// The absolute cost threshold. We won't go beyond this even if complete
+ /// unrolling could result in optimizing out 90% of instructions.
+ unsigned AbsoluteThreshold;
/// The cost threshold for the unrolled loop when optimizing for size (set
/// to UINT_MAX to disable).
unsigned OptSizeThreshold;
@@ -203,8 +231,8 @@ public:
/// for partial/runtime unrolling (set to UINT_MAX to disable).
unsigned PartialThreshold;
/// The cost threshold for the unrolled loop when optimizing for size, like
- /// OptSizeThreshold, but used for partial/runtime unrolling (set to UINT_MAX
- /// to disable).
+ /// OptSizeThreshold, but used for partial/runtime unrolling (set to
+ /// UINT_MAX to disable).
unsigned PartialOptSizeThreshold;
/// A forced unrolling factor (the number of concatenated bodies of the
/// original loop in the unrolled loop body). When set to 0, the unrolling
@@ -218,18 +246,17 @@ public:
unsigned MaxCount;
/// Allow partial unrolling (unrolling of loops to expand the size of the
/// loop body, not only to eliminate small constant-trip-count loops).
- bool Partial;
+ bool Partial;
/// Allow runtime unrolling (unrolling of loops to expand the size of the
- /// loop body even when the number of loop iterations is not known at compile
- /// time).
- bool Runtime;
+ /// loop body even when the number of loop iterations is not known at
+ /// compile time).
+ bool Runtime;
};
/// \brief Get target-customized preferences for the generic loop unrolling
/// transformation. The caller will initialize UP with the current
/// target-independent defaults.
- virtual void getUnrollingPreferences(const Function *F, Loop *L,
- UnrollingPreferences &UP) const;
+ void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
/// @}
@@ -244,31 +271,33 @@ public:
/// support is considered as "Fast" if it can outperform, or is on a par
/// with, SW implementation when the population is sparse; otherwise, it is
/// considered as "Slow".
- enum PopcntSupportKind {
- PSK_Software,
- PSK_SlowHardware,
- PSK_FastHardware
- };
+ enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
/// \brief Return true if the specified immediate is legal add immediate, that
/// is the target has add instructions which can add a register with the
/// immediate without having to materialize the immediate into a register.
- virtual bool isLegalAddImmediate(int64_t Imm) const;
+ bool isLegalAddImmediate(int64_t Imm) const;
/// \brief Return true if the specified immediate is legal icmp immediate,
/// that is the target has icmp instructions which can compare a register
/// against the immediate without having to materialize the immediate into a
/// register.
- virtual bool isLegalICmpImmediate(int64_t Imm) const;
+ bool isLegalICmpImmediate(int64_t Imm) const;
/// \brief Return true if the addressing mode represented by AM is legal for
/// this target, for a load/store of the specified type.
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type.
/// TODO: Handle pre/postinc as well.
- virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const;
+ bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) const;
+
+ /// \brief Return true if the target works with masked instruction
+ /// AVX2 allows masks for consecutive load and store for i32 and i64 elements.
+ /// AVX-512 architecture will also allow masks for non-consecutive memory
+ /// accesses.
+ bool isLegalMaskedStore(Type *DataType, int Consecutive) const;
+ bool isLegalMaskedLoad(Type *DataType, int Consecutive) const;
/// \brief Return the cost of the scaling factor used in the addressing
/// mode represented by AM for this target, for a load/store
@@ -276,45 +305,52 @@ public:
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, it returns a negative value.
/// TODO: Handle pre/postinc as well.
- virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const;
+ int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) const;
/// \brief Return true if it's free to truncate a value of type Ty1 to type
/// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
/// by referencing its sub-register AX.
- virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const;
+
+ /// \brief Return true if it is profitable to hoist instruction in the
+ /// then/else to before if.
+ bool isProfitableToHoist(Instruction *I) const;
/// \brief Return true if this type is legal.
- virtual bool isTypeLegal(Type *Ty) const;
+ bool isTypeLegal(Type *Ty) const;
/// \brief Returns the target's jmp_buf alignment in bytes.
- virtual unsigned getJumpBufAlignment() const;
+ unsigned getJumpBufAlignment() const;
/// \brief Returns the target's jmp_buf size in bytes.
- virtual unsigned getJumpBufSize() const;
+ unsigned getJumpBufSize() const;
/// \brief Return true if switches should be turned into lookup tables for the
/// target.
- virtual bool shouldBuildLookupTables() const;
+ bool shouldBuildLookupTables() const;
/// \brief Return hardware support for population count.
- virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
+ PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
/// \brief Return true if the hardware has a fast square-root instruction.
- virtual bool haveFastSqrt(Type *Ty) const;
+ bool haveFastSqrt(Type *Ty) const;
+
+ /// \brief Return the expected cost of supporting the floating point operation
+ /// of the specified type.
+ unsigned getFPOpCost(Type *Ty) const;
/// \brief Return the expected cost of materializing for the given integer
/// immediate of the specified type.
- virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
/// \brief Return the expected cost of materialization for the given integer
/// immediate of the specified type for a given instruction. The cost can be
/// zero if the immediate can be folded into the specified instruction.
- virtual unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty) const;
- virtual unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty) const;
+ unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+ Type *Ty) const;
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) const;
/// @}
/// \name Vector Target Information
@@ -331,10 +367,10 @@ public:
/// \brief Additional information about an operand's possible values.
enum OperandValueKind {
- OK_AnyValue, // Operand can have any value.
- OK_UniformValue, // Operand is uniform (splat of a value).
- OK_UniformConstantValue, // Operand is uniform constant.
- OK_NonUniformConstantValue // Operand is a non uniform constant value.
+ OK_AnyValue, // Operand can have any value.
+ OK_UniformValue, // Operand is uniform (splat of a value).
+ OK_UniformConstantValue, // Operand is uniform constant.
+ OK_NonUniformConstantValue // Operand is a non uniform constant value.
};
/// \brief Additional properties of an operand's values.
@@ -343,18 +379,18 @@ public:
/// \return The number of scalar or vector registers that the target has.
/// If 'Vectors' is true, it returns the number of vector registers. If it is
/// set to false, it returns the number of scalar registers.
- virtual unsigned getNumberOfRegisters(bool Vector) const;
+ unsigned getNumberOfRegisters(bool Vector) const;
/// \return The width of the largest scalar or vector register type.
- virtual unsigned getRegisterBitWidth(bool Vector) const;
+ unsigned getRegisterBitWidth(bool Vector) const;
/// \return The maximum interleave factor that any transform should try to
/// perform for this target. This number depends on the level of parallelism
/// and the number of execution units in the CPU.
- virtual unsigned getMaxInterleaveFactor() const;
+ unsigned getMaxInterleaveFactor() const;
/// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
- virtual unsigned
+ unsigned
getArithmeticInstrCost(unsigned Opcode, Type *Ty,
OperandValueKind Opd1Info = OK_AnyValue,
OperandValueKind Opd2Info = OK_AnyValue,
@@ -364,31 +400,33 @@ public:
/// \return The cost of a shuffle instruction of kind Kind and of type Tp.
/// The index and subtype parameters are used by the subvector insertion and
/// extraction shuffle kinds.
- virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
- Type *SubTp = nullptr) const;
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
+ Type *SubTp = nullptr) const;
/// \return The expected cost of cast instructions, such as bitcast, trunc,
/// zext, etc.
- virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const;
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const;
/// \return The expected cost of control-flow related instructions such as
/// Phi, Ret, Br.
- virtual unsigned getCFInstrCost(unsigned Opcode) const;
+ unsigned getCFInstrCost(unsigned Opcode) const;
/// \returns The expected cost of compare and select instructions.
- virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy = nullptr) const;
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy = nullptr) const;
/// \return The expected cost of vector Insert and Extract.
/// Use -1 to indicate that there is no information on the index value.
- virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index = -1) const;
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index = -1) const;
/// \return The cost of Load and Store instructions.
- virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) const;
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const;
+
+ /// \return The cost of masked Load and Store instructions.
+ unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const;
/// \brief Calculate the cost of performing a vector reduction.
///
@@ -403,16 +441,16 @@ public:
/// Split:
/// (v0, v1, v2, v3)
/// ((v0+v2), (v1+v3), undef, undef)
- virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwiseForm) const;
+ unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) const;
/// \returns The cost of Intrinsic instructions.
- virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
- ArrayRef<Type *> Tys) const;
+ unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type *> Tys) const;
/// \returns The number of pieces into which the provided type must be
/// split during legalization. Zero is returned when the answer is unknown.
- virtual unsigned getNumberOfParts(Type *Tp) const;
+ unsigned getNumberOfParts(Type *Tp) const;
/// \returns The cost of the address computation. For most targets this can be
/// merged into the instruction indexing mode. Some targets might want to
@@ -421,28 +459,385 @@ public:
/// The 'IsComplex' parameter is a hint that the address computation is likely
/// to involve multiple instructions and as such unlikely to be merged into
/// the address indexing mode.
- virtual unsigned getAddressComputationCost(Type *Ty,
- bool IsComplex = false) const;
+ unsigned getAddressComputationCost(Type *Ty, bool IsComplex = false) const;
/// \returns The cost, if any, of keeping values of the given types alive
/// over a callsite.
///
/// Some types may require the use of register classes that do not have
/// any callee-saved registers, so would require a spill and fill.
- virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const;
+ unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
+
+ /// \returns True if the intrinsic is a supported memory intrinsic. Info
+ /// will contain additional information - whether the intrinsic may write
+ /// or read to memory, volatility and the pointer. Info is undefined
+ /// if false is returned.
+ bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
+
+ /// \returns A value which is the result of the given memory intrinsic. New
+ /// instructions may be created to extract the result from the given intrinsic
+ /// memory operation. Returns nullptr if the target cannot create a result
+ /// from the given intrinsic.
+ Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+ Type *ExpectedType) const;
/// @}
- /// Analysis group identification.
+private:
+ /// \brief The abstract base class used to type erase specific TTI
+ /// implementations.
+ class Concept;
+
+ /// \brief The template model for the base class which wraps a concrete
+ /// implementation in a type erased interface.
+ template <typename T> class Model;
+
+ std::unique_ptr<Concept> TTIImpl;
+};
+
+class TargetTransformInfo::Concept {
+public:
+ virtual ~Concept() = 0;
+
+ virtual unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
+ virtual unsigned getGEPCost(const Value *Ptr,
+ ArrayRef<const Value *> Operands) = 0;
+ virtual unsigned getCallCost(FunctionType *FTy, int NumArgs) = 0;
+ virtual unsigned getCallCost(const Function *F, int NumArgs) = 0;
+ virtual unsigned getCallCost(const Function *F,
+ ArrayRef<const Value *> Arguments) = 0;
+ virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> ParamTys) = 0;
+ virtual unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) = 0;
+ virtual unsigned getUserCost(const User *U) = 0;
+ virtual bool hasBranchDivergence() = 0;
+ virtual bool isLoweredToCall(const Function *F) = 0;
+ virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) = 0;
+ virtual bool isLegalAddImmediate(int64_t Imm) = 0;
+ virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
+ virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) = 0;
+ virtual bool isLegalMaskedStore(Type *DataType, int Consecutive) = 0;
+ virtual bool isLegalMaskedLoad(Type *DataType, int Consecutive) = 0;
+ virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg,
+ int64_t Scale) = 0;
+ virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
+ virtual bool isProfitableToHoist(Instruction *I) = 0;
+ virtual bool isTypeLegal(Type *Ty) = 0;
+ virtual unsigned getJumpBufAlignment() = 0;
+ virtual unsigned getJumpBufSize() = 0;
+ virtual bool shouldBuildLookupTables() = 0;
+ virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
+ virtual bool haveFastSqrt(Type *Ty) = 0;
+ virtual unsigned getFPOpCost(Type *Ty) = 0;
+ virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) = 0;
+ virtual unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+ Type *Ty) = 0;
+ virtual unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) = 0;
+ virtual unsigned getNumberOfRegisters(bool Vector) = 0;
+ virtual unsigned getRegisterBitWidth(bool Vector) = 0;
+ virtual unsigned getMaxInterleaveFactor() = 0;
+ virtual unsigned
+ getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info,
+ OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) = 0;
+ virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) = 0;
+ virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) = 0;
+ virtual unsigned getCFInstrCost(unsigned Opcode) = 0;
+ virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) = 0;
+ virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) = 0;
+ virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) = 0;
+ virtual unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) = 0;
+ virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) = 0;
+ virtual unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type *> Tys) = 0;
+ virtual unsigned getNumberOfParts(Type *Tp) = 0;
+ virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) = 0;
+ virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
+ virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
+ MemIntrinsicInfo &Info) = 0;
+ virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+ Type *ExpectedType) = 0;
+};
+
+template <typename T>
+class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
+ T Impl;
+
+public:
+ Model(T Impl) : Impl(std::move(Impl)) {}
+ ~Model() override {}
+
+ unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
+ return Impl.getOperationCost(Opcode, Ty, OpTy);
+ }
+ unsigned getGEPCost(const Value *Ptr,
+ ArrayRef<const Value *> Operands) override {
+ return Impl.getGEPCost(Ptr, Operands);
+ }
+ unsigned getCallCost(FunctionType *FTy, int NumArgs) override {
+ return Impl.getCallCost(FTy, NumArgs);
+ }
+ unsigned getCallCost(const Function *F, int NumArgs) override {
+ return Impl.getCallCost(F, NumArgs);
+ }
+ unsigned getCallCost(const Function *F,
+ ArrayRef<const Value *> Arguments) override {
+ return Impl.getCallCost(F, Arguments);
+ }
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> ParamTys) override {
+ return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
+ }
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) override {
+ return Impl.getIntrinsicCost(IID, RetTy, Arguments);
+ }
+ unsigned getUserCost(const User *U) override { return Impl.getUserCost(U); }
+ bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
+ bool isLoweredToCall(const Function *F) override {
+ return Impl.isLoweredToCall(F);
+ }
+ void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) override {
+ return Impl.getUnrollingPreferences(L, UP);
+ }
+ bool isLegalAddImmediate(int64_t Imm) override {
+ return Impl.isLegalAddImmediate(Imm);
+ }
+ bool isLegalICmpImmediate(int64_t Imm) override {
+ return Impl.isLegalICmpImmediate(Imm);
+ }
+ bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) override {
+ return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
+ Scale);
+ }
+ bool isLegalMaskedStore(Type *DataType, int Consecutive) override {
+ return Impl.isLegalMaskedStore(DataType, Consecutive);
+ }
+ bool isLegalMaskedLoad(Type *DataType, int Consecutive) override {
+ return Impl.isLegalMaskedLoad(DataType, Consecutive);
+ }
+ int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) override {
+ return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale);
+ }
+ bool isTruncateFree(Type *Ty1, Type *Ty2) override {
+ return Impl.isTruncateFree(Ty1, Ty2);
+ }
+ bool isProfitableToHoist(Instruction *I) override {
+ return Impl.isProfitableToHoist(I);
+ }
+ bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
+ unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
+ unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
+ bool shouldBuildLookupTables() override {
+ return Impl.shouldBuildLookupTables();
+ }
+ PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
+ return Impl.getPopcntSupport(IntTyWidthInBit);
+ }
+ bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
+
+ unsigned getFPOpCost(Type *Ty) override {
+ return Impl.getFPOpCost(Ty);
+ }
+
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) override {
+ return Impl.getIntImmCost(Imm, Ty);
+ }
+ unsigned getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+ Type *Ty) override {
+ return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
+ }
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) override {
+ return Impl.getIntImmCost(IID, Idx, Imm, Ty);
+ }
+ unsigned getNumberOfRegisters(bool Vector) override {
+ return Impl.getNumberOfRegisters(Vector);
+ }
+ unsigned getRegisterBitWidth(bool Vector) override {
+ return Impl.getRegisterBitWidth(Vector);
+ }
+ unsigned getMaxInterleaveFactor() override {
+ return Impl.getMaxInterleaveFactor();
+ }
+ unsigned
+ getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info,
+ OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) override {
+ return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ }
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) override {
+ return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
+ }
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) override {
+ return Impl.getCastInstrCost(Opcode, Dst, Src);
+ }
+ unsigned getCFInstrCost(unsigned Opcode) override {
+ return Impl.getCFInstrCost(Opcode);
+ }
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) override {
+ return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy);
+ }
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) override {
+ return Impl.getVectorInstrCost(Opcode, Val, Index);
+ }
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) override {
+ return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+ }
+ unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) override {
+ return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+ }
+ unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) override {
+ return Impl.getReductionCost(Opcode, Ty, IsPairwiseForm);
+ }
+ unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type *> Tys) override {
+ return Impl.getIntrinsicInstrCost(ID, RetTy, Tys);
+ }
+ unsigned getNumberOfParts(Type *Tp) override {
+ return Impl.getNumberOfParts(Tp);
+ }
+ unsigned getAddressComputationCost(Type *Ty, bool IsComplex) override {
+ return Impl.getAddressComputationCost(Ty, IsComplex);
+ }
+ unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
+ return Impl.getCostOfKeepingLiveOverCall(Tys);
+ }
+ bool getTgtMemIntrinsic(IntrinsicInst *Inst,
+ MemIntrinsicInfo &Info) override {
+ return Impl.getTgtMemIntrinsic(Inst, Info);
+ }
+ Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+ Type *ExpectedType) override {
+ return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
+ }
+};
+
+template <typename T>
+TargetTransformInfo::TargetTransformInfo(T Impl)
+ : TTIImpl(new Model<T>(Impl)) {}
+
+/// \brief Analysis pass providing the \c TargetTransformInfo.
+///
+/// The core idea of the TargetIRAnalysis is to expose an interface through
+/// which LLVM targets can analyze and provide information about the middle
+/// end's target-independent IR. This supports use cases such as target-aware
+/// cost modeling of IR constructs.
+///
+/// This is a function analysis because much of the cost modeling for targets
+/// is done in a subtarget specific way and LLVM supports compiling different
+/// functions targeting different subtargets in order to support runtime
+/// dispatch according to the observed subtarget.
+class TargetIRAnalysis {
+public:
+ typedef TargetTransformInfo Result;
+
+ /// \brief Opaque, unique identifier for this analysis pass.
+ static void *ID() { return (void *)&PassID; }
+
+ /// \brief Provide access to a name for this pass for debugging purposes.
+ static StringRef name() { return "TargetIRAnalysis"; }
+
+ /// \brief Default construct a target IR analysis.
+ ///
+ /// This will use the module's datalayout to construct a baseline
+ /// conservative TTI result.
+ TargetIRAnalysis();
+
+ /// \brief Construct an IR analysis pass around a target-provide callback.
+ ///
+ /// The callback will be called with a particular function for which the TTI
+ /// is needed and must return a TTI object for that function.
+ TargetIRAnalysis(std::function<Result(Function &)> TTICallback);
+
+ // Value semantics. We spell out the constructors for MSVC.
+ TargetIRAnalysis(const TargetIRAnalysis &Arg)
+ : TTICallback(Arg.TTICallback) {}
+ TargetIRAnalysis(TargetIRAnalysis &&Arg)
+ : TTICallback(std::move(Arg.TTICallback)) {}
+ TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
+ TTICallback = RHS.TTICallback;
+ return *this;
+ }
+ TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
+ TTICallback = std::move(RHS.TTICallback);
+ return *this;
+ }
+
+ Result run(Function &F);
+
+private:
+ static char PassID;
+
+ /// \brief The callback used to produce a result.
+ ///
+ /// We use a completely opaque callback so that targets can provide whatever
+ /// mechanism they desire for constructing the TTI for a given function.
+ ///
+ /// FIXME: Should we really use std::function? It's relatively inefficient.
+ /// It might be possible to arrange for even stateful callbacks to outlive
+ /// the analysis and thus use a function_ref which would be lighter weight.
+ /// This may also be less error prone as the callback is likely to reference
+ /// the external TargetMachine, and that reference needs to never dangle.
+ std::function<Result(Function &)> TTICallback;
+
+ /// \brief Helper function used as the callback in the default constructor.
+ static Result getDefaultTTI(Function &F);
+};
+
+/// \brief Wrapper pass for TargetTransformInfo.
+///
+/// This pass can be constructed from a TTI object which it stores internally
+/// and is queried by passes.
+class TargetTransformInfoWrapperPass : public ImmutablePass {
+ TargetIRAnalysis TIRA;
+ Optional<TargetTransformInfo> TTI;
+
+ virtual void anchor();
+
+public:
static char ID;
+
+ /// \brief We must provide a default constructor for the pass but it should
+ /// never be used.
+ ///
+ /// Use the constructor below or call one of the creation routines.
+ TargetTransformInfoWrapperPass();
+
+ explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
+
+ TargetTransformInfo &getTTI(Function &F);
};
-/// \brief Create the base case instance of a pass in the TTI analysis group.
+/// \brief Create an analysis pass wrapper around a TTI object.
///
-/// This class provides the base case for the stack of TTI analyzes. It doesn't
-/// delegate to anything and uses the STTI and VTTI objects passed in to
-/// satisfy the queries.
-ImmutablePass *createNoTargetTransformInfoPass();
+/// This analysis pass just holds the TTI instance and makes it available to
+/// clients.
+ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
} // End llvm namespace