aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/BasicTTIImpl.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/CodeGen/BasicTTIImpl.h')
-rw-r--r--include/llvm/CodeGen/BasicTTIImpl.h723
1 files changed, 723 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/BasicTTIImpl.h b/include/llvm/CodeGen/BasicTTIImpl.h
new file mode 100644
index 0000000..ff85b06
--- /dev/null
+++ b/include/llvm/CodeGen/BasicTTIImpl.h
@@ -0,0 +1,723 @@
+//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides a helper that implements much of the TTI interface in
+/// terms of the target-independent code generator and TargetLowering
+/// interfaces.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
+#define LLVM_CODEGEN_BASICTTIIMPL_H
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfoImpl.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+namespace llvm {
+
+extern cl::opt<unsigned> PartialUnrollingThreshold;
+
+/// \brief Base class which can be used to help build a TTI implementation.
+///
+/// This class provides as much implementation of the TTI interface as is
+/// possible using the target independent parts of the code generator.
+///
+/// In order to subclass it, your class must implement a getST() method to
+/// return the subtarget, and a getTLI() method to return the target lowering.
+/// We need these methods implemented in the derived class so that this class
+/// doesn't have to duplicate storage for them.
+template <typename T>
+class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
+private:
+ typedef TargetTransformInfoImplCRTPBase<T> BaseT;
+ typedef TargetTransformInfo TTI;
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the result needs to be inserted and/or extracted from vectors.
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
+ assert(Ty->isVectorTy() && "Can only scalarize vectors");
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ if (Insert)
+ Cost += static_cast<T *>(this)
+ ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += static_cast<T *>(this)
+ ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+ }
+
+ /// Estimate the cost overhead of SK_Alternate shuffle.
+ unsigned getAltShuffleOverhead(Type *Ty) {
+ assert(Ty->isVectorTy() && "Can only shuffle vectors");
+ unsigned Cost = 0;
+ // Shuffle cost is equal to the cost of extracting element from its argument
+ // plus the cost of inserting them onto the result vector.
+
+ // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
+ // index 0 of first vector, index 1 of second vector,index 2 of first
+ // vector and finally index 3 of second vector and insert them at index
+ // <0,1,2,3> of result vector.
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ Cost += static_cast<T *>(this)
+ ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ Cost += static_cast<T *>(this)
+ ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+ return Cost;
+ }
+
+ /// \brief Local query method delegates up to T which *must* implement this!
+ const TargetSubtargetInfo *getST() const {
+ return static_cast<const T *>(this)->getST();
+ }
+
+ /// \brief Local query method delegates up to T which *must* implement this!
+ const TargetLoweringBase *getTLI() const {
+ return static_cast<const T *>(this)->getTLI();
+ }
+
+protected:
+ explicit BasicTTIImplBase(const TargetMachine *TM)
+ : BaseT(TM->getDataLayout()) {}
+
+public:
+ // Provide value semantics. MSVC requires that we spell all of these out.
+ BasicTTIImplBase(const BasicTTIImplBase &Arg)
+ : BaseT(static_cast<const BaseT &>(Arg)) {}
+ BasicTTIImplBase(BasicTTIImplBase &&Arg)
+ : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
+ BasicTTIImplBase &operator=(const BasicTTIImplBase &RHS) {
+ BaseT::operator=(static_cast<const BaseT &>(RHS));
+ return *this;
+ }
+ BasicTTIImplBase &operator=(BasicTTIImplBase &&RHS) {
+ BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
+ return *this;
+ }
+
+ /// \name Scalar TTI Implementations
+ /// @{
+
+ bool hasBranchDivergence() { return false; }
+
+ bool isLegalAddImmediate(int64_t imm) {
+ return getTLI()->isLegalAddImmediate(imm);
+ }
+
+ bool isLegalICmpImmediate(int64_t imm) {
+ return getTLI()->isLegalICmpImmediate(imm);
+ }
+
+ bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) {
+ TargetLoweringBase::AddrMode AM;
+ AM.BaseGV = BaseGV;
+ AM.BaseOffs = BaseOffset;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Scale;
+ return getTLI()->isLegalAddressingMode(AM, Ty);
+ }
+
+ int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale) {
+ TargetLoweringBase::AddrMode AM;
+ AM.BaseGV = BaseGV;
+ AM.BaseOffs = BaseOffset;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Scale;
+ return getTLI()->getScalingFactorCost(AM, Ty);
+ }
+
+ bool isTruncateFree(Type *Ty1, Type *Ty2) {
+ return getTLI()->isTruncateFree(Ty1, Ty2);
+ }
+
+ bool isProfitableToHoist(Instruction *I) {
+ return getTLI()->isProfitableToHoist(I);
+ }
+
+ bool isTypeLegal(Type *Ty) {
+ EVT VT = getTLI()->getValueType(Ty);
+ return getTLI()->isTypeLegal(VT);
+ }
+
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) {
+ return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
+ }
+
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> ParamTys) {
+ if (IID == Intrinsic::cttz) {
+ if (getTLI()->isCheapToSpeculateCttz())
+ return TargetTransformInfo::TCC_Basic;
+ return TargetTransformInfo::TCC_Expensive;
+ }
+
+ if (IID == Intrinsic::ctlz) {
+ if (getTLI()->isCheapToSpeculateCtlz())
+ return TargetTransformInfo::TCC_Basic;
+ return TargetTransformInfo::TCC_Expensive;
+ }
+
+ return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
+ }
+
+ unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
+
+ unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
+
+ bool shouldBuildLookupTables() {
+ const TargetLoweringBase *TLI = getTLI();
+ return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
+ }
+
+ bool haveFastSqrt(Type *Ty) {
+ const TargetLoweringBase *TLI = getTLI();
+ EVT VT = TLI->getValueType(Ty);
+ return TLI->isTypeLegal(VT) &&
+ TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
+ }
+
+ unsigned getFPOpCost(Type *Ty) {
+ // By default, FP instructions are no more expensive since they are
+ // implemented in HW. Target specific TTI can override this.
+ return TargetTransformInfo::TCC_Basic;
+ }
+
+ unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
+ const TargetLoweringBase *TLI = getTLI();
+ switch (Opcode) {
+ default: break;
+ case Instruction::Trunc: {
+ if (TLI->isTruncateFree(OpTy, Ty))
+ return TargetTransformInfo::TCC_Free;
+ return TargetTransformInfo::TCC_Basic;
+ }
+ case Instruction::ZExt: {
+ if (TLI->isZExtFree(OpTy, Ty))
+ return TargetTransformInfo::TCC_Free;
+ return TargetTransformInfo::TCC_Basic;
+ }
+ }
+
+ return BaseT::getOperationCost(Opcode, Ty, OpTy);
+ }
+
+ void getUnrollingPreferences(Loop *L, TTI::UnrollingPreferences &UP) {
+ // This unrolling functionality is target independent, but to provide some
+ // motivation for its intended use, for x86:
+
+ // According to the Intel 64 and IA-32 Architectures Optimization Reference
+ // Manual, Intel Core models and later have a loop stream detector (and
+ // associated uop queue) that can benefit from partial unrolling.
+ // The relevant requirements are:
+ // - The loop must have no more than 4 (8 for Nehalem and later) branches
+ // taken, and none of them may be calls.
+ // - The loop can have no more than 18 (28 for Nehalem and later) uops.
+
+ // According to the Software Optimization Guide for AMD Family 15h
+ // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
+ // and loop buffer which can benefit from partial unrolling.
+ // The relevant requirements are:
+ // - The loop must have fewer than 16 branches
+ // - The loop must have less than 40 uops in all executed loop branches
+
+ // The number of taken branches in a loop is hard to estimate here, and
+ // benchmarking has revealed that it is better not to be conservative when
+ // estimating the branch count. As a result, we'll ignore the branch limits
+ // until someone finds a case where it matters in practice.
+
+ unsigned MaxOps;
+ const TargetSubtargetInfo *ST = getST();
+ if (PartialUnrollingThreshold.getNumOccurrences() > 0)
+ MaxOps = PartialUnrollingThreshold;
+ else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
+ MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
+ else
+ return;
+
+ // Scan the loop: don't unroll loops with calls.
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
+ ++I) {
+ BasicBlock *BB = *I;
+
+ for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
+ if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
+ ImmutableCallSite CS(J);
+ if (const Function *F = CS.getCalledFunction()) {
+ if (!static_cast<T *>(this)->isLoweredToCall(F))
+ continue;
+ }
+
+ return;
+ }
+ }
+
+ // Enable runtime and partial unrolling up to the specified size.
+ UP.Partial = UP.Runtime = true;
+ UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
+ }
+
+ /// @}
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ unsigned getNumberOfRegisters(bool Vector) { return 1; }
+
+ unsigned getRegisterBitWidth(bool Vector) { return 32; }
+
+ unsigned getMaxInterleaveFactor() { return 1; }
+
+ unsigned getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty,
+ TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
+ TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
+ TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
+ TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None) {
+ // Check if any of the operands are vector operands.
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
+ // Assume that floating point arithmetic operations cost twice as much as
+ // integer operations.
+ unsigned OpCost = (IsFloat ? 2 : 1);
+
+ if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1.
+ // If the type is split to multiple registers, assume that there is some
+ // overhead to this.
+ // TODO: Once we have extract/insert subvector cost we need to use them.
+ if (LT.first > 1)
+ return LT.first * 2 * OpCost;
+ return LT.first * 1 * OpCost;
+ }
+
+ if (!TLI->isOperationExpand(ISD, LT.second)) {
+ // If the operation is custom lowered then assume
+ // thare the code is twice as expensive.
+ return LT.first * 2 * OpCost;
+ }
+
+ // Else, assume that we need to scalarize this op.
+ if (Ty->isVectorTy()) {
+ unsigned Num = Ty->getVectorNumElements();
+ unsigned Cost = static_cast<T *>(this)
+ ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
+ // return the cost of multiple scalar invocation plus the cost of
+ // inserting
+ // and extracting the values.
+ return getScalarizationOverhead(Ty, true, true) + Num * Cost;
+ }
+
+ // We don't know anything about this scalar instruction.
+ return OpCost;
+ }
+
+ unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ if (Kind == TTI::SK_Alternate) {
+ return getAltShuffleOverhead(Tp);
+ }
+ return 1;
+ }
+
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
+ std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
+
+ // Check for NOOP conversions.
+ if (SrcLT.first == DstLT.first &&
+ SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+ // Bitcast between types that are legalized to the same type are free.
+ if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
+ return 0;
+ }
+
+ if (Opcode == Instruction::Trunc &&
+ TLI->isTruncateFree(SrcLT.second, DstLT.second))
+ return 0;
+
+ if (Opcode == Instruction::ZExt &&
+ TLI->isZExtFree(SrcLT.second, DstLT.second))
+ return 0;
+
+ // If the cast is marked as legal (or promote) then assume low cost.
+ if (SrcLT.first == DstLT.first &&
+ TLI->isOperationLegalOrPromote(ISD, DstLT.second))
+ return 1;
+
+ // Handle scalar conversions.
+ if (!Src->isVectorTy() && !Dst->isVectorTy()) {
+
+ // Scalar bitcasts are usually free.
+ if (Opcode == Instruction::BitCast)
+ return 0;
+
+ // Just check the op cost. If the operation is legal then assume it costs
+ // 1.
+ if (!TLI->isOperationExpand(ISD, DstLT.second))
+ return 1;
+
+ // Assume that illegal scalar instruction are expensive.
+ return 4;
+ }
+
+ // Check vector-to-vector casts.
+ if (Dst->isVectorTy() && Src->isVectorTy()) {
+
+ // If the cast is between same-sized registers, then the check is simple.
+ if (SrcLT.first == DstLT.first &&
+ SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+ // Assume that Zext is done using AND.
+ if (Opcode == Instruction::ZExt)
+ return 1;
+
+ // Assume that sext is done using SHL and SRA.
+ if (Opcode == Instruction::SExt)
+ return 2;
+
+ // Just check the op cost. If the operation is legal then assume it
+ // costs
+ // 1 and multiply by the type-legalization overhead.
+ if (!TLI->isOperationExpand(ISD, DstLT.second))
+ return SrcLT.first * 1;
+ }
+
+ // If we are converting vectors and the operation is illegal, or
+ // if the vectors are legalized to different types, estimate the
+ // scalarization costs.
+ unsigned Num = Dst->getVectorNumElements();
+ unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
+ Opcode, Dst->getScalarType(), Src->getScalarType());
+
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values.
+ return getScalarizationOverhead(Dst, true, true) + Num * Cost;
+ }
+
+ // We already handled vector-to-vector and scalar-to-scalar conversions.
+ // This
+ // is where we handle bitcast between vectors and scalars. We need to assume
+ // that the conversion is scalarized in one way or another.
+ if (Opcode == Instruction::BitCast)
+ // Illegal bitcasts are done by storing and loading from a stack slot.
+ return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
+ : 0) +
+ (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
+ : 0);
+
+ llvm_unreachable("Unhandled cast");
+ }
+
+ unsigned getCFInstrCost(unsigned Opcode) {
+ // Branches are assumed to be predicted.
+ return 0;
+ }
+
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Selects on vectors are actually vector selects.
+ if (ISD == ISD::SELECT) {
+ assert(CondTy && "CondTy must exist");
+ if (CondTy->isVectorTy())
+ ISD = ISD::VSELECT;
+ }
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
+
+ if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
+ !TLI->isOperationExpand(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1. Multiply
+ // by the type-legalization overhead.
+ return LT.first * 1;
+ }
+
+ // Otherwise, assume that the cast is scalarized.
+ if (ValTy->isVectorTy()) {
+ unsigned Num = ValTy->getVectorNumElements();
+ if (CondTy)
+ CondTy = CondTy->getScalarType();
+ unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
+ Opcode, ValTy->getScalarType(), CondTy);
+
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting
+ // and extracting the values.
+ return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
+ }
+
+ // Unknown scalar opcode.
+ return 1;
+ }
+
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+ std::pair<unsigned, MVT> LT =
+ getTLI()->getTypeLegalizationCost(Val->getScalarType());
+
+ return LT.first;
+ }
+
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) {
+ assert(!Src->isVoidTy() && "Invalid type");
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
+
+ // Assuming that all loads of legal types cost 1.
+ unsigned Cost = LT.first;
+
+ if (Src->isVectorTy() &&
+ Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
+ // This is a vector load that legalizes to a larger type than the vector
+ // itself. Unless the corresponding extending load or truncating store is
+ // legal, then this will scalarize.
+ TargetLowering::LegalizeAction LA = TargetLowering::Expand;
+ EVT MemVT = getTLI()->getValueType(Src, true);
+ if (MemVT.isSimple() && MemVT != MVT::Other) {
+ if (Opcode == Instruction::Store)
+ LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
+ else
+ LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
+ }
+
+ if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
+ // This is a vector load/store for some illegal type that is scalarized.
+ // We must account for the cost of building or decomposing the vector.
+ Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
+ Opcode == Instruction::Store);
+ }
+ }
+
+ return Cost;
+ }
+
+ unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> Tys) {
+ unsigned ISD = 0;
+ switch (IID) {
+ default: {
+ // Assume that we need to scalarize this intrinsic.
+ unsigned ScalarizationCost = 0;
+ unsigned ScalarCalls = 1;
+ if (RetTy->isVectorTy()) {
+ ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
+ ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+ }
+ for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+ if (Tys[i]->isVectorTy()) {
+ ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
+ ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+ }
+ }
+
+ return ScalarCalls + ScalarizationCost;
+ }
+ // Look for intrinsics that can be lowered directly or turned into a scalar
+ // intrinsic call.
+ case Intrinsic::sqrt:
+ ISD = ISD::FSQRT;
+ break;
+ case Intrinsic::sin:
+ ISD = ISD::FSIN;
+ break;
+ case Intrinsic::cos:
+ ISD = ISD::FCOS;
+ break;
+ case Intrinsic::exp:
+ ISD = ISD::FEXP;
+ break;
+ case Intrinsic::exp2:
+ ISD = ISD::FEXP2;
+ break;
+ case Intrinsic::log:
+ ISD = ISD::FLOG;
+ break;
+ case Intrinsic::log10:
+ ISD = ISD::FLOG10;
+ break;
+ case Intrinsic::log2:
+ ISD = ISD::FLOG2;
+ break;
+ case Intrinsic::fabs:
+ ISD = ISD::FABS;
+ break;
+ case Intrinsic::minnum:
+ ISD = ISD::FMINNUM;
+ break;
+ case Intrinsic::maxnum:
+ ISD = ISD::FMAXNUM;
+ break;
+ case Intrinsic::copysign:
+ ISD = ISD::FCOPYSIGN;
+ break;
+ case Intrinsic::floor:
+ ISD = ISD::FFLOOR;
+ break;
+ case Intrinsic::ceil:
+ ISD = ISD::FCEIL;
+ break;
+ case Intrinsic::trunc:
+ ISD = ISD::FTRUNC;
+ break;
+ case Intrinsic::nearbyint:
+ ISD = ISD::FNEARBYINT;
+ break;
+ case Intrinsic::rint:
+ ISD = ISD::FRINT;
+ break;
+ case Intrinsic::round:
+ ISD = ISD::FROUND;
+ break;
+ case Intrinsic::pow:
+ ISD = ISD::FPOW;
+ break;
+ case Intrinsic::fma:
+ ISD = ISD::FMA;
+ break;
+ case Intrinsic::fmuladd:
+ ISD = ISD::FMA;
+ break;
+ // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ return 0;
+ case Intrinsic::masked_store:
+ return static_cast<T *>(this)
+ ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
+ case Intrinsic::masked_load:
+ return static_cast<T *>(this)
+ ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
+ }
+
+ const TargetLoweringBase *TLI = getTLI();
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
+
+ if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1.
+ // If the type is split to multiple registers, assume that there is some
+ // overhead to this.
+ // TODO: Once we have extract/insert subvector cost we need to use them.
+ if (LT.first > 1)
+ return LT.first * 2;
+ return LT.first * 1;
+ }
+
+ if (!TLI->isOperationExpand(ISD, LT.second)) {
+ // If the operation is custom lowered then assume
+ // thare the code is twice as expensive.
+ return LT.first * 2;
+ }
+
+ // If we can't lower fmuladd into an FMA estimate the cost as a floating
+ // point mul followed by an add.
+ if (IID == Intrinsic::fmuladd)
+ return static_cast<T *>(this)
+ ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
+ static_cast<T *>(this)
+ ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
+
+ // Else, assume that we need to scalarize this intrinsic. For math builtins
+ // this will emit a costly libcall, adding call overhead and spills. Make it
+ // very expensive.
+ if (RetTy->isVectorTy()) {
+ unsigned Num = RetTy->getVectorNumElements();
+ unsigned Cost = static_cast<T *>(this)->getIntrinsicInstrCost(
+ IID, RetTy->getScalarType(), Tys);
+ return 10 * Cost * Num;
+ }
+
+ // This is going to be turned into a library call, make it expensive.
+ return 10;
+ }
+
+ unsigned getNumberOfParts(Type *Tp) {
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
+ return LT.first;
+ }
+
+ unsigned getAddressComputationCost(Type *Ty, bool IsComplex) { return 0; }
+
+ unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) {
+ assert(Ty->isVectorTy() && "Expect a vector type");
+ unsigned NumVecElts = Ty->getVectorNumElements();
+ unsigned NumReduxLevels = Log2_32(NumVecElts);
+ unsigned ArithCost =
+ NumReduxLevels *
+ static_cast<T *>(this)->getArithmeticInstrCost(Opcode, Ty);
+ // Assume the pairwise shuffles add a cost.
+ unsigned ShuffleCost =
+ NumReduxLevels * (IsPairwise + 1) *
+ static_cast<T *>(this)
+ ->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
+ return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
+ }
+
+ /// @}
+};
+
+/// \brief Concrete BasicTTIImpl that can be used if no further customization
+/// is needed.
+class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
+ typedef BasicTTIImplBase<BasicTTIImpl> BaseT;
+ friend class BasicTTIImplBase<BasicTTIImpl>;
+
+ const TargetSubtargetInfo *ST;
+ const TargetLoweringBase *TLI;
+
+ const TargetSubtargetInfo *getST() const { return ST; }
+ const TargetLoweringBase *getTLI() const { return TLI; }
+
+public:
+ explicit BasicTTIImpl(const TargetMachine *ST, Function &F);
+
+ // Provide value semantics. MSVC requires that we spell all of these out.
+ BasicTTIImpl(const BasicTTIImpl &Arg)
+ : BaseT(static_cast<const BaseT &>(Arg)), ST(Arg.ST), TLI(Arg.TLI) {}
+ BasicTTIImpl(BasicTTIImpl &&Arg)
+ : BaseT(std::move(static_cast<BaseT &>(Arg))), ST(std::move(Arg.ST)),
+ TLI(std::move(Arg.TLI)) {}
+ BasicTTIImpl &operator=(const BasicTTIImpl &RHS) {
+ BaseT::operator=(static_cast<const BaseT &>(RHS));
+ ST = RHS.ST;
+ TLI = RHS.TLI;
+ return *this;
+ }
+ BasicTTIImpl &operator=(BasicTTIImpl &&RHS) {
+ BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
+ ST = std::move(RHS.ST);
+ TLI = std::move(RHS.TLI);
+ return *this;
+ }
+};
+
+}
+
+#endif