aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/PBQP/RegAllocSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/CodeGen/PBQP/RegAllocSolver.h')
-rw-r--r--include/llvm/CodeGen/PBQP/RegAllocSolver.h359
1 files changed, 359 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/PBQP/RegAllocSolver.h b/include/llvm/CodeGen/PBQP/RegAllocSolver.h
new file mode 100644
index 0000000..79ff6b4
--- /dev/null
+++ b/include/llvm/CodeGen/PBQP/RegAllocSolver.h
@@ -0,0 +1,359 @@
+//===-- RegAllocSolver.h - Heuristic PBQP Solver for reg alloc --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Heuristic PBQP solver for register allocation problems. This solver uses a
+// graph reduction approach. Nodes of degree 0, 1 and 2 are eliminated with
+// optimality-preserving rules (see ReductionRules.h). When no low-degree (<3)
+// nodes are present, a heuristic derived from Brigg's graph coloring approach
+// is used.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
+#define LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
+
+#include "CostAllocator.h"
+#include "Graph.h"
+#include "ReductionRules.h"
+#include "Solution.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <limits>
+#include <vector>
+
+namespace PBQP {
+
+ namespace RegAlloc {
+
+ /// \brief Metadata to speed allocatability test.
+ ///
+ /// Keeps track of the number of infinities in each row and column.
+ class MatrixMetadata {
+ private:
+ MatrixMetadata(const MatrixMetadata&);
+ void operator=(const MatrixMetadata&);
+ public:
+ MatrixMetadata(const PBQP::Matrix& M)
+ : WorstRow(0), WorstCol(0),
+ UnsafeRows(new bool[M.getRows() - 1]()),
+ UnsafeCols(new bool[M.getCols() - 1]()) {
+
+ unsigned* ColCounts = new unsigned[M.getCols() - 1]();
+
+ for (unsigned i = 1; i < M.getRows(); ++i) {
+ unsigned RowCount = 0;
+ for (unsigned j = 1; j < M.getCols(); ++j) {
+ if (M[i][j] == std::numeric_limits<PBQP::PBQPNum>::infinity()) {
+ ++RowCount;
+ ++ColCounts[j - 1];
+ UnsafeRows[i - 1] = true;
+ UnsafeCols[j - 1] = true;
+ }
+ }
+ WorstRow = std::max(WorstRow, RowCount);
+ }
+ unsigned WorstColCountForCurRow =
+ *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
+ WorstCol = std::max(WorstCol, WorstColCountForCurRow);
+ delete[] ColCounts;
+ }
+
+ ~MatrixMetadata() {
+ delete[] UnsafeRows;
+ delete[] UnsafeCols;
+ }
+
+ unsigned getWorstRow() const { return WorstRow; }
+ unsigned getWorstCol() const { return WorstCol; }
+ const bool* getUnsafeRows() const { return UnsafeRows; }
+ const bool* getUnsafeCols() const { return UnsafeCols; }
+
+ private:
+ unsigned WorstRow, WorstCol;
+ bool* UnsafeRows;
+ bool* UnsafeCols;
+ };
+
+ class NodeMetadata {
+ public:
+ typedef enum { Unprocessed,
+ OptimallyReducible,
+ ConservativelyAllocatable,
+ NotProvablyAllocatable } ReductionState;
+
+ NodeMetadata() : RS(Unprocessed), DeniedOpts(0), OptUnsafeEdges(0) {}
+ ~NodeMetadata() { delete[] OptUnsafeEdges; }
+
+ void setup(const Vector& Costs) {
+ NumOpts = Costs.getLength() - 1;
+ OptUnsafeEdges = new unsigned[NumOpts]();
+ }
+
+ ReductionState getReductionState() const { return RS; }
+ void setReductionState(ReductionState RS) { this->RS = RS; }
+
+ void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
+ DeniedOpts += Transpose ? MD.getWorstCol() : MD.getWorstRow();
+ const bool* UnsafeOpts =
+ Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
+ for (unsigned i = 0; i < NumOpts; ++i)
+ OptUnsafeEdges[i] += UnsafeOpts[i];
+ }
+
+ void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
+ DeniedOpts -= Transpose ? MD.getWorstCol() : MD.getWorstRow();
+ const bool* UnsafeOpts =
+ Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
+ for (unsigned i = 0; i < NumOpts; ++i)
+ OptUnsafeEdges[i] -= UnsafeOpts[i];
+ }
+
+ bool isConservativelyAllocatable() const {
+ return (DeniedOpts < NumOpts) ||
+ (std::find(OptUnsafeEdges, OptUnsafeEdges + NumOpts, 0) !=
+ OptUnsafeEdges + NumOpts);
+ }
+
+ private:
+ ReductionState RS;
+ unsigned NumOpts;
+ unsigned DeniedOpts;
+ unsigned* OptUnsafeEdges;
+ };
+
+ class RegAllocSolverImpl {
+ private:
+ typedef PBQP::MDMatrix<MatrixMetadata> RAMatrix;
+ public:
+ typedef PBQP::Vector RawVector;
+ typedef PBQP::Matrix RawMatrix;
+ typedef PBQP::Vector Vector;
+ typedef RAMatrix Matrix;
+ typedef PBQP::PoolCostAllocator<
+ Vector, PBQP::VectorComparator,
+ Matrix, PBQP::MatrixComparator> CostAllocator;
+
+ typedef PBQP::GraphBase::NodeId NodeId;
+ typedef PBQP::GraphBase::EdgeId EdgeId;
+
+ typedef RegAlloc::NodeMetadata NodeMetadata;
+
+ struct EdgeMetadata { };
+
+ typedef PBQP::Graph<RegAllocSolverImpl> Graph;
+
+ RegAllocSolverImpl(Graph &G) : G(G) {}
+
+ Solution solve() {
+ G.setSolver(*this);
+ Solution S;
+ setup();
+ S = backpropagate(G, reduce());
+ G.unsetSolver();
+ return S;
+ }
+
+ void handleAddNode(NodeId NId) {
+ G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
+ }
+ void handleRemoveNode(NodeId NId) {}
+ void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
+
+ void handleAddEdge(EdgeId EId) {
+ handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
+ handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
+ }
+
+ void handleRemoveEdge(EdgeId EId) {
+ handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
+ handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
+ }
+
+ void handleDisconnectEdge(EdgeId EId, NodeId NId) {
+ NodeMetadata& NMd = G.getNodeMetadata(NId);
+ const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
+ NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
+ if (G.getNodeDegree(NId) == 3) {
+ // This node is becoming optimally reducible.
+ moveToOptimallyReducibleNodes(NId);
+ } else if (NMd.getReductionState() ==
+ NodeMetadata::NotProvablyAllocatable &&
+ NMd.isConservativelyAllocatable()) {
+ // This node just became conservatively allocatable.
+ moveToConservativelyAllocatableNodes(NId);
+ }
+ }
+
+ void handleReconnectEdge(EdgeId EId, NodeId NId) {
+ NodeMetadata& NMd = G.getNodeMetadata(NId);
+ const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
+ NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
+ }
+
+ void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
+ handleRemoveEdge(EId);
+
+ NodeId N1Id = G.getEdgeNode1Id(EId);
+ NodeId N2Id = G.getEdgeNode2Id(EId);
+ NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
+ NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
+ const MatrixMetadata& MMd = NewCosts.getMetadata();
+ N1Md.handleAddEdge(MMd, N1Id != G.getEdgeNode1Id(EId));
+ N2Md.handleAddEdge(MMd, N2Id != G.getEdgeNode1Id(EId));
+ }
+
+ private:
+
+ void removeFromCurrentSet(NodeId NId) {
+ switch (G.getNodeMetadata(NId).getReductionState()) {
+ case NodeMetadata::Unprocessed: break;
+ case NodeMetadata::OptimallyReducible:
+ assert(OptimallyReducibleNodes.find(NId) !=
+ OptimallyReducibleNodes.end() &&
+ "Node not in optimally reducible set.");
+ OptimallyReducibleNodes.erase(NId);
+ break;
+ case NodeMetadata::ConservativelyAllocatable:
+ assert(ConservativelyAllocatableNodes.find(NId) !=
+ ConservativelyAllocatableNodes.end() &&
+ "Node not in conservatively allocatable set.");
+ ConservativelyAllocatableNodes.erase(NId);
+ break;
+ case NodeMetadata::NotProvablyAllocatable:
+ assert(NotProvablyAllocatableNodes.find(NId) !=
+ NotProvablyAllocatableNodes.end() &&
+ "Node not in not-provably-allocatable set.");
+ NotProvablyAllocatableNodes.erase(NId);
+ break;
+ }
+ }
+
+ void moveToOptimallyReducibleNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ OptimallyReducibleNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::OptimallyReducible);
+ }
+
+ void moveToConservativelyAllocatableNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ ConservativelyAllocatableNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::ConservativelyAllocatable);
+ }
+
+ void moveToNotProvablyAllocatableNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ NotProvablyAllocatableNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::NotProvablyAllocatable);
+ }
+
+ void setup() {
+ // Set up worklists.
+ for (auto NId : G.nodeIds()) {
+ if (G.getNodeDegree(NId) < 3)
+ moveToOptimallyReducibleNodes(NId);
+ else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
+ moveToConservativelyAllocatableNodes(NId);
+ else
+ moveToNotProvablyAllocatableNodes(NId);
+ }
+ }
+
+ // Compute a reduction order for the graph by iteratively applying PBQP
+ // reduction rules. Locally optimal rules are applied whenever possible (R0,
+ // R1, R2). If no locally-optimal rules apply then any conservatively
+ // allocatable node is reduced. Finally, if no conservatively allocatable
+ // node exists then the node with the lowest spill-cost:degree ratio is
+ // selected.
+ std::vector<GraphBase::NodeId> reduce() {
+ assert(!G.empty() && "Cannot reduce empty graph.");
+
+ typedef GraphBase::NodeId NodeId;
+ std::vector<NodeId> NodeStack;
+
+ // Consume worklists.
+ while (true) {
+ if (!OptimallyReducibleNodes.empty()) {
+ NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
+ NodeId NId = *NItr;
+ OptimallyReducibleNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ switch (G.getNodeDegree(NId)) {
+ case 0:
+ break;
+ case 1:
+ applyR1(G, NId);
+ break;
+ case 2:
+ applyR2(G, NId);
+ break;
+ default: llvm_unreachable("Not an optimally reducible node.");
+ }
+ } else if (!ConservativelyAllocatableNodes.empty()) {
+ // Conservatively allocatable nodes will never spill. For now just
+ // take the first node in the set and push it on the stack. When we
+ // start optimizing more heavily for register preferencing, it may
+ // would be better to push nodes with lower 'expected' or worst-case
+ // register costs first (since early nodes are the most
+ // constrained).
+ NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
+ NodeId NId = *NItr;
+ ConservativelyAllocatableNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ G.disconnectAllNeighborsFromNode(NId);
+
+ } else if (!NotProvablyAllocatableNodes.empty()) {
+ NodeSet::iterator NItr =
+ std::min_element(NotProvablyAllocatableNodes.begin(),
+ NotProvablyAllocatableNodes.end(),
+ SpillCostComparator(G));
+ NodeId NId = *NItr;
+ NotProvablyAllocatableNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ G.disconnectAllNeighborsFromNode(NId);
+ } else
+ break;
+ }
+
+ return NodeStack;
+ }
+
+ class SpillCostComparator {
+ public:
+ SpillCostComparator(const Graph& G) : G(G) {}
+ bool operator()(NodeId N1Id, NodeId N2Id) {
+ PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
+ PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
+ return N1SC < N2SC;
+ }
+ private:
+ const Graph& G;
+ };
+
+ Graph& G;
+ typedef std::set<NodeId> NodeSet;
+ NodeSet OptimallyReducibleNodes;
+ NodeSet ConservativelyAllocatableNodes;
+ NodeSet NotProvablyAllocatableNodes;
+ };
+
+ typedef Graph<RegAllocSolverImpl> Graph;
+
+ Solution solve(Graph& G) {
+ if (G.empty())
+ return Solution();
+ RegAllocSolverImpl RegAllocSolver(G);
+ return RegAllocSolver.solve();
+ }
+
+ }
+}
+
+#endif // LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H