diff options
Diffstat (limited to 'include/llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h')
-rw-r--r-- | include/llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h | 355 |
1 files changed, 355 insertions, 0 deletions
diff --git a/include/llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h b/include/llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h new file mode 100644 index 0000000..0e218e2 --- /dev/null +++ b/include/llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h @@ -0,0 +1,355 @@ +//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// JIT layer for breaking up modules and inserting callbacks to allow +// individual functions to be compiled on demand. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H +#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H + +#include "IndirectionUtils.h" +#include "LookasideRTDyldMM.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ExecutionEngine/SectionMemoryManager.h" +#include <list> + +namespace llvm { +namespace orc { + +/// @brief Compile-on-demand layer. +/// +/// Modules added to this layer have their calls indirected, and are then +/// broken up into a set of single-function modules, each of which is added +/// to the layer below in a singleton set. The lower layer can be any layer that +/// accepts IR module sets. +/// +/// It is expected that this layer will frequently be used on top of a +/// LazyEmittingLayer. The combination of the two ensures that each function is +/// compiled only when it is first called. +template <typename BaseLayerT, typename CompileCallbackMgrT> +class CompileOnDemandLayer { +public: + /// @brief Lookup helper that provides compatibility with the classic + /// static-compilation symbol resolution process. + /// + /// The CompileOnDemand (COD) layer splits modules up into multiple + /// sub-modules, each held in its own llvm::Module instance, in order to + /// support lazy compilation. When a module that contains private symbols is + /// broken up symbol linkage changes may be required to enable access to + /// "private" data that now resides in a different llvm::Module instance. To + /// retain expected symbol resolution behavior for clients of the COD layer, + /// the CODScopedLookup class uses a two-tiered lookup system to resolve + /// symbols. Lookup first scans sibling modules that were split from the same + /// original module (logical-module scoped lookup), then scans all other + /// modules that have been added to the lookup scope (logical-dylib scoped + /// lookup). + class CODScopedLookup { + private: + typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT; + typedef std::vector<BaseLayerModuleSetHandleT> SiblingHandlesList; + typedef std::list<SiblingHandlesList> PseudoDylibModuleSetHandlesList; + + public: + /// @brief Handle for a logical module. + typedef typename PseudoDylibModuleSetHandlesList::iterator LMHandle; + + /// @brief Construct a scoped lookup. + CODScopedLookup(BaseLayerT &BaseLayer) : BaseLayer(BaseLayer) {} + + /// @brief Start a new context for a single logical module. + LMHandle createLogicalModule() { + Handles.push_back(SiblingHandlesList()); + return std::prev(Handles.end()); + } + + /// @brief Add a concrete Module's handle to the given logical Module's + /// lookup scope. + void addToLogicalModule(LMHandle LMH, BaseLayerModuleSetHandleT H) { + LMH->push_back(H); + } + + /// @brief Remove a logical Module from the CODScopedLookup entirely. + void removeLogicalModule(LMHandle LMH) { Handles.erase(LMH); } + + /// @brief Look up a symbol in this context. + JITSymbol findSymbol(LMHandle LMH, const std::string &Name) { + if (auto Symbol = findSymbolIn(LMH, Name)) + return Symbol; + + for (auto I = Handles.begin(), E = Handles.end(); I != E; ++I) + if (I != LMH) + if (auto Symbol = findSymbolIn(I, Name)) + return Symbol; + + return nullptr; + } + + private: + + JITSymbol findSymbolIn(LMHandle LMH, const std::string &Name) { + for (auto H : *LMH) + if (auto Symbol = BaseLayer.findSymbolIn(H, Name, false)) + return Symbol; + return nullptr; + } + + BaseLayerT &BaseLayer; + PseudoDylibModuleSetHandlesList Handles; + }; + +private: + typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT; + typedef std::vector<BaseLayerModuleSetHandleT> BaseLayerModuleSetHandleListT; + + struct ModuleSetInfo { + // Symbol lookup - just one for the whole module set. + std::shared_ptr<CODScopedLookup> Lookup; + + // Logical module handles. + std::vector<typename CODScopedLookup::LMHandle> LMHandles; + + // List of vectors of module set handles: + // One vector per logical module - each vector holds the handles for the + // exploded modules for that logical module in the base layer. + BaseLayerModuleSetHandleListT BaseLayerModuleSetHandles; + + ModuleSetInfo(std::shared_ptr<CODScopedLookup> Lookup) + : Lookup(std::move(Lookup)) {} + + void releaseResources(BaseLayerT &BaseLayer) { + for (auto LMH : LMHandles) + Lookup->removeLogicalModule(LMH); + for (auto H : BaseLayerModuleSetHandles) + BaseLayer.removeModuleSet(H); + } + }; + + typedef std::list<ModuleSetInfo> ModuleSetInfoListT; + +public: + /// @brief Handle to a set of loaded modules. + typedef typename ModuleSetInfoListT::iterator ModuleSetHandleT; + + // @brief Fallback lookup functor. + typedef std::function<uint64_t(const std::string &)> LookupFtor; + + /// @brief Construct a compile-on-demand layer instance. + CompileOnDemandLayer(BaseLayerT &BaseLayer, LLVMContext &Context) + : BaseLayer(BaseLayer), + CompileCallbackMgr(BaseLayer, Context, 0, 64) {} + + /// @brief Add a module to the compile-on-demand layer. + template <typename ModuleSetT> + ModuleSetHandleT addModuleSet(ModuleSetT Ms, + LookupFtor FallbackLookup = nullptr) { + + // If the user didn't supply a fallback lookup then just use + // getSymbolAddress. + if (!FallbackLookup) + FallbackLookup = [=](const std::string &Name) { + return findSymbol(Name, true).getAddress(); + }; + + // Create a lookup context and ModuleSetInfo for this module set. + // For the purposes of symbol resolution the set Ms will be treated as if + // the modules it contained had been linked together as a dylib. + auto DylibLookup = std::make_shared<CODScopedLookup>(BaseLayer); + ModuleSetHandleT H = + ModuleSetInfos.insert(ModuleSetInfos.end(), ModuleSetInfo(DylibLookup)); + ModuleSetInfo &MSI = ModuleSetInfos.back(); + + // Process each of the modules in this module set. + for (auto &M : Ms) + partitionAndAdd(*M, MSI, FallbackLookup); + + return H; + } + + /// @brief Remove the module represented by the given handle. + /// + /// This will remove all modules in the layers below that were derived from + /// the module represented by H. + void removeModuleSet(ModuleSetHandleT H) { + H->releaseResources(BaseLayer); + ModuleSetInfos.erase(H); + } + + /// @brief Search for the given named symbol. + /// @param Name The name of the symbol to search for. + /// @param ExportedSymbolsOnly If true, search only for exported symbols. + /// @return A handle for the given named symbol, if it exists. + JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) { + return BaseLayer.findSymbol(Name, ExportedSymbolsOnly); + } + + /// @brief Get the address of a symbol provided by this layer, or some layer + /// below this one. + JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name, + bool ExportedSymbolsOnly) { + BaseLayerModuleSetHandleListT &BaseLayerHandles = H->second; + for (auto &BH : BaseLayerHandles) { + if (auto Symbol = BaseLayer.findSymbolIn(BH, Name, ExportedSymbolsOnly)) + return Symbol; + } + return nullptr; + } + +private: + + void partitionAndAdd(Module &M, ModuleSetInfo &MSI, + LookupFtor FallbackLookup) { + const char *AddrSuffix = "$orc_addr"; + const char *BodySuffix = "$orc_body"; + + // We're going to break M up into a bunch of sub-modules, but we want + // internal linkage symbols to still resolve sensibly. CODScopedLookup + // provides the "logical module" concept to make this work, so create a + // new logical module for M. + auto DylibLookup = MSI.Lookup; + auto LogicalModule = DylibLookup->createLogicalModule(); + MSI.LMHandles.push_back(LogicalModule); + + // Partition M into a "globals and stubs" module, a "common symbols" module, + // and a list of single-function modules. + auto PartitionedModule = fullyPartition(M); + auto StubsModule = std::move(PartitionedModule.GlobalVars); + auto CommonsModule = std::move(PartitionedModule.Commons); + auto FunctionModules = std::move(PartitionedModule.Functions); + + // Emit the commons stright away. + auto CommonHandle = addModule(std::move(CommonsModule), MSI, LogicalModule, + FallbackLookup); + BaseLayer.emitAndFinalize(CommonHandle); + + // Map of definition names to callback-info data structures. We'll use + // this to build the compile actions for the stubs below. + typedef std::map<std::string, + typename CompileCallbackMgrT::CompileCallbackInfo> + StubInfoMap; + StubInfoMap StubInfos; + + // Now we need to take each of the extracted Modules and add them to + // base layer. Each Module will be added individually to make sure they + // can be compiled separately, and each will get its own lookaside + // memory manager that will resolve within this logical module first. + for (auto &SubM : FunctionModules) { + + // Keep track of the stubs we create for this module so that we can set + // their compile actions. + std::vector<typename StubInfoMap::iterator> NewStubInfos; + + // Search for function definitions and insert stubs into the stubs + // module. + for (auto &F : *SubM) { + if (F.isDeclaration()) + continue; + + std::string Name = F.getName(); + Function *Proto = StubsModule->getFunction(Name); + assert(Proto && "Failed to clone function decl into stubs module."); + auto CallbackInfo = + CompileCallbackMgr.getCompileCallback(*Proto->getFunctionType()); + GlobalVariable *FunctionBodyPointer = + createImplPointer(*Proto, Name + AddrSuffix, + CallbackInfo.getAddress()); + makeStub(*Proto, *FunctionBodyPointer); + + F.setName(Name + BodySuffix); + F.setVisibility(GlobalValue::HiddenVisibility); + + auto KV = std::make_pair(std::move(Name), std::move(CallbackInfo)); + NewStubInfos.push_back(StubInfos.insert(StubInfos.begin(), KV)); + } + + auto H = addModule(std::move(SubM), MSI, LogicalModule, FallbackLookup); + + // Set the compile actions for this module: + for (auto &KVPair : NewStubInfos) { + std::string BodyName = Mangle(KVPair->first + BodySuffix, + *M.getDataLayout()); + auto &CCInfo = KVPair->second; + CCInfo.setCompileAction( + [=](){ + return BaseLayer.findSymbolIn(H, BodyName, false).getAddress(); + }); + } + + } + + // Ok - we've processed all the partitioned modules. Now add the + // stubs/globals module and set the update actions. + auto StubsH = + addModule(std::move(StubsModule), MSI, LogicalModule, FallbackLookup); + + for (auto &KVPair : StubInfos) { + std::string AddrName = Mangle(KVPair.first + AddrSuffix, + *M.getDataLayout()); + auto &CCInfo = KVPair.second; + CCInfo.setUpdateAction( + CompileCallbackMgr.getLocalFPUpdater(StubsH, AddrName)); + } + } + + // Add the given Module to the base layer using a memory manager that will + // perform the appropriate scoped lookup (i.e. will look first with in the + // module from which it was extracted, then into the set to which that module + // belonged, and finally externally). + BaseLayerModuleSetHandleT addModule( + std::unique_ptr<Module> M, + ModuleSetInfo &MSI, + typename CODScopedLookup::LMHandle LogicalModule, + LookupFtor FallbackLookup) { + + // Add this module to the JIT with a memory manager that uses the + // DylibLookup to resolve symbols. + std::vector<std::unique_ptr<Module>> MSet; + MSet.push_back(std::move(M)); + + auto DylibLookup = MSI.Lookup; + auto MM = + createLookasideRTDyldMM<SectionMemoryManager>( + [=](const std::string &Name) { + if (auto Symbol = DylibLookup->findSymbol(LogicalModule, Name)) + return Symbol.getAddress(); + return FallbackLookup(Name); + }, + [=](const std::string &Name) { + return DylibLookup->findSymbol(LogicalModule, Name).getAddress(); + }); + + BaseLayerModuleSetHandleT H = + BaseLayer.addModuleSet(std::move(MSet), std::move(MM)); + // Add this module to the logical module lookup. + DylibLookup->addToLogicalModule(LogicalModule, H); + MSI.BaseLayerModuleSetHandles.push_back(H); + + return H; + } + + static std::string Mangle(StringRef Name, const DataLayout &DL) { + Mangler M(&DL); + std::string MangledName; + { + raw_string_ostream MangledNameStream(MangledName); + M.getNameWithPrefix(MangledNameStream, Name); + } + return MangledName; + } + + BaseLayerT &BaseLayer; + CompileCallbackMgrT CompileCallbackMgr; + ModuleSetInfoListT ModuleSetInfos; +}; + +} // End namespace orc. +} // End namespace llvm. + +#endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H |