aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/IR/PatternMatch.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/IR/PatternMatch.h')
-rw-r--r--include/llvm/IR/PatternMatch.h1211
1 files changed, 1211 insertions, 0 deletions
diff --git a/include/llvm/IR/PatternMatch.h b/include/llvm/IR/PatternMatch.h
new file mode 100644
index 0000000..2efb294
--- /dev/null
+++ b/include/llvm/IR/PatternMatch.h
@@ -0,0 +1,1211 @@
+//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides a simple and efficient mechanism for performing general
+// tree-based pattern matches on the LLVM IR. The power of these routines is
+// that it allows you to write concise patterns that are expressive and easy to
+// understand. The other major advantage of this is that it allows you to
+// trivially capture/bind elements in the pattern to variables. For example,
+// you can do something like this:
+//
+// Value *Exp = ...
+// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
+// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
+// m_And(m_Value(Y), m_ConstantInt(C2))))) {
+// ... Pattern is matched and variables are bound ...
+// }
+//
+// This is primarily useful to things like the instruction combiner, but can
+// also be useful for static analysis tools or code generators.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_PATTERNMATCH_H
+#define LLVM_IR_PATTERNMATCH_H
+
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+
+namespace llvm {
+namespace PatternMatch {
+
+template<typename Val, typename Pattern>
+bool match(Val *V, const Pattern &P) {
+ return const_cast<Pattern&>(P).match(V);
+}
+
+
+template<typename SubPattern_t>
+struct OneUse_match {
+ SubPattern_t SubPattern;
+
+ OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ return V->hasOneUse() && SubPattern.match(V);
+ }
+};
+
+template<typename T>
+inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
+
+
+template<typename Class>
+struct class_match {
+ template<typename ITy>
+ bool match(ITy *V) { return isa<Class>(V); }
+};
+
+/// m_Value() - Match an arbitrary value and ignore it.
+inline class_match<Value> m_Value() { return class_match<Value>(); }
+/// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
+inline class_match<ConstantInt> m_ConstantInt() {
+ return class_match<ConstantInt>();
+}
+/// m_Undef() - Match an arbitrary undef constant.
+inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
+
+inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
+
+/// Matching combinators
+template<typename LTy, typename RTy>
+struct match_combine_or {
+ LTy L;
+ RTy R;
+
+ match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
+
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (L.match(V))
+ return true;
+ if (R.match(V))
+ return true;
+ return false;
+ }
+};
+
+template<typename LTy, typename RTy>
+struct match_combine_and {
+ LTy L;
+ RTy R;
+
+ match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
+
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (L.match(V))
+ if (R.match(V))
+ return true;
+ return false;
+ }
+};
+
+/// Combine two pattern matchers matching L || R
+template<typename LTy, typename RTy>
+inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
+ return match_combine_or<LTy, RTy>(L, R);
+}
+
+/// Combine two pattern matchers matching L && R
+template<typename LTy, typename RTy>
+inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
+ return match_combine_and<LTy, RTy>(L, R);
+}
+
+struct match_zero {
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (const Constant *C = dyn_cast<Constant>(V))
+ return C->isNullValue();
+ return false;
+ }
+};
+
+/// m_Zero() - Match an arbitrary zero/null constant. This includes
+/// zero_initializer for vectors and ConstantPointerNull for pointers.
+inline match_zero m_Zero() { return match_zero(); }
+
+struct match_neg_zero {
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (const Constant *C = dyn_cast<Constant>(V))
+ return C->isNegativeZeroValue();
+ return false;
+ }
+};
+
+/// m_NegZero() - Match an arbitrary zero/null constant. This includes
+/// zero_initializer for vectors and ConstantPointerNull for pointers. For
+/// floating point constants, this will match negative zero but not positive
+/// zero
+inline match_neg_zero m_NegZero() { return match_neg_zero(); }
+
+/// m_AnyZero() - Match an arbitrary zero/null constant. This includes
+/// zero_initializer for vectors and ConstantPointerNull for pointers. For
+/// floating point constants, this will match negative zero and positive zero
+inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
+ return m_CombineOr(m_Zero(), m_NegZero());
+}
+
+struct apint_match {
+ const APInt *&Res;
+ apint_match(const APInt *&R) : Res(R) {}
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ Res = &CI->getValue();
+ return true;
+ }
+ if (V->getType()->isVectorTy())
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (ConstantInt *CI =
+ dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
+ Res = &CI->getValue();
+ return true;
+ }
+ return false;
+ }
+};
+
+/// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
+/// specified pointer to the contained APInt.
+inline apint_match m_APInt(const APInt *&Res) { return Res; }
+
+
+template<int64_t Val>
+struct constantint_match {
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ const APInt &CIV = CI->getValue();
+ if (Val >= 0)
+ return CIV == static_cast<uint64_t>(Val);
+ // If Val is negative, and CI is shorter than it, truncate to the right
+ // number of bits. If it is larger, then we have to sign extend. Just
+ // compare their negated values.
+ return -CIV == -Val;
+ }
+ return false;
+ }
+};
+
+/// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
+template<int64_t Val>
+inline constantint_match<Val> m_ConstantInt() {
+ return constantint_match<Val>();
+}
+
+/// cst_pred_ty - This helper class is used to match scalar and vector constants
+/// that satisfy a specified predicate.
+template<typename Predicate>
+struct cst_pred_ty : public Predicate {
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ return this->isValue(CI->getValue());
+ if (V->getType()->isVectorTy())
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (const ConstantInt *CI =
+ dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
+ return this->isValue(CI->getValue());
+ return false;
+ }
+};
+
+/// api_pred_ty - This helper class is used to match scalar and vector constants
+/// that satisfy a specified predicate, and bind them to an APInt.
+template<typename Predicate>
+struct api_pred_ty : public Predicate {
+ const APInt *&Res;
+ api_pred_ty(const APInt *&R) : Res(R) {}
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ if (this->isValue(CI->getValue())) {
+ Res = &CI->getValue();
+ return true;
+ }
+ if (V->getType()->isVectorTy())
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
+ if (this->isValue(CI->getValue())) {
+ Res = &CI->getValue();
+ return true;
+ }
+
+ return false;
+ }
+};
+
+
+struct is_one {
+ bool isValue(const APInt &C) { return C == 1; }
+};
+
+/// m_One() - Match an integer 1 or a vector with all elements equal to 1.
+inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
+inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
+
+struct is_all_ones {
+ bool isValue(const APInt &C) { return C.isAllOnesValue(); }
+};
+
+/// m_AllOnes() - Match an integer or vector with all bits set to true.
+inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
+inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
+
+struct is_sign_bit {
+ bool isValue(const APInt &C) { return C.isSignBit(); }
+};
+
+/// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
+inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
+inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
+
+struct is_power2 {
+ bool isValue(const APInt &C) { return C.isPowerOf2(); }
+};
+
+/// m_Power2() - Match an integer or vector power of 2.
+inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
+inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
+
+template<typename Class>
+struct bind_ty {
+ Class *&VR;
+ bind_ty(Class *&V) : VR(V) {}
+
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (Class *CV = dyn_cast<Class>(V)) {
+ VR = CV;
+ return true;
+ }
+ return false;
+ }
+};
+
+/// m_Value - Match a value, capturing it if we match.
+inline bind_ty<Value> m_Value(Value *&V) { return V; }
+
+/// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
+inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
+
+/// m_Constant - Match a Constant, capturing the value if we match.
+inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
+
+/// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
+inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
+
+/// specificval_ty - Match a specified Value*.
+struct specificval_ty {
+ const Value *Val;
+ specificval_ty(const Value *V) : Val(V) {}
+
+ template<typename ITy>
+ bool match(ITy *V) {
+ return V == Val;
+ }
+};
+
+/// m_Specific - Match if we have a specific specified value.
+inline specificval_ty m_Specific(const Value *V) { return V; }
+
+/// Match a specified floating point value or vector of all elements of that
+/// value.
+struct specific_fpval {
+ double Val;
+ specific_fpval(double V) : Val(V) {}
+
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
+ return CFP->isExactlyValue(Val);
+ if (V->getType()->isVectorTy())
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
+ return CFP->isExactlyValue(Val);
+ return false;
+ }
+};
+
+/// Match a specific floating point value or vector with all elements equal to
+/// the value.
+inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
+
+/// Match a float 1.0 or vector with all elements equal to 1.0.
+inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
+
+struct bind_const_intval_ty {
+ uint64_t &VR;
+ bind_const_intval_ty(uint64_t &V) : VR(V) {}
+
+ template<typename ITy>
+ bool match(ITy *V) {
+ if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
+ if (CV->getBitWidth() <= 64) {
+ VR = CV->getZExtValue();
+ return true;
+ }
+ return false;
+ }
+};
+
+/// m_ConstantInt - Match a ConstantInt and bind to its value. This does not
+/// match ConstantInts wider than 64-bits.
+inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
+
+//===----------------------------------------------------------------------===//
+// Matchers for specific binary operators.
+//
+
+template<typename LHS_t, typename RHS_t, unsigned Opcode>
+struct BinaryOp_match {
+ LHS_t L;
+ RHS_t R;
+
+ BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (V->getValueID() == Value::InstructionVal + Opcode) {
+ BinaryOperator *I = cast<BinaryOperator>(V);
+ return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
+ }
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
+ R.match(CE->getOperand(1));
+ return false;
+ }
+};
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Add>
+m_Add(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
+m_FAdd(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Sub>
+m_Sub(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FSub>
+m_FSub(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Mul>
+m_Mul(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FMul>
+m_FMul(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
+m_UDiv(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
+m_SDiv(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
+m_FDiv(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::URem>
+m_URem(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::SRem>
+m_SRem(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FRem>
+m_FRem(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::And>
+m_And(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Or>
+m_Or(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Xor>
+m_Xor(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Shl>
+m_Shl(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::LShr>
+m_LShr(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::AShr>
+m_AShr(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
+}
+
+template<typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0>
+struct OverflowingBinaryOp_match {
+ LHS_t L;
+ RHS_t R;
+
+ OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (OverflowingBinaryOperator *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
+ if (Op->getOpcode() != Opcode)
+ return false;
+ if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
+ !Op->hasNoUnsignedWrap())
+ return false;
+ if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
+ !Op->hasNoSignedWrap())
+ return false;
+ return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
+ }
+ return false;
+ }
+};
+
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWAdd(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWSub(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWMul(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWShl(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWAdd(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWSub(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWMul(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWShl(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Class that matches two different binary ops.
+//
+template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
+struct BinOp2_match {
+ LHS_t L;
+ RHS_t R;
+
+ BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (V->getValueID() == Value::InstructionVal + Opc1 ||
+ V->getValueID() == Value::InstructionVal + Opc2) {
+ BinaryOperator *I = cast<BinaryOperator>(V);
+ return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
+ }
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
+ L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
+ return false;
+ }
+};
+
+/// m_Shr - Matches LShr or AShr.
+template<typename LHS, typename RHS>
+inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
+m_Shr(const LHS &L, const RHS &R) {
+ return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
+}
+
+/// m_LogicalShift - Matches LShr or Shl.
+template<typename LHS, typename RHS>
+inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
+m_LogicalShift(const LHS &L, const RHS &R) {
+ return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
+}
+
+/// m_IDiv - Matches UDiv and SDiv.
+template<typename LHS, typename RHS>
+inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
+m_IDiv(const LHS &L, const RHS &R) {
+ return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Class that matches exact binary ops.
+//
+template<typename SubPattern_t>
+struct Exact_match {
+ SubPattern_t SubPattern;
+
+ Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
+ return PEO->isExact() && SubPattern.match(V);
+ return false;
+ }
+};
+
+template<typename T>
+inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
+
+//===----------------------------------------------------------------------===//
+// Matchers for CmpInst classes
+//
+
+template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
+struct CmpClass_match {
+ PredicateTy &Predicate;
+ LHS_t L;
+ RHS_t R;
+
+ CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
+ : Predicate(Pred), L(LHS), R(RHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (Class *I = dyn_cast<Class>(V))
+ if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
+ Predicate = I->getPredicate();
+ return true;
+ }
+ return false;
+ }
+};
+
+template<typename LHS, typename RHS>
+inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
+m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return CmpClass_match<LHS, RHS,
+ ICmpInst, ICmpInst::Predicate>(Pred, L, R);
+}
+
+template<typename LHS, typename RHS>
+inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
+m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return CmpClass_match<LHS, RHS,
+ FCmpInst, FCmpInst::Predicate>(Pred, L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for SelectInst classes
+//
+
+template<typename Cond_t, typename LHS_t, typename RHS_t>
+struct SelectClass_match {
+ Cond_t C;
+ LHS_t L;
+ RHS_t R;
+
+ SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
+ const RHS_t &RHS)
+ : C(Cond), L(LHS), R(RHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (SelectInst *I = dyn_cast<SelectInst>(V))
+ return C.match(I->getOperand(0)) &&
+ L.match(I->getOperand(1)) &&
+ R.match(I->getOperand(2));
+ return false;
+ }
+};
+
+template<typename Cond, typename LHS, typename RHS>
+inline SelectClass_match<Cond, LHS, RHS>
+m_Select(const Cond &C, const LHS &L, const RHS &R) {
+ return SelectClass_match<Cond, LHS, RHS>(C, L, R);
+}
+
+/// m_SelectCst - This matches a select of two constants, e.g.:
+/// m_SelectCst<-1, 0>(m_Value(V))
+template<int64_t L, int64_t R, typename Cond>
+inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
+m_SelectCst(const Cond &C) {
+ return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Matchers for CastInst classes
+//
+
+template<typename Op_t, unsigned Opcode>
+struct CastClass_match {
+ Op_t Op;
+
+ CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (Operator *O = dyn_cast<Operator>(V))
+ return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
+ return false;
+ }
+};
+
+/// m_BitCast
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::BitCast>
+m_BitCast(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::BitCast>(Op);
+}
+
+/// m_PtrToInt
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::PtrToInt>
+m_PtrToInt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
+}
+
+/// m_Trunc
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::Trunc>
+m_Trunc(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::Trunc>(Op);
+}
+
+/// m_SExt
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::SExt>
+m_SExt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::SExt>(Op);
+}
+
+/// m_ZExt
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::ZExt>
+m_ZExt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::ZExt>(Op);
+}
+
+/// m_UIToFP
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::UIToFP>
+m_UIToFP(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::UIToFP>(Op);
+}
+
+/// m_SIToFP
+template<typename OpTy>
+inline CastClass_match<OpTy, Instruction::SIToFP>
+m_SIToFP(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::SIToFP>(Op);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for unary operators
+//
+
+template<typename LHS_t>
+struct not_match {
+ LHS_t L;
+
+ not_match(const LHS_t &LHS) : L(LHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (Operator *O = dyn_cast<Operator>(V))
+ if (O->getOpcode() == Instruction::Xor)
+ return matchIfNot(O->getOperand(0), O->getOperand(1));
+ return false;
+ }
+private:
+ bool matchIfNot(Value *LHS, Value *RHS) {
+ return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
+ // FIXME: Remove CV.
+ isa<ConstantVector>(RHS)) &&
+ cast<Constant>(RHS)->isAllOnesValue() &&
+ L.match(LHS);
+ }
+};
+
+template<typename LHS>
+inline not_match<LHS> m_Not(const LHS &L) { return L; }
+
+
+template<typename LHS_t>
+struct neg_match {
+ LHS_t L;
+
+ neg_match(const LHS_t &LHS) : L(LHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (Operator *O = dyn_cast<Operator>(V))
+ if (O->getOpcode() == Instruction::Sub)
+ return matchIfNeg(O->getOperand(0), O->getOperand(1));
+ return false;
+ }
+private:
+ bool matchIfNeg(Value *LHS, Value *RHS) {
+ return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
+ isa<ConstantAggregateZero>(LHS)) &&
+ L.match(RHS);
+ }
+};
+
+/// m_Neg - Match an integer negate.
+template<typename LHS>
+inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
+
+
+template<typename LHS_t>
+struct fneg_match {
+ LHS_t L;
+
+ fneg_match(const LHS_t &LHS) : L(LHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (Operator *O = dyn_cast<Operator>(V))
+ if (O->getOpcode() == Instruction::FSub)
+ return matchIfFNeg(O->getOperand(0), O->getOperand(1));
+ return false;
+ }
+private:
+ bool matchIfFNeg(Value *LHS, Value *RHS) {
+ if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
+ return C->isNegativeZeroValue() && L.match(RHS);
+ return false;
+ }
+};
+
+/// m_FNeg - Match a floating point negate.
+template<typename LHS>
+inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
+
+
+//===----------------------------------------------------------------------===//
+// Matchers for control flow.
+//
+
+struct br_match {
+ BasicBlock *&Succ;
+ br_match(BasicBlock *&Succ)
+ : Succ(Succ) {
+ }
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (BranchInst *BI = dyn_cast<BranchInst>(V))
+ if (BI->isUnconditional()) {
+ Succ = BI->getSuccessor(0);
+ return true;
+ }
+ return false;
+ }
+};
+
+inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
+
+template<typename Cond_t>
+struct brc_match {
+ Cond_t Cond;
+ BasicBlock *&T, *&F;
+ brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
+ : Cond(C), T(t), F(f) {
+ }
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ if (BranchInst *BI = dyn_cast<BranchInst>(V))
+ if (BI->isConditional() && Cond.match(BI->getCondition())) {
+ T = BI->getSuccessor(0);
+ F = BI->getSuccessor(1);
+ return true;
+ }
+ return false;
+ }
+};
+
+template<typename Cond_t>
+inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
+ return brc_match<Cond_t>(C, T, F);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
+//
+
+template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
+struct MaxMin_match {
+ LHS_t L;
+ RHS_t R;
+
+ MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
+ : L(LHS), R(RHS) {}
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (!SI)
+ return false;
+ CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
+ if (!Cmp)
+ return false;
+ // At this point we have a select conditioned on a comparison. Check that
+ // it is the values returned by the select that are being compared.
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+ if ((TrueVal != LHS || FalseVal != RHS) &&
+ (TrueVal != RHS || FalseVal != LHS))
+ return false;
+ typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
+ Cmp->getPredicate() : Cmp->getSwappedPredicate();
+ // Does "(x pred y) ? x : y" represent the desired max/min operation?
+ if (!Pred_t::match(Pred))
+ return false;
+ // It does! Bind the operands.
+ return L.match(LHS) && R.match(RHS);
+ }
+};
+
+/// smax_pred_ty - Helper class for identifying signed max predicates.
+struct smax_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
+ }
+};
+
+/// smin_pred_ty - Helper class for identifying signed min predicates.
+struct smin_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
+ }
+};
+
+/// umax_pred_ty - Helper class for identifying unsigned max predicates.
+struct umax_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
+ }
+};
+
+/// umin_pred_ty - Helper class for identifying unsigned min predicates.
+struct umin_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
+ }
+};
+
+/// ofmax_pred_ty - Helper class for identifying ordered max predicates.
+struct ofmax_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
+ }
+};
+
+/// ofmin_pred_ty - Helper class for identifying ordered min predicates.
+struct ofmin_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
+ }
+};
+
+/// ufmax_pred_ty - Helper class for identifying unordered max predicates.
+struct ufmax_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
+ }
+};
+
+/// ufmin_pred_ty - Helper class for identifying unordered min predicates.
+struct ufmin_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
+ }
+};
+
+template<typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
+m_SMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
+m_SMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
+m_UMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
+}
+
+template<typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
+m_UMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
+}
+
+/// \brief Match an 'ordered' floating point maximum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
+///
+/// max(L, R) iff L and R are not NaN
+/// m_OrdFMax(L, R) = R iff L or R are NaN
+template<typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
+m_OrdFMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
+}
+
+/// \brief Match an 'ordered' floating point minimum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
+///
+/// max(L, R) iff L and R are not NaN
+/// m_OrdFMin(L, R) = R iff L or R are NaN
+template<typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
+m_OrdFMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
+}
+
+/// \brief Match an 'unordered' floating point maximum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
+///
+/// max(L, R) iff L and R are not NaN
+/// m_UnordFMin(L, R) = L iff L or R are NaN
+template<typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
+m_UnordFMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
+}
+
+/// \brief Match an 'unordered' floating point minimum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
+///
+/// max(L, R) iff L and R are not NaN
+/// m_UnordFMin(L, R) = L iff L or R are NaN
+template<typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
+m_UnordFMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
+}
+
+template<typename Opnd_t>
+struct Argument_match {
+ unsigned OpI;
+ Opnd_t Val;
+ Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ CallSite CS(V);
+ return CS.isCall() && Val.match(CS.getArgument(OpI));
+ }
+};
+
+/// Match an argument
+template<unsigned OpI, typename Opnd_t>
+inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
+ return Argument_match<Opnd_t>(OpI, Op);
+}
+
+/// Intrinsic matchers.
+struct IntrinsicID_match {
+ unsigned ID;
+ IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) { }
+
+ template<typename OpTy>
+ bool match(OpTy *V) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
+ return II && II->getIntrinsicID() == ID;
+ }
+};
+
+/// Intrinsic matches are combinations of ID matchers, and argument
+/// matchers. Higher arity matcher are defined recursively in terms of and-ing
+/// them with lower arity matchers. Here's some convenient typedefs for up to
+/// several arguments, and more can be added as needed
+template <typename T0 = void, typename T1 = void, typename T2 = void,
+ typename T3 = void, typename T4 = void, typename T5 = void,
+ typename T6 = void, typename T7 = void, typename T8 = void,
+ typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
+template <typename T0>
+struct m_Intrinsic_Ty<T0> {
+ typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
+};
+template <typename T0, typename T1>
+struct m_Intrinsic_Ty<T0, T1> {
+ typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
+ Argument_match<T1> > Ty;
+};
+template <typename T0, typename T1, typename T2>
+struct m_Intrinsic_Ty<T0, T1, T2> {
+ typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
+ Argument_match<T2> > Ty;
+};
+template <typename T0, typename T1, typename T2, typename T3>
+struct m_Intrinsic_Ty<T0, T1, T2, T3> {
+ typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
+ Argument_match<T3> > Ty;
+};
+
+/// Match intrinsic calls like this:
+/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
+template <Intrinsic::ID IntrID>
+inline IntrinsicID_match
+m_Intrinsic() { return IntrinsicID_match(IntrID); }
+
+template<Intrinsic::ID IntrID, typename T0>
+inline typename m_Intrinsic_Ty<T0>::Ty
+m_Intrinsic(const T0 &Op0) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
+}
+
+template<Intrinsic::ID IntrID, typename T0, typename T1>
+inline typename m_Intrinsic_Ty<T0, T1>::Ty
+m_Intrinsic(const T0 &Op0, const T1 &Op1) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
+}
+
+template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
+inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
+m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
+}
+
+template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3>
+inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
+m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
+}
+
+// Helper intrinsic matching specializations
+template<typename Opnd0>
+inline typename m_Intrinsic_Ty<Opnd0>::Ty
+m_BSwap(const Opnd0 &Op0) {
+ return m_Intrinsic<Intrinsic::bswap>(Op0);
+}
+
+} // end namespace PatternMatch
+} // end namespace llvm
+
+#endif