aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Support/GenericDomTree.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/GenericDomTree.h')
-rw-r--r--include/llvm/Support/GenericDomTree.h717
1 files changed, 717 insertions, 0 deletions
diff --git a/include/llvm/Support/GenericDomTree.h b/include/llvm/Support/GenericDomTree.h
new file mode 100644
index 0000000..6878844
--- /dev/null
+++ b/include/llvm/Support/GenericDomTree.h
@@ -0,0 +1,717 @@
+//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file defines a set of templates that efficiently compute a dominator
+/// tree over a generic graph. This is used typically in LLVM for fast
+/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
+/// graph types.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_H
+#define LLVM_SUPPORT_GENERIC_DOM_TREE_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+/// DominatorBase - Base class that other, more interesting dominator analyses
+/// inherit from.
+///
+template <class NodeT>
+class DominatorBase {
+protected:
+ std::vector<NodeT*> Roots;
+ const bool IsPostDominators;
+ inline explicit DominatorBase(bool isPostDom) :
+ Roots(), IsPostDominators(isPostDom) {}
+public:
+
+ /// getRoots - Return the root blocks of the current CFG. This may include
+ /// multiple blocks if we are computing post dominators. For forward
+ /// dominators, this will always be a single block (the entry node).
+ ///
+ inline const std::vector<NodeT*> &getRoots() const { return Roots; }
+
+ /// isPostDominator - Returns true if analysis based of postdoms
+ ///
+ bool isPostDominator() const { return IsPostDominators; }
+};
+
+
+//===----------------------------------------------------------------------===//
+// DomTreeNodeBase - Dominator Tree Node
+template<class NodeT> class DominatorTreeBase;
+struct PostDominatorTree;
+
+template <class NodeT>
+class DomTreeNodeBase {
+ NodeT *TheBB;
+ DomTreeNodeBase<NodeT> *IDom;
+ std::vector<DomTreeNodeBase<NodeT> *> Children;
+ mutable int DFSNumIn, DFSNumOut;
+
+ template<class N> friend class DominatorTreeBase;
+ friend struct PostDominatorTree;
+public:
+ typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
+ typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
+ const_iterator;
+
+ iterator begin() { return Children.begin(); }
+ iterator end() { return Children.end(); }
+ const_iterator begin() const { return Children.begin(); }
+ const_iterator end() const { return Children.end(); }
+
+ NodeT *getBlock() const { return TheBB; }
+ DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
+ const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
+ return Children;
+ }
+
+ DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
+ : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
+
+ DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
+ Children.push_back(C);
+ return C;
+ }
+
+ size_t getNumChildren() const {
+ return Children.size();
+ }
+
+ void clearAllChildren() {
+ Children.clear();
+ }
+
+ bool compare(const DomTreeNodeBase<NodeT> *Other) const {
+ if (getNumChildren() != Other->getNumChildren())
+ return true;
+
+ SmallPtrSet<const NodeT *, 4> OtherChildren;
+ for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
+ const NodeT *Nd = (*I)->getBlock();
+ OtherChildren.insert(Nd);
+ }
+
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ const NodeT *N = (*I)->getBlock();
+ if (OtherChildren.count(N) == 0)
+ return true;
+ }
+ return false;
+ }
+
+ void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
+ assert(IDom && "No immediate dominator?");
+ if (IDom != NewIDom) {
+ typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
+ std::find(IDom->Children.begin(), IDom->Children.end(), this);
+ assert(I != IDom->Children.end() &&
+ "Not in immediate dominator children set!");
+ // I am no longer your child...
+ IDom->Children.erase(I);
+
+ // Switch to new dominator
+ IDom = NewIDom;
+ IDom->Children.push_back(this);
+ }
+ }
+
+ /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
+ /// not call them.
+ unsigned getDFSNumIn() const { return DFSNumIn; }
+ unsigned getDFSNumOut() const { return DFSNumOut; }
+private:
+ // Return true if this node is dominated by other. Use this only if DFS info
+ // is valid.
+ bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
+ return this->DFSNumIn >= other->DFSNumIn &&
+ this->DFSNumOut <= other->DFSNumOut;
+ }
+};
+
+template<class NodeT>
+inline raw_ostream &operator<<(raw_ostream &o,
+ const DomTreeNodeBase<NodeT> *Node) {
+ if (Node->getBlock())
+ Node->getBlock()->printAsOperand(o, false);
+ else
+ o << " <<exit node>>";
+
+ o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
+
+ return o << "\n";
+}
+
+template<class NodeT>
+inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
+ unsigned Lev) {
+ o.indent(2*Lev) << "[" << Lev << "] " << N;
+ for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
+ E = N->end(); I != E; ++I)
+ PrintDomTree<NodeT>(*I, o, Lev+1);
+}
+
+//===----------------------------------------------------------------------===//
+/// DominatorTree - Calculate the immediate dominator tree for a function.
+///
+
+template<class FuncT, class N>
+void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
+ FuncT& F);
+
+template<class NodeT>
+class DominatorTreeBase : public DominatorBase<NodeT> {
+ bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
+ const DomTreeNodeBase<NodeT> *B) const {
+ assert(A != B);
+ assert(isReachableFromEntry(B));
+ assert(isReachableFromEntry(A));
+
+ const DomTreeNodeBase<NodeT> *IDom;
+ while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
+ B = IDom; // Walk up the tree
+ return IDom != 0;
+ }
+
+protected:
+ typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
+ DomTreeNodeMapType DomTreeNodes;
+ DomTreeNodeBase<NodeT> *RootNode;
+
+ mutable bool DFSInfoValid;
+ mutable unsigned int SlowQueries;
+ // Information record used during immediate dominators computation.
+ struct InfoRec {
+ unsigned DFSNum;
+ unsigned Parent;
+ unsigned Semi;
+ NodeT *Label;
+
+ InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
+ };
+
+ DenseMap<NodeT*, NodeT*> IDoms;
+
+ // Vertex - Map the DFS number to the NodeT*
+ std::vector<NodeT*> Vertex;
+
+ // Info - Collection of information used during the computation of idoms.
+ DenseMap<NodeT*, InfoRec> Info;
+
+ void reset() {
+ for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
+ E = DomTreeNodes.end(); I != E; ++I)
+ delete I->second;
+ DomTreeNodes.clear();
+ IDoms.clear();
+ this->Roots.clear();
+ Vertex.clear();
+ RootNode = 0;
+ }
+
+ // NewBB is split and now it has one successor. Update dominator tree to
+ // reflect this change.
+ template<class N, class GraphT>
+ void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
+ typename GraphT::NodeType* NewBB) {
+ assert(std::distance(GraphT::child_begin(NewBB),
+ GraphT::child_end(NewBB)) == 1 &&
+ "NewBB should have a single successor!");
+ typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
+
+ std::vector<typename GraphT::NodeType*> PredBlocks;
+ typedef GraphTraits<Inverse<N> > InvTraits;
+ for (typename InvTraits::ChildIteratorType PI =
+ InvTraits::child_begin(NewBB),
+ PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
+ PredBlocks.push_back(*PI);
+
+ assert(!PredBlocks.empty() && "No predblocks?");
+
+ bool NewBBDominatesNewBBSucc = true;
+ for (typename InvTraits::ChildIteratorType PI =
+ InvTraits::child_begin(NewBBSucc),
+ E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
+ typename InvTraits::NodeType *ND = *PI;
+ if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
+ DT.isReachableFromEntry(ND)) {
+ NewBBDominatesNewBBSucc = false;
+ break;
+ }
+ }
+
+ // Find NewBB's immediate dominator and create new dominator tree node for
+ // NewBB.
+ NodeT *NewBBIDom = 0;
+ unsigned i = 0;
+ for (i = 0; i < PredBlocks.size(); ++i)
+ if (DT.isReachableFromEntry(PredBlocks[i])) {
+ NewBBIDom = PredBlocks[i];
+ break;
+ }
+
+ // It's possible that none of the predecessors of NewBB are reachable;
+ // in that case, NewBB itself is unreachable, so nothing needs to be
+ // changed.
+ if (!NewBBIDom)
+ return;
+
+ for (i = i + 1; i < PredBlocks.size(); ++i) {
+ if (DT.isReachableFromEntry(PredBlocks[i]))
+ NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
+ }
+
+ // Create the new dominator tree node... and set the idom of NewBB.
+ DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
+
+ // If NewBB strictly dominates other blocks, then it is now the immediate
+ // dominator of NewBBSucc. Update the dominator tree as appropriate.
+ if (NewBBDominatesNewBBSucc) {
+ DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
+ DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
+ }
+ }
+
+public:
+ explicit DominatorTreeBase(bool isPostDom)
+ : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
+ virtual ~DominatorTreeBase() { reset(); }
+
+ /// compare - Return false if the other dominator tree base matches this
+ /// dominator tree base. Otherwise return true.
+ bool compare(const DominatorTreeBase &Other) const {
+
+ const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
+ if (DomTreeNodes.size() != OtherDomTreeNodes.size())
+ return true;
+
+ for (typename DomTreeNodeMapType::const_iterator
+ I = this->DomTreeNodes.begin(),
+ E = this->DomTreeNodes.end(); I != E; ++I) {
+ NodeT *BB = I->first;
+ typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
+ if (OI == OtherDomTreeNodes.end())
+ return true;
+
+ DomTreeNodeBase<NodeT>* MyNd = I->second;
+ DomTreeNodeBase<NodeT>* OtherNd = OI->second;
+
+ if (MyNd->compare(OtherNd))
+ return true;
+ }
+
+ return false;
+ }
+
+ virtual void releaseMemory() { reset(); }
+
+ /// getNode - return the (Post)DominatorTree node for the specified basic
+ /// block. This is the same as using operator[] on this class.
+ ///
+ inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
+ return DomTreeNodes.lookup(BB);
+ }
+
+ /// getRootNode - This returns the entry node for the CFG of the function. If
+ /// this tree represents the post-dominance relations for a function, however,
+ /// this root may be a node with the block == NULL. This is the case when
+ /// there are multiple exit nodes from a particular function. Consumers of
+ /// post-dominance information must be capable of dealing with this
+ /// possibility.
+ ///
+ DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
+ const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
+
+ /// Get all nodes dominated by R, including R itself.
+ void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
+ Result.clear();
+ const DomTreeNodeBase<NodeT> *RN = getNode(R);
+ if (RN == NULL)
+ return; // If R is unreachable, it will not be present in the DOM tree.
+ SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
+ WL.push_back(RN);
+
+ while (!WL.empty()) {
+ const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
+ Result.push_back(N->getBlock());
+ WL.append(N->begin(), N->end());
+ }
+ }
+
+ /// properlyDominates - Returns true iff A dominates B and A != B.
+ /// Note that this is not a constant time operation!
+ ///
+ bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
+ const DomTreeNodeBase<NodeT> *B) const {
+ if (A == 0 || B == 0)
+ return false;
+ if (A == B)
+ return false;
+ return dominates(A, B);
+ }
+
+ bool properlyDominates(const NodeT *A, const NodeT *B) const;
+
+ /// isReachableFromEntry - Return true if A is dominated by the entry
+ /// block of the function containing it.
+ bool isReachableFromEntry(const NodeT* A) const {
+ assert(!this->isPostDominator() &&
+ "This is not implemented for post dominators");
+ return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
+ }
+
+ inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
+ return A;
+ }
+
+ /// dominates - Returns true iff A dominates B. Note that this is not a
+ /// constant time operation!
+ ///
+ inline bool dominates(const DomTreeNodeBase<NodeT> *A,
+ const DomTreeNodeBase<NodeT> *B) const {
+ // A node trivially dominates itself.
+ if (B == A)
+ return true;
+
+ // An unreachable node is dominated by anything.
+ if (!isReachableFromEntry(B))
+ return true;
+
+ // And dominates nothing.
+ if (!isReachableFromEntry(A))
+ return false;
+
+ // Compare the result of the tree walk and the dfs numbers, if expensive
+ // checks are enabled.
+#ifdef XDEBUG
+ assert((!DFSInfoValid ||
+ (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
+ "Tree walk disagrees with dfs numbers!");
+#endif
+
+ if (DFSInfoValid)
+ return B->DominatedBy(A);
+
+ // If we end up with too many slow queries, just update the
+ // DFS numbers on the theory that we are going to keep querying.
+ SlowQueries++;
+ if (SlowQueries > 32) {
+ updateDFSNumbers();
+ return B->DominatedBy(A);
+ }
+
+ return dominatedBySlowTreeWalk(A, B);
+ }
+
+ bool dominates(const NodeT *A, const NodeT *B) const;
+
+ NodeT *getRoot() const {
+ assert(this->Roots.size() == 1 && "Should always have entry node!");
+ return this->Roots[0];
+ }
+
+ /// findNearestCommonDominator - Find nearest common dominator basic block
+ /// for basic block A and B. If there is no such block then return NULL.
+ NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
+ assert(A->getParent() == B->getParent() &&
+ "Two blocks are not in same function");
+
+ // If either A or B is a entry block then it is nearest common dominator
+ // (for forward-dominators).
+ if (!this->isPostDominator()) {
+ NodeT &Entry = A->getParent()->front();
+ if (A == &Entry || B == &Entry)
+ return &Entry;
+ }
+
+ // If B dominates A then B is nearest common dominator.
+ if (dominates(B, A))
+ return B;
+
+ // If A dominates B then A is nearest common dominator.
+ if (dominates(A, B))
+ return A;
+
+ DomTreeNodeBase<NodeT> *NodeA = getNode(A);
+ DomTreeNodeBase<NodeT> *NodeB = getNode(B);
+
+ // Collect NodeA dominators set.
+ SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
+ NodeADoms.insert(NodeA);
+ DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
+ while (IDomA) {
+ NodeADoms.insert(IDomA);
+ IDomA = IDomA->getIDom();
+ }
+
+ // Walk NodeB immediate dominators chain and find common dominator node.
+ DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
+ while (IDomB) {
+ if (NodeADoms.count(IDomB) != 0)
+ return IDomB->getBlock();
+
+ IDomB = IDomB->getIDom();
+ }
+
+ return NULL;
+ }
+
+ const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
+ // Cast away the const qualifiers here. This is ok since
+ // const is re-introduced on the return type.
+ return findNearestCommonDominator(const_cast<NodeT *>(A),
+ const_cast<NodeT *>(B));
+ }
+
+ //===--------------------------------------------------------------------===//
+ // API to update (Post)DominatorTree information based on modifications to
+ // the CFG...
+
+ /// addNewBlock - Add a new node to the dominator tree information. This
+ /// creates a new node as a child of DomBB dominator node,linking it into
+ /// the children list of the immediate dominator.
+ DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
+ assert(getNode(BB) == 0 && "Block already in dominator tree!");
+ DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
+ assert(IDomNode && "Not immediate dominator specified for block!");
+ DFSInfoValid = false;
+ return DomTreeNodes[BB] =
+ IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
+ }
+
+ /// changeImmediateDominator - This method is used to update the dominator
+ /// tree information when a node's immediate dominator changes.
+ ///
+ void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
+ DomTreeNodeBase<NodeT> *NewIDom) {
+ assert(N && NewIDom && "Cannot change null node pointers!");
+ DFSInfoValid = false;
+ N->setIDom(NewIDom);
+ }
+
+ void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
+ changeImmediateDominator(getNode(BB), getNode(NewBB));
+ }
+
+ /// eraseNode - Removes a node from the dominator tree. Block must not
+ /// dominate any other blocks. Removes node from its immediate dominator's
+ /// children list. Deletes dominator node associated with basic block BB.
+ void eraseNode(NodeT *BB) {
+ DomTreeNodeBase<NodeT> *Node = getNode(BB);
+ assert(Node && "Removing node that isn't in dominator tree.");
+ assert(Node->getChildren().empty() && "Node is not a leaf node.");
+
+ // Remove node from immediate dominator's children list.
+ DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
+ if (IDom) {
+ typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
+ std::find(IDom->Children.begin(), IDom->Children.end(), Node);
+ assert(I != IDom->Children.end() &&
+ "Not in immediate dominator children set!");
+ // I am no longer your child...
+ IDom->Children.erase(I);
+ }
+
+ DomTreeNodes.erase(BB);
+ delete Node;
+ }
+
+ /// removeNode - Removes a node from the dominator tree. Block must not
+ /// dominate any other blocks. Invalidates any node pointing to removed
+ /// block.
+ void removeNode(NodeT *BB) {
+ assert(getNode(BB) && "Removing node that isn't in dominator tree.");
+ DomTreeNodes.erase(BB);
+ }
+
+ /// splitBlock - BB is split and now it has one successor. Update dominator
+ /// tree to reflect this change.
+ void splitBlock(NodeT* NewBB) {
+ if (this->IsPostDominators)
+ this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
+ else
+ this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
+ }
+
+ /// print - Convert to human readable form
+ ///
+ void print(raw_ostream &o) const {
+ o << "=============================--------------------------------\n";
+ if (this->isPostDominator())
+ o << "Inorder PostDominator Tree: ";
+ else
+ o << "Inorder Dominator Tree: ";
+ if (!this->DFSInfoValid)
+ o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
+ o << "\n";
+
+ // The postdom tree can have a null root if there are no returns.
+ if (getRootNode())
+ PrintDomTree<NodeT>(getRootNode(), o, 1);
+ }
+
+protected:
+ template<class GraphT>
+ friend typename GraphT::NodeType* Eval(
+ DominatorTreeBase<typename GraphT::NodeType>& DT,
+ typename GraphT::NodeType* V,
+ unsigned LastLinked);
+
+ template<class GraphT>
+ friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
+ typename GraphT::NodeType* V,
+ unsigned N);
+
+ template<class FuncT, class N>
+ friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
+ FuncT& F);
+
+ /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
+ /// dominator tree in dfs order.
+ void updateDFSNumbers() const {
+ unsigned DFSNum = 0;
+
+ SmallVector<std::pair<const DomTreeNodeBase<NodeT>*,
+ typename DomTreeNodeBase<NodeT>::const_iterator>, 32> WorkStack;
+
+ const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
+
+ if (!ThisRoot)
+ return;
+
+ // Even in the case of multiple exits that form the post dominator root
+ // nodes, do not iterate over all exits, but start from the virtual root
+ // node. Otherwise bbs, that are not post dominated by any exit but by the
+ // virtual root node, will never be assigned a DFS number.
+ WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
+ ThisRoot->DFSNumIn = DFSNum++;
+
+ while (!WorkStack.empty()) {
+ const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
+ typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
+ WorkStack.back().second;
+
+ // If we visited all of the children of this node, "recurse" back up the
+ // stack setting the DFOutNum.
+ if (ChildIt == Node->end()) {
+ Node->DFSNumOut = DFSNum++;
+ WorkStack.pop_back();
+ } else {
+ // Otherwise, recursively visit this child.
+ const DomTreeNodeBase<NodeT> *Child = *ChildIt;
+ ++WorkStack.back().second;
+
+ WorkStack.push_back(std::make_pair(Child, Child->begin()));
+ Child->DFSNumIn = DFSNum++;
+ }
+ }
+
+ SlowQueries = 0;
+ DFSInfoValid = true;
+ }
+
+ DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
+ if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
+ return Node;
+
+ // Haven't calculated this node yet? Get or calculate the node for the
+ // immediate dominator.
+ NodeT *IDom = getIDom(BB);
+
+ assert(IDom || this->DomTreeNodes[NULL]);
+ DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
+
+ // Add a new tree node for this NodeT, and link it as a child of
+ // IDomNode
+ DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
+ return this->DomTreeNodes[BB] = IDomNode->addChild(C);
+ }
+
+ inline NodeT *getIDom(NodeT *BB) const {
+ return IDoms.lookup(BB);
+ }
+
+ inline void addRoot(NodeT* BB) {
+ this->Roots.push_back(BB);
+ }
+
+public:
+ /// recalculate - compute a dominator tree for the given function
+ template<class FT>
+ void recalculate(FT& F) {
+ typedef GraphTraits<FT*> TraitsTy;
+ reset();
+ this->Vertex.push_back(0);
+
+ if (!this->IsPostDominators) {
+ // Initialize root
+ NodeT *entry = TraitsTy::getEntryNode(&F);
+ this->Roots.push_back(entry);
+ this->IDoms[entry] = 0;
+ this->DomTreeNodes[entry] = 0;
+
+ Calculate<FT, NodeT*>(*this, F);
+ } else {
+ // Initialize the roots list
+ for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
+ E = TraitsTy::nodes_end(&F); I != E; ++I) {
+ if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
+ addRoot(I);
+
+ // Prepopulate maps so that we don't get iterator invalidation issues later.
+ this->IDoms[I] = 0;
+ this->DomTreeNodes[I] = 0;
+ }
+
+ Calculate<FT, Inverse<NodeT*> >(*this, F);
+ }
+ }
+};
+
+// These two functions are declared out of line as a workaround for building
+// with old (< r147295) versions of clang because of pr11642.
+template<class NodeT>
+bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
+ if (A == B)
+ return true;
+
+ // Cast away the const qualifiers here. This is ok since
+ // this function doesn't actually return the values returned
+ // from getNode.
+ return dominates(getNode(const_cast<NodeT *>(A)),
+ getNode(const_cast<NodeT *>(B)));
+}
+template<class NodeT>
+bool
+DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) const {
+ if (A == B)
+ return false;
+
+ // Cast away the const qualifiers here. This is ok since
+ // this function doesn't actually return the values returned
+ // from getNode.
+ return dominates(getNode(const_cast<NodeT *>(A)),
+ getNode(const_cast<NodeT *>(B)));
+}
+
+}
+
+#endif