aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Support/GenericDomTree.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/GenericDomTree.h')
-rw-r--r--include/llvm/Support/GenericDomTree.h322
1 files changed, 177 insertions, 145 deletions
diff --git a/include/llvm/Support/GenericDomTree.h b/include/llvm/Support/GenericDomTree.h
index 6bc4b44..0998eb9 100644
--- a/include/llvm/Support/GenericDomTree.h
+++ b/include/llvm/Support/GenericDomTree.h
@@ -21,6 +21,7 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
@@ -29,76 +30,79 @@
namespace llvm {
-//===----------------------------------------------------------------------===//
-/// DominatorBase - Base class that other, more interesting dominator analyses
+/// \brief Base class that other, more interesting dominator analyses
/// inherit from.
-///
-template <class NodeT>
-class DominatorBase {
+template <class NodeT> class DominatorBase {
protected:
- std::vector<NodeT*> Roots;
- const bool IsPostDominators;
- inline explicit DominatorBase(bool isPostDom) :
- Roots(), IsPostDominators(isPostDom) {}
-public:
+ std::vector<NodeT *> Roots;
+ bool IsPostDominators;
+ explicit DominatorBase(bool isPostDom)
+ : Roots(), IsPostDominators(isPostDom) {}
+ DominatorBase(DominatorBase &&Arg)
+ : Roots(std::move(Arg.Roots)),
+ IsPostDominators(std::move(Arg.IsPostDominators)) {
+ Arg.Roots.clear();
+ }
+ DominatorBase &operator=(DominatorBase &&RHS) {
+ Roots = std::move(RHS.Roots);
+ IsPostDominators = std::move(RHS.IsPostDominators);
+ RHS.Roots.clear();
+ return *this;
+ }
+public:
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
- inline const std::vector<NodeT*> &getRoots() const { return Roots; }
+ const std::vector<NodeT *> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
};
-
-//===----------------------------------------------------------------------===//
-// DomTreeNodeBase - Dominator Tree Node
-template<class NodeT> class DominatorTreeBase;
+template <class NodeT> class DominatorTreeBase;
struct PostDominatorTree;
-template <class NodeT>
-class DomTreeNodeBase {
+/// \brief Base class for the actual dominator tree node.
+template <class NodeT> class DomTreeNodeBase {
NodeT *TheBB;
DomTreeNodeBase<NodeT> *IDom;
std::vector<DomTreeNodeBase<NodeT> *> Children;
mutable int DFSNumIn, DFSNumOut;
- template<class N> friend class DominatorTreeBase;
+ template <class N> friend class DominatorTreeBase;
friend struct PostDominatorTree;
+
public:
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
- const_iterator;
+ const_iterator;
- iterator begin() { return Children.begin(); }
- iterator end() { return Children.end(); }
+ iterator begin() { return Children.begin(); }
+ iterator end() { return Children.end(); }
const_iterator begin() const { return Children.begin(); }
- const_iterator end() const { return Children.end(); }
+ const_iterator end() const { return Children.end(); }
NodeT *getBlock() const { return TheBB; }
DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
- const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
+ const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
return Children;
}
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
- : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
+ : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
- DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
- Children.push_back(C);
+ std::unique_ptr<DomTreeNodeBase<NodeT>>
+ addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
+ Children.push_back(C.get());
return C;
}
- size_t getNumChildren() const {
- return Children.size();
- }
+ size_t getNumChildren() const { return Children.size(); }
- void clearAllChildren() {
- Children.clear();
- }
+ void clearAllChildren() { Children.clear(); }
bool compare(const DomTreeNodeBase<NodeT> *Other) const {
if (getNumChildren() != Other->getNumChildren())
@@ -121,8 +125,8 @@ public:
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom != NewIDom) {
- typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
- std::find(IDom->Children.begin(), IDom->Children.end(), this);
+ typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
+ std::find(IDom->Children.begin(), IDom->Children.end(), this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
@@ -138,18 +142,18 @@ public:
/// not call them.
unsigned getDFSNumIn() const { return DFSNumIn; }
unsigned getDFSNumOut() const { return DFSNumOut; }
+
private:
// Return true if this node is dominated by other. Use this only if DFS info
// is valid.
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
return this->DFSNumIn >= other->DFSNumIn &&
- this->DFSNumOut <= other->DFSNumOut;
+ this->DFSNumOut <= other->DFSNumOut;
}
};
-template<class NodeT>
-inline raw_ostream &operator<<(raw_ostream &o,
- const DomTreeNodeBase<NodeT> *Node) {
+template <class NodeT>
+raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
if (Node->getBlock())
Node->getBlock()->printAsOperand(o, false);
else
@@ -160,25 +164,29 @@ inline raw_ostream &operator<<(raw_ostream &o,
return o << "\n";
}
-template<class NodeT>
-inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
- unsigned Lev) {
- o.indent(2*Lev) << "[" << Lev << "] " << N;
+template <class NodeT>
+void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
+ unsigned Lev) {
+ o.indent(2 * Lev) << "[" << Lev << "] " << N;
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
- E = N->end(); I != E; ++I)
- PrintDomTree<NodeT>(*I, o, Lev+1);
+ E = N->end();
+ I != E; ++I)
+ PrintDomTree<NodeT>(*I, o, Lev + 1);
}
-//===----------------------------------------------------------------------===//
-/// DominatorTree - Calculate the immediate dominator tree for a function.
-///
+// The calculate routine is provided in a separate header but referenced here.
+template <class FuncT, class N>
+void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
+ FuncT &F);
-template<class FuncT, class N>
-void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
- FuncT& F);
+/// \brief Core dominator tree base class.
+///
+/// This class is a generic template over graph nodes. It is instantiated for
+/// various graphs in the LLVM IR or in the code generator.
+template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
+ DominatorTreeBase(const DominatorTreeBase &) = delete;
+ DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
-template<class NodeT>
-class DominatorTreeBase : public DominatorBase<NodeT> {
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
assert(A != B);
@@ -187,12 +195,25 @@ class DominatorTreeBase : public DominatorBase<NodeT> {
const DomTreeNodeBase<NodeT> *IDom;
while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
- B = IDom; // Walk up the tree
+ B = IDom; // Walk up the tree
return IDom != nullptr;
}
+ /// \brief Wipe this tree's state without releasing any resources.
+ ///
+ /// This is essentially a post-move helper only. It leaves the object in an
+ /// assignable and destroyable state, but otherwise invalid.
+ void wipe() {
+ DomTreeNodes.clear();
+ IDoms.clear();
+ Vertex.clear();
+ Info.clear();
+ RootNode = nullptr;
+ }
+
protected:
- typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
+ typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
+ DomTreeNodeMapType;
DomTreeNodeMapType DomTreeNodes;
DomTreeNodeBase<NodeT> *RootNode;
@@ -208,18 +229,15 @@ protected:
InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
};
- DenseMap<NodeT*, NodeT*> IDoms;
+ DenseMap<NodeT *, NodeT *> IDoms;
// Vertex - Map the DFS number to the NodeT*
- std::vector<NodeT*> Vertex;
+ std::vector<NodeT *> Vertex;
// Info - Collection of information used during the computation of idoms.
- DenseMap<NodeT*, InfoRec> Info;
+ DenseMap<NodeT *, InfoRec> Info;
void reset() {
- for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
- E = DomTreeNodes.end(); I != E; ++I)
- delete I->second;
DomTreeNodes.clear();
IDoms.clear();
this->Roots.clear();
@@ -229,27 +247,29 @@ protected:
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
- template<class N, class GraphT>
- void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* NewBB) {
+ template <class N, class GraphT>
+ void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
+ typename GraphT::NodeType *NewBB) {
assert(std::distance(GraphT::child_begin(NewBB),
GraphT::child_end(NewBB)) == 1 &&
"NewBB should have a single successor!");
- typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
-
- std::vector<typename GraphT::NodeType*> PredBlocks;
- typedef GraphTraits<Inverse<N> > InvTraits;
- for (typename InvTraits::ChildIteratorType PI =
- InvTraits::child_begin(NewBB),
- PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
+ typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
+
+ std::vector<typename GraphT::NodeType *> PredBlocks;
+ typedef GraphTraits<Inverse<N>> InvTraits;
+ for (typename InvTraits::ChildIteratorType
+ PI = InvTraits::child_begin(NewBB),
+ PE = InvTraits::child_end(NewBB);
+ PI != PE; ++PI)
PredBlocks.push_back(*PI);
assert(!PredBlocks.empty() && "No predblocks?");
bool NewBBDominatesNewBBSucc = true;
- for (typename InvTraits::ChildIteratorType PI =
- InvTraits::child_begin(NewBBSucc),
- E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
+ for (typename InvTraits::ChildIteratorType
+ PI = InvTraits::child_begin(NewBBSucc),
+ E = InvTraits::child_end(NewBBSucc);
+ PI != E; ++PI) {
typename InvTraits::NodeType *ND = *PI;
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
DT.isReachableFromEntry(ND)) {
@@ -292,8 +312,31 @@ protected:
public:
explicit DominatorTreeBase(bool isPostDom)
- : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
- virtual ~DominatorTreeBase() { reset(); }
+ : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
+
+ DominatorTreeBase(DominatorTreeBase &&Arg)
+ : DominatorBase<NodeT>(
+ std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
+ DomTreeNodes(std::move(Arg.DomTreeNodes)),
+ RootNode(std::move(Arg.RootNode)),
+ DFSInfoValid(std::move(Arg.DFSInfoValid)),
+ SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
+ Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
+ Arg.wipe();
+ }
+ DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
+ DominatorBase<NodeT>::operator=(
+ std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
+ DomTreeNodes = std::move(RHS.DomTreeNodes);
+ RootNode = std::move(RHS.RootNode);
+ DFSInfoValid = std::move(RHS.DFSInfoValid);
+ SlowQueries = std::move(RHS.SlowQueries);
+ IDoms = std::move(RHS.IDoms);
+ Vertex = std::move(RHS.Vertex);
+ Info = std::move(RHS.Info);
+ RHS.wipe();
+ return *this;
+ }
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
@@ -304,35 +347,38 @@ public:
return true;
for (typename DomTreeNodeMapType::const_iterator
- I = this->DomTreeNodes.begin(),
- E = this->DomTreeNodes.end(); I != E; ++I) {
+ I = this->DomTreeNodes.begin(),
+ E = this->DomTreeNodes.end();
+ I != E; ++I) {
NodeT *BB = I->first;
- typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
+ typename DomTreeNodeMapType::const_iterator OI =
+ OtherDomTreeNodes.find(BB);
if (OI == OtherDomTreeNodes.end())
return true;
- DomTreeNodeBase<NodeT>* MyNd = I->second;
- DomTreeNodeBase<NodeT>* OtherNd = OI->second;
+ DomTreeNodeBase<NodeT> &MyNd = *I->second;
+ DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
- if (MyNd->compare(OtherNd))
+ if (MyNd.compare(&OtherNd))
return true;
}
return false;
}
- virtual void releaseMemory() { reset(); }
+ void releaseMemory() { reset(); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
- inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
- return DomTreeNodes.lookup(BB);
+ DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
+ auto I = DomTreeNodes.find(BB);
+ if (I != DomTreeNodes.end())
+ return I->second.get();
+ return nullptr;
}
- inline DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const {
- return getNode(BB);
- }
+ DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
@@ -376,21 +422,19 @@ public:
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
- bool isReachableFromEntry(const NodeT* A) const {
+ bool isReachableFromEntry(const NodeT *A) const {
assert(!this->isPostDominator() &&
"This is not implemented for post dominators");
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
}
- inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
- return A;
- }
+ bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
///
- inline bool dominates(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
+ bool dominates(const DomTreeNodeBase<NodeT> *A,
+ const DomTreeNodeBase<NodeT> *B) const {
// A node trivially dominates itself.
if (B == A)
return true;
@@ -473,7 +517,7 @@ public:
}
// Collect NodeA dominators set.
- SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
+ SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
NodeADoms.insert(NodeA);
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
while (IDomA) {
@@ -512,8 +556,8 @@ public:
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
assert(IDomNode && "Not immediate dominator specified for block!");
DFSInfoValid = false;
- return DomTreeNodes[BB] =
- IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
+ return (DomTreeNodes[BB] = IDomNode->addChild(
+ llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
}
/// changeImmediateDominator - This method is used to update the dominator
@@ -538,11 +582,11 @@ public:
assert(Node && "Removing node that isn't in dominator tree.");
assert(Node->getChildren().empty() && "Node is not a leaf node.");
- // Remove node from immediate dominator's children list.
+ // Remove node from immediate dominator's children list.
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
if (IDom) {
- typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
- std::find(IDom->Children.begin(), IDom->Children.end(), Node);
+ typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
+ std::find(IDom->Children.begin(), IDom->Children.end(), Node);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
@@ -550,24 +594,16 @@ public:
}
DomTreeNodes.erase(BB);
- delete Node;
- }
-
- /// removeNode - Removes a node from the dominator tree. Block must not
- /// dominate any other blocks. Invalidates any node pointing to removed
- /// block.
- void removeNode(NodeT *BB) {
- assert(getNode(BB) && "Removing node that isn't in dominator tree.");
- DomTreeNodes.erase(BB);
}
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
- void splitBlock(NodeT* NewBB) {
+ void splitBlock(NodeT *NewBB) {
if (this->IsPostDominators)
- this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
+ this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
+ NewBB);
else
- this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
+ this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
}
/// print - Convert to human readable form
@@ -588,28 +624,27 @@ public:
}
protected:
- template<class GraphT>
- friend typename GraphT::NodeType* Eval(
- DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* V,
- unsigned LastLinked);
+ template <class GraphT>
+ friend typename GraphT::NodeType *
+ Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
+ typename GraphT::NodeType *V, unsigned LastLinked);
- template<class GraphT>
- friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* V,
- unsigned N);
+ template <class GraphT>
+ friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
+ typename GraphT::NodeType *V, unsigned N);
- template<class FuncT, class N>
- friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
- FuncT& F);
+ template <class FuncT, class N>
+ friend void
+ Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void updateDFSNumbers() const {
unsigned DFSNum = 0;
- SmallVector<std::pair<const DomTreeNodeBase<NodeT>*,
- typename DomTreeNodeBase<NodeT>::const_iterator>, 32> WorkStack;
+ SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
+ typename DomTreeNodeBase<NodeT>::const_iterator>,
+ 32> WorkStack;
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
@@ -626,7 +661,7 @@ protected:
while (!WorkStack.empty()) {
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
- WorkStack.back().second;
+ WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
@@ -660,23 +695,18 @@ protected:
// Add a new tree node for this NodeT, and link it as a child of
// IDomNode
- DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
- return this->DomTreeNodes[BB] = IDomNode->addChild(C);
+ return (this->DomTreeNodes[BB] = IDomNode->addChild(
+ llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
}
- inline NodeT *getIDom(NodeT *BB) const {
- return IDoms.lookup(BB);
- }
+ NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
- inline void addRoot(NodeT* BB) {
- this->Roots.push_back(BB);
- }
+ void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
public:
/// recalculate - compute a dominator tree for the given function
- template<class FT>
- void recalculate(FT& F) {
- typedef GraphTraits<FT*> TraitsTy;
+ template <class FT> void recalculate(FT &F) {
+ typedef GraphTraits<FT *> TraitsTy;
reset();
this->Vertex.push_back(nullptr);
@@ -687,27 +717,29 @@ public:
this->IDoms[entry] = nullptr;
this->DomTreeNodes[entry] = nullptr;
- Calculate<FT, NodeT*>(*this, F);
+ Calculate<FT, NodeT *>(*this, F);
} else {
// Initialize the roots list
for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
- E = TraitsTy::nodes_end(&F); I != E; ++I) {
+ E = TraitsTy::nodes_end(&F);
+ I != E; ++I) {
if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
addRoot(I);
- // Prepopulate maps so that we don't get iterator invalidation issues later.
+ // Prepopulate maps so that we don't get iterator invalidation issues
+ // later.
this->IDoms[I] = nullptr;
this->DomTreeNodes[I] = nullptr;
}
- Calculate<FT, Inverse<NodeT*> >(*this, F);
+ Calculate<FT, Inverse<NodeT *>>(*this, F);
}
}
};
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
-template<class NodeT>
+template <class NodeT>
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
if (A == B)
return true;
@@ -718,9 +750,9 @@ bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
-template<class NodeT>
-bool
-DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) const {
+template <class NodeT>
+bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
+ const NodeT *B) const {
if (A == B)
return false;