diff options
Diffstat (limited to 'include/llvm/Support/GenericDomTreeConstruction.h')
-rw-r--r-- | include/llvm/Support/GenericDomTreeConstruction.h | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/include/llvm/Support/GenericDomTreeConstruction.h b/include/llvm/Support/GenericDomTreeConstruction.h new file mode 100644 index 0000000..f6bb8f4 --- /dev/null +++ b/include/llvm/Support/GenericDomTreeConstruction.h @@ -0,0 +1,289 @@ +//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// +/// Generic dominator tree construction - This file provides routines to +/// construct immediate dominator information for a flow-graph based on the +/// algorithm described in this document: +/// +/// A Fast Algorithm for Finding Dominators in a Flowgraph +/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. +/// +/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns +/// out that the theoretically slower O(n*log(n)) implementation is actually +/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs. +/// +//===----------------------------------------------------------------------===// + + +#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H +#define LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H + +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Support/GenericDomTree.h" + +namespace llvm { + +template<class GraphT> +unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType* V, unsigned N) { + // This is more understandable as a recursive algorithm, but we can't use the + // recursive algorithm due to stack depth issues. Keep it here for + // documentation purposes. +#if 0 + InfoRec &VInfo = DT.Info[DT.Roots[i]]; + VInfo.DFSNum = VInfo.Semi = ++N; + VInfo.Label = V; + + Vertex.push_back(V); // Vertex[n] = V; + + for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { + InfoRec &SuccVInfo = DT.Info[*SI]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = V; + N = DTDFSPass(DT, *SI, N); + } + } +#else + bool IsChildOfArtificialExit = (N != 0); + + SmallVector<std::pair<typename GraphT::NodeType*, + typename GraphT::ChildIteratorType>, 32> Worklist; + Worklist.push_back(std::make_pair(V, GraphT::child_begin(V))); + while (!Worklist.empty()) { + typename GraphT::NodeType* BB = Worklist.back().first; + typename GraphT::ChildIteratorType NextSucc = Worklist.back().second; + + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = + DT.Info[BB]; + + // First time we visited this BB? + if (NextSucc == GraphT::child_begin(BB)) { + BBInfo.DFSNum = BBInfo.Semi = ++N; + BBInfo.Label = BB; + + DT.Vertex.push_back(BB); // Vertex[n] = V; + + if (IsChildOfArtificialExit) + BBInfo.Parent = 1; + + IsChildOfArtificialExit = false; + } + + // store the DFS number of the current BB - the reference to BBInfo might + // get invalidated when processing the successors. + unsigned BBDFSNum = BBInfo.DFSNum; + + // If we are done with this block, remove it from the worklist. + if (NextSucc == GraphT::child_end(BB)) { + Worklist.pop_back(); + continue; + } + + // Increment the successor number for the next time we get to it. + ++Worklist.back().second; + + // Visit the successor next, if it isn't already visited. + typename GraphT::NodeType* Succ = *NextSucc; + + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo = + DT.Info[Succ]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = BBDFSNum; + Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ))); + } + } +#endif + return N; +} + +template<class GraphT> +typename GraphT::NodeType* +Eval(DominatorTreeBase<typename GraphT::NodeType>& DT, + typename GraphT::NodeType *VIn, unsigned LastLinked) { + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo = + DT.Info[VIn]; + if (VInInfo.DFSNum < LastLinked) + return VIn; + + SmallVector<typename GraphT::NodeType*, 32> Work; + SmallPtrSet<typename GraphT::NodeType*, 32> Visited; + + if (VInInfo.Parent >= LastLinked) + Work.push_back(VIn); + + while (!Work.empty()) { + typename GraphT::NodeType* V = Work.back(); + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo = + DT.Info[V]; + typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent]; + + // Process Ancestor first + if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) { + Work.push_back(VAncestor); + continue; + } + Work.pop_back(); + + // Update VInfo based on Ancestor info + if (VInfo.Parent < LastLinked) + continue; + + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo = + DT.Info[VAncestor]; + typename GraphT::NodeType* VAncestorLabel = VAInfo.Label; + typename GraphT::NodeType* VLabel = VInfo.Label; + if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) + VInfo.Label = VAncestorLabel; + VInfo.Parent = VAInfo.Parent; + } + + return VInInfo.Label; +} + +template<class FuncT, class NodeT> +void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT, + FuncT& F) { + typedef GraphTraits<NodeT> GraphT; + + unsigned N = 0; + bool MultipleRoots = (DT.Roots.size() > 1); + if (MultipleRoots) { + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = + DT.Info[NULL]; + BBInfo.DFSNum = BBInfo.Semi = ++N; + BBInfo.Label = NULL; + + DT.Vertex.push_back(NULL); // Vertex[n] = V; + } + + // Step #1: Number blocks in depth-first order and initialize variables used + // in later stages of the algorithm. + for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size()); + i != e; ++i) + N = DFSPass<GraphT>(DT, DT.Roots[i], N); + + // it might be that some blocks did not get a DFS number (e.g., blocks of + // infinite loops). In these cases an artificial exit node is required. + MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F)); + + // When naively implemented, the Lengauer-Tarjan algorithm requires a separate + // bucket for each vertex. However, this is unnecessary, because each vertex + // is only placed into a single bucket (that of its semidominator), and each + // vertex's bucket is processed before it is added to any bucket itself. + // + // Instead of using a bucket per vertex, we use a single array Buckets that + // has two purposes. Before the vertex V with preorder number i is processed, + // Buckets[i] stores the index of the first element in V's bucket. After V's + // bucket is processed, Buckets[i] stores the index of the next element in the + // bucket containing V, if any. + SmallVector<unsigned, 32> Buckets; + Buckets.resize(N + 1); + for (unsigned i = 1; i <= N; ++i) + Buckets[i] = i; + + for (unsigned i = N; i >= 2; --i) { + typename GraphT::NodeType* W = DT.Vertex[i]; + typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo = + DT.Info[W]; + + // Step #2: Implicitly define the immediate dominator of vertices + for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) { + typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; + typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1); + DT.IDoms[V] = DT.Info[U].Semi < i ? U : W; + } + + // Step #3: Calculate the semidominators of all vertices + + // initialize the semi dominator to point to the parent node + WInfo.Semi = WInfo.Parent; + typedef GraphTraits<Inverse<NodeT> > InvTraits; + for (typename InvTraits::ChildIteratorType CI = + InvTraits::child_begin(W), + E = InvTraits::child_end(W); CI != E; ++CI) { + typename InvTraits::NodeType *N = *CI; + if (DT.Info.count(N)) { // Only if this predecessor is reachable! + unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi; + if (SemiU < WInfo.Semi) + WInfo.Semi = SemiU; + } + } + + // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is + // necessarily parent(V). In this case, set idom(V) here and avoid placing + // V into a bucket. + if (WInfo.Semi == WInfo.Parent) { + DT.IDoms[W] = DT.Vertex[WInfo.Parent]; + } else { + Buckets[i] = Buckets[WInfo.Semi]; + Buckets[WInfo.Semi] = i; + } + } + + if (N >= 1) { + typename GraphT::NodeType* Root = DT.Vertex[1]; + for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) { + typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; + DT.IDoms[V] = Root; + } + } + + // Step #4: Explicitly define the immediate dominator of each vertex + for (unsigned i = 2; i <= N; ++i) { + typename GraphT::NodeType* W = DT.Vertex[i]; + typename GraphT::NodeType*& WIDom = DT.IDoms[W]; + if (WIDom != DT.Vertex[DT.Info[W].Semi]) + WIDom = DT.IDoms[WIDom]; + } + + if (DT.Roots.empty()) return; + + // Add a node for the root. This node might be the actual root, if there is + // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) + // which postdominates all real exits if there are multiple exit blocks, or + // an infinite loop. + typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0; + + DT.DomTreeNodes[Root] = DT.RootNode = + new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0); + + // Loop over all of the reachable blocks in the function... + for (unsigned i = 2; i <= N; ++i) { + typename GraphT::NodeType* W = DT.Vertex[i]; + + DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W]; + if (BBNode) continue; // Haven't calculated this node yet? + + typename GraphT::NodeType* ImmDom = DT.getIDom(W); + + assert(ImmDom || DT.DomTreeNodes[NULL]); + + // Get or calculate the node for the immediate dominator + DomTreeNodeBase<typename GraphT::NodeType> *IDomNode = + DT.getNodeForBlock(ImmDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + DomTreeNodeBase<typename GraphT::NodeType> *C = + new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode); + DT.DomTreeNodes[W] = IDomNode->addChild(C); + } + + // Free temporary memory used to construct idom's + DT.IDoms.clear(); + DT.Info.clear(); + std::vector<typename GraphT::NodeType*>().swap(DT.Vertex); + + DT.updateDFSNumbers(); +} + +} + +#endif |