aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Transforms/Utils/Local.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Transforms/Utils/Local.h')
-rw-r--r--include/llvm/Transforms/Utils/Local.h34
1 files changed, 17 insertions, 17 deletions
diff --git a/include/llvm/Transforms/Utils/Local.h b/include/llvm/Transforms/Utils/Local.h
index c68fd06..6f64269 100644
--- a/include/llvm/Transforms/Utils/Local.h
+++ b/include/llvm/Transforms/Utils/Local.h
@@ -55,7 +55,7 @@ template<typename T> class SmallVectorImpl;
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
- const TargetLibraryInfo *TLI = 0);
+ const TargetLibraryInfo *TLI = nullptr);
//===----------------------------------------------------------------------===//
// Local dead code elimination.
@@ -64,30 +64,31 @@ bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
-bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0);
+bool isInstructionTriviallyDead(Instruction *I,
+ const TargetLibraryInfo *TLI = nullptr);
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it. If that makes any of its operands
/// trivially dead, delete them too, recursively. Return true if any
/// instructions were deleted.
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
- const TargetLibraryInfo *TLI=0);
+ const TargetLibraryInfo *TLI = nullptr);
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
/// too, recursively. Return true if a change was made.
-bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=0);
-
+bool RecursivelyDeleteDeadPHINode(PHINode *PN,
+ const TargetLibraryInfo *TLI = nullptr);
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
-bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD = 0,
- const TargetLibraryInfo *TLI = 0);
+bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD = nullptr,
+ const TargetLibraryInfo *TLI = nullptr);
//===----------------------------------------------------------------------===//
// Control Flow Graph Restructuring.
@@ -105,16 +106,14 @@ bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD = 0,
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the 'and' to 0.
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- DataLayout *TD = 0);
-
+ DataLayout *TD = nullptr);
/// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
/// predecessor is known to have one successor (BB!). Eliminate the edge
/// between them, moving the instructions in the predecessor into BB. This
/// deletes the predecessor block.
///
-void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P = 0);
-
+void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P = nullptr);
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
@@ -137,13 +136,13 @@ bool EliminateDuplicatePHINodes(BasicBlock *BB);
/// the basic block that was pointed to.
///
bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
- const DataLayout *TD = 0);
+ const DataLayout *TD = nullptr);
/// FlatternCFG - This function is used to flatten a CFG. For
/// example, it uses parallel-and and parallel-or mode to collapse
// if-conditions and merge if-regions with identical statements.
///
-bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = 0);
+bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
/// and if a predecessor branches to us and one of our successors, fold the
@@ -159,22 +158,23 @@ bool FoldBranchToCommonDest(BranchInst *BI);
///
AllocaInst *DemoteRegToStack(Instruction &X,
bool VolatileLoads = false,
- Instruction *AllocaPoint = 0);
+ Instruction *AllocaPoint = nullptr);
/// DemotePHIToStack - This function takes a virtual register computed by a phi
/// node and replaces it with a slot in the stack frame, allocated via alloca.
/// The phi node is deleted and it returns the pointer to the alloca inserted.
-AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = 0);
+AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *TD = 0);
+ const DataLayout *TD = nullptr);
/// getKnownAlignment - Try to infer an alignment for the specified pointer.
-static inline unsigned getKnownAlignment(Value *V, const DataLayout *TD = 0) {
+static inline unsigned getKnownAlignment(Value *V,
+ const DataLayout *TD = nullptr) {
return getOrEnforceKnownAlignment(V, 0, TD);
}