diff options
Diffstat (limited to 'include/llvm')
-rw-r--r-- | include/llvm/Target/Target.td | 499 | ||||
-rw-r--r-- | include/llvm/Target/TargetCallingConv.td | 103 | ||||
-rw-r--r-- | include/llvm/Target/TargetSchedule.td | 72 | ||||
-rw-r--r-- | include/llvm/Target/TargetSelectionDAG.td | 898 |
4 files changed, 1572 insertions, 0 deletions
diff --git a/include/llvm/Target/Target.td b/include/llvm/Target/Target.td new file mode 100644 index 0000000..91e44f2 --- /dev/null +++ b/include/llvm/Target/Target.td @@ -0,0 +1,499 @@ +//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the target-independent interfaces which should be +// implemented by each target which is using a TableGen based code generator. +// +//===----------------------------------------------------------------------===// + +// Include all information about LLVM intrinsics. +include "llvm/Intrinsics.td" + +//===----------------------------------------------------------------------===// +// Register file description - These classes are used to fill in the target +// description classes. + +class RegisterClass; // Forward def + +// Register - You should define one instance of this class for each register +// in the target machine. String n will become the "name" of the register. +class Register<string n> { + string Namespace = ""; + string AsmName = n; + + // SpillSize - If this value is set to a non-zero value, it is the size in + // bits of the spill slot required to hold this register. If this value is + // set to zero, the information is inferred from any register classes the + // register belongs to. + int SpillSize = 0; + + // SpillAlignment - This value is used to specify the alignment required for + // spilling the register. Like SpillSize, this should only be explicitly + // specified if the register is not in a register class. + int SpillAlignment = 0; + + // Aliases - A list of registers that this register overlaps with. A read or + // modification of this register can potentially read or modify the aliased + // registers. + list<Register> Aliases = []; + + // SubRegs - A list of registers that are parts of this register. Note these + // are "immediate" sub-registers and the registers within the list do not + // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], + // not [AX, AH, AL]. + list<Register> SubRegs = []; + + // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. + // These values can be determined by locating the <target>.h file in the + // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The + // order of these names correspond to the enumeration used by gcc. A value of + // -1 indicates that the gcc number is undefined and -2 that register number + // is invalid for this mode/flavour. + list<int> DwarfNumbers = []; +} + +// RegisterWithSubRegs - This can be used to define instances of Register which +// need to specify sub-registers. +// List "subregs" specifies which registers are sub-registers to this one. This +// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. +// This allows the code generator to be careful not to put two values with +// overlapping live ranges into registers which alias. +class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { + let SubRegs = subregs; +} + +// SubRegSet - This can be used to define a specific mapping of registers to +// indices, for use as named subregs of a particular physical register. Each +// register in 'subregs' becomes an addressable subregister at index 'n' of the +// corresponding register in 'regs'. +class SubRegSet<int n, list<Register> regs, list<Register> subregs> { + int index = n; + + list<Register> From = regs; + list<Register> To = subregs; +} + +// RegisterClass - Now that all of the registers are defined, and aliases +// between registers are defined, specify which registers belong to which +// register classes. This also defines the default allocation order of +// registers by register allocators. +// +class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, + list<Register> regList> { + string Namespace = namespace; + + // RegType - Specify the list ValueType of the registers in this register + // class. Note that all registers in a register class must have the same + // ValueTypes. This is a list because some targets permit storing different + // types in same register, for example vector values with 128-bit total size, + // but different count/size of items, like SSE on x86. + // + list<ValueType> RegTypes = regTypes; + + // Size - Specify the spill size in bits of the registers. A default value of + // zero lets tablgen pick an appropriate size. + int Size = 0; + + // Alignment - Specify the alignment required of the registers when they are + // stored or loaded to memory. + // + int Alignment = alignment; + + // CopyCost - This value is used to specify the cost of copying a value + // between two registers in this register class. The default value is one + // meaning it takes a single instruction to perform the copying. A negative + // value means copying is extremely expensive or impossible. + int CopyCost = 1; + + // MemberList - Specify which registers are in this class. If the + // allocation_order_* method are not specified, this also defines the order of + // allocation used by the register allocator. + // + list<Register> MemberList = regList; + + // SubClassList - Specify which register classes correspond to subregisters + // of this class. The order should be by subregister set index. + list<RegisterClass> SubRegClassList = []; + + // MethodProtos/MethodBodies - These members can be used to insert arbitrary + // code into a generated register class. The normal usage of this is to + // overload virtual methods. + code MethodProtos = [{}]; + code MethodBodies = [{}]; +} + + +//===----------------------------------------------------------------------===// +// DwarfRegNum - This class provides a mapping of the llvm register enumeration +// to the register numbering used by gcc and gdb. These values are used by a +// debug information writer (ex. DwarfWriter) to describe where values may be +// located during execution. +class DwarfRegNum<list<int> Numbers> { + // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. + // These values can be determined by locating the <target>.h file in the + // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The + // order of these names correspond to the enumeration used by gcc. A value of + // -1 indicates that the gcc number is undefined and -2 that register number is + // invalid for this mode/flavour. + list<int> DwarfNumbers = Numbers; +} + +//===----------------------------------------------------------------------===// +// Pull in the common support for scheduling +// +include "llvm/Target/TargetSchedule.td" + +class Predicate; // Forward def + +//===----------------------------------------------------------------------===// +// Instruction set description - These classes correspond to the C++ classes in +// the Target/TargetInstrInfo.h file. +// +class Instruction { + string Namespace = ""; + + dag OutOperandList; // An dag containing the MI def operand list. + dag InOperandList; // An dag containing the MI use operand list. + string AsmString = ""; // The .s format to print the instruction with. + + // Pattern - Set to the DAG pattern for this instruction, if we know of one, + // otherwise, uninitialized. + list<dag> Pattern; + + // The follow state will eventually be inferred automatically from the + // instruction pattern. + + list<Register> Uses = []; // Default to using no non-operand registers + list<Register> Defs = []; // Default to modifying no non-operand registers + + // Predicates - List of predicates which will be turned into isel matching + // code. + list<Predicate> Predicates = []; + + // Code size. + int CodeSize = 0; + + // Added complexity passed onto matching pattern. + int AddedComplexity = 0; + + // These bits capture information about the high-level semantics of the + // instruction. + bit isReturn = 0; // Is this instruction a return instruction? + bit isBranch = 0; // Is this instruction a branch instruction? + bit isIndirectBranch = 0; // Is this instruction an indirect branch? + bit isBarrier = 0; // Can control flow fall through this instruction? + bit isCall = 0; // Is this instruction a call instruction? + bit isSimpleLoad = 0; // Is this just a load instruction? + bit mayLoad = 0; // Is it possible for this inst to read memory? + bit mayStore = 0; // Is it possible for this inst to write memory? + bit isTwoAddress = 0; // Is this a two address instruction? + bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote? + bit isCommutable = 0; // Is this 3 operand instruction commutable? + bit isTerminator = 0; // Is this part of the terminator for a basic block? + bit isReMaterializable = 0; // Is this instruction re-materializable? + bit isPredicable = 0; // Is this instruction predicable? + bit hasDelaySlot = 0; // Does this instruction have an delay slot? + bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help. + bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains? + bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction? + bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction. + + // Side effect flags - When set, the flags have these meanings: + // + // hasSideEffects - The instruction has side effects that are not + // captured by any operands of the instruction or other flags. + // + // mayHaveSideEffects - Some instances of the instruction can have side + // effects. The virtual method "isReallySideEffectFree" is called to + // determine this. Load instructions are an example of where this is + // useful. In general, loads always have side effects. However, loads from + // constant pools don't. Individual back ends make this determination. + // + // neverHasSideEffects - Set on an instruction with no pattern if it has no + // side effects. + bit hasSideEffects = 0; + bit mayHaveSideEffects = 0; + bit neverHasSideEffects = 0; + + InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. + + string Constraints = ""; // OperandConstraint, e.g. $src = $dst. + + /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not + /// be encoded into the output machineinstr. + string DisableEncoding = ""; +} + +/// Predicates - These are extra conditionals which are turned into instruction +/// selector matching code. Currently each predicate is just a string. +class Predicate<string cond> { + string CondString = cond; +} + +/// NoHonorSignDependentRounding - This predicate is true if support for +/// sign-dependent-rounding is not enabled. +def NoHonorSignDependentRounding + : Predicate<"!HonorSignDependentRoundingFPMath()">; + +class Requires<list<Predicate> preds> { + list<Predicate> Predicates = preds; +} + +/// ops definition - This is just a simple marker used to identify the operands +/// list for an instruction. outs and ins are identical both syntatically and +/// semantically, they are used to define def operands and use operands to +/// improve readibility. This should be used like this: +/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. +def ops; +def outs; +def ins; + +/// variable_ops definition - Mark this instruction as taking a variable number +/// of operands. +def variable_ops; + +/// ptr_rc definition - Mark this operand as being a pointer value whose +/// register class is resolved dynamically via a callback to TargetInstrInfo. +/// FIXME: We should probably change this to a class which contain a list of +/// flags. But currently we have but one flag. +def ptr_rc; + +/// unknown definition - Mark this operand as being of unknown type, causing +/// it to be resolved by inference in the context it is used. +def unknown; + +/// Operand Types - These provide the built-in operand types that may be used +/// by a target. Targets can optionally provide their own operand types as +/// needed, though this should not be needed for RISC targets. +class Operand<ValueType ty> { + ValueType Type = ty; + string PrintMethod = "printOperand"; + dag MIOperandInfo = (ops); +} + +def i1imm : Operand<i1>; +def i8imm : Operand<i8>; +def i16imm : Operand<i16>; +def i32imm : Operand<i32>; +def i64imm : Operand<i64>; + +def f32imm : Operand<f32>; +def f64imm : Operand<f64>; + +/// zero_reg definition - Special node to stand for the zero register. +/// +def zero_reg; + +/// PredicateOperand - This can be used to define a predicate operand for an +/// instruction. OpTypes specifies the MIOperandInfo for the operand, and +/// AlwaysVal specifies the value of this predicate when set to "always +/// execute". +class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> + : Operand<ty> { + let MIOperandInfo = OpTypes; + dag DefaultOps = AlwaysVal; +} + +/// OptionalDefOperand - This is used to define a optional definition operand +/// for an instruction. DefaultOps is the register the operand represents if none +/// is supplied, e.g. zero_reg. +class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> + : Operand<ty> { + let MIOperandInfo = OpTypes; + dag DefaultOps = defaultops; +} + + +// InstrInfo - This class should only be instantiated once to provide parameters +// which are global to the the target machine. +// +class InstrInfo { + // If the target wants to associate some target-specific information with each + // instruction, it should provide these two lists to indicate how to assemble + // the target specific information into the 32 bits available. + // + list<string> TSFlagsFields = []; + list<int> TSFlagsShifts = []; + + // Target can specify its instructions in either big or little-endian formats. + // For instance, while both Sparc and PowerPC are big-endian platforms, the + // Sparc manual specifies its instructions in the format [31..0] (big), while + // PowerPC specifies them using the format [0..31] (little). + bit isLittleEndianEncoding = 0; +} + +// Standard Instructions. +def PHI : Instruction { + let OutOperandList = (ops); + let InOperandList = (ops variable_ops); + let AsmString = "PHINODE"; + let Namespace = "TargetInstrInfo"; +} +def INLINEASM : Instruction { + let OutOperandList = (ops); + let InOperandList = (ops variable_ops); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; +} +def DBG_LABEL : Instruction { + let OutOperandList = (ops); + let InOperandList = (ops i32imm:$id); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let hasCtrlDep = 1; +} +def EH_LABEL : Instruction { + let OutOperandList = (ops); + let InOperandList = (ops i32imm:$id); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let hasCtrlDep = 1; +} +def GC_LABEL : Instruction { + let OutOperandList = (ops); + let InOperandList = (ops i32imm:$id); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let hasCtrlDep = 1; +} +def DECLARE : Instruction { + let OutOperandList = (ops); + let InOperandList = (ops variable_ops); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let hasCtrlDep = 1; +} +def EXTRACT_SUBREG : Instruction { + let OutOperandList = (ops unknown:$dst); + let InOperandList = (ops unknown:$supersrc, i32imm:$subidx); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let neverHasSideEffects = 1; +} +def INSERT_SUBREG : Instruction { + let OutOperandList = (ops unknown:$dst); + let InOperandList = (ops unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let neverHasSideEffects = 1; + let Constraints = "$supersrc = $dst"; +} +def IMPLICIT_DEF : Instruction { + let OutOperandList = (ops unknown:$dst); + let InOperandList = (ops); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let neverHasSideEffects = 1; + let isReMaterializable = 1; + let isAsCheapAsAMove = 1; +} +def SUBREG_TO_REG : Instruction { + let OutOperandList = (ops unknown:$dst); + let InOperandList = (ops unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); + let AsmString = ""; + let Namespace = "TargetInstrInfo"; + let neverHasSideEffects = 1; +} + +//===----------------------------------------------------------------------===// +// AsmWriter - This class can be implemented by targets that need to customize +// the format of the .s file writer. +// +// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax +// on X86 for example). +// +class AsmWriter { + // AsmWriterClassName - This specifies the suffix to use for the asmwriter + // class. Generated AsmWriter classes are always prefixed with the target + // name. + string AsmWriterClassName = "AsmPrinter"; + + // InstFormatName - AsmWriters can specify the name of the format string to + // print instructions with. + string InstFormatName = "AsmString"; + + // Variant - AsmWriters can be of multiple different variants. Variants are + // used to support targets that need to emit assembly code in ways that are + // mostly the same for different targets, but have minor differences in + // syntax. If the asmstring contains {|} characters in them, this integer + // will specify which alternative to use. For example "{x|y|z}" with Variant + // == 1, will expand to "y". + int Variant = 0; +} +def DefaultAsmWriter : AsmWriter; + + +//===----------------------------------------------------------------------===// +// Target - This class contains the "global" target information +// +class Target { + // InstructionSet - Instruction set description for this target. + InstrInfo InstructionSet; + + // AssemblyWriters - The AsmWriter instances available for this target. + list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; +} + +//===----------------------------------------------------------------------===// +// SubtargetFeature - A characteristic of the chip set. +// +class SubtargetFeature<string n, string a, string v, string d, + list<SubtargetFeature> i = []> { + // Name - Feature name. Used by command line (-mattr=) to determine the + // appropriate target chip. + // + string Name = n; + + // Attribute - Attribute to be set by feature. + // + string Attribute = a; + + // Value - Value the attribute to be set to by feature. + // + string Value = v; + + // Desc - Feature description. Used by command line (-mattr=) to display help + // information. + // + string Desc = d; + + // Implies - Features that this feature implies are present. If one of those + // features isn't set, then this one shouldn't be set either. + // + list<SubtargetFeature> Implies = i; +} + +//===----------------------------------------------------------------------===// +// Processor chip sets - These values represent each of the chip sets supported +// by the scheduler. Each Processor definition requires corresponding +// instruction itineraries. +// +class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> { + // Name - Chip set name. Used by command line (-mcpu=) to determine the + // appropriate target chip. + // + string Name = n; + + // ProcItin - The scheduling information for the target processor. + // + ProcessorItineraries ProcItin = pi; + + // Features - list of + list<SubtargetFeature> Features = f; +} + +//===----------------------------------------------------------------------===// +// Pull in the common support for calling conventions. +// +include "llvm/Target/TargetCallingConv.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for DAG isel generation. +// +include "llvm/Target/TargetSelectionDAG.td" diff --git a/include/llvm/Target/TargetCallingConv.td b/include/llvm/Target/TargetCallingConv.td new file mode 100644 index 0000000..908e16e --- /dev/null +++ b/include/llvm/Target/TargetCallingConv.td @@ -0,0 +1,103 @@ +//===- TargetCallingConv.td - Target Calling Conventions ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the target-independent interfaces with which targets +// describe their calling conventions. +// +//===----------------------------------------------------------------------===// + +class CCAction; +class CallingConv; + +/// CCPredicateAction - Instances of this class check some predicate, then +/// delegate to another action if the predicate is true. +class CCPredicateAction<CCAction A> : CCAction { + CCAction SubAction = A; +} + +/// CCIfType - If the current argument is one of the specified types, apply +/// Action A. +class CCIfType<list<ValueType> vts, CCAction A> : CCPredicateAction<A> { + list<ValueType> VTs = vts; +} + +/// CCIf - If the predicate matches, apply A. +class CCIf<string predicate, CCAction A> : CCPredicateAction<A> { + string Predicate = predicate; +} + +/// CCIfByVal - If the current argument has ByVal parameter attribute, apply +/// Action A. +class CCIfByVal<CCAction A> : CCIf<"ArgFlags.isByVal()", A> { +} + +/// CCIfCC - Match of the current calling convention is 'CC'. +class CCIfCC<string CC, CCAction A> + : CCIf<!strconcat("State.getCallingConv() == ", CC), A> {} + +/// CCIfInReg - If this argument is marked with the 'inreg' attribute, apply +/// the specified action. +class CCIfInReg<CCAction A> : CCIf<"ArgFlags.isInReg()", A> {} + +/// CCIfNest - If this argument is marked with the 'nest' attribute, apply +/// the specified action. +class CCIfNest<CCAction A> : CCIf<"ArgFlags.isNest()", A> {} + +/// CCIfNotVarArg - If the current function is not vararg - apply the action +class CCIfNotVarArg<CCAction A> : CCIf<"!State.isVarArg()", A> {} + +/// CCAssignToReg - This action matches if there is a register in the specified +/// list that is still available. If so, it assigns the value to the first +/// available register and succeeds. +class CCAssignToReg<list<Register> regList> : CCAction { + list<Register> RegList = regList; +} + +/// CCAssignToRegWithShadow - Same as CCAssignToReg, but with list of registers +/// which became shadowed, when some register is used. +class CCAssignToRegWithShadow<list<Register> regList, + list<Register> shadowList> : CCAction { + list<Register> RegList = regList; + list<Register> ShadowRegList = shadowList; +} + +/// CCAssignToStack - This action always matches: it assigns the value to a +/// stack slot of the specified size and alignment on the stack. If size is +/// zero then the ABI size is used; if align is zero then the ABI alignment +/// is used - these may depend on the target or subtarget. +class CCAssignToStack<int size, int align> : CCAction { + int Size = size; + int Align = align; +} + +/// CCPassByVal - This action always matches: it assigns the value to a stack +/// slot to implement ByVal aggregate parameter passing. Size and alignment +/// specify the minimum size and alignment for the stack slot. +class CCPassByVal<int size, int align> : CCAction { + int Size = size; + int Align = align; +} + +/// CCPromoteToType - If applied, this promotes the specified current value to +/// the specified type. +class CCPromoteToType<ValueType destTy> : CCAction { + ValueType DestTy = destTy; +} + +/// CCDelegateTo - This action invokes the specified sub-calling-convention. It +/// is successful if the specified CC matches. +class CCDelegateTo<CallingConv cc> : CCAction { + CallingConv CC = cc; +} + +/// CallingConv - An instance of this is used to define each calling convention +/// that the target supports. +class CallingConv<list<CCAction> actions> { + list<CCAction> Actions = actions; +} diff --git a/include/llvm/Target/TargetSchedule.td b/include/llvm/Target/TargetSchedule.td new file mode 100644 index 0000000..38461c5 --- /dev/null +++ b/include/llvm/Target/TargetSchedule.td @@ -0,0 +1,72 @@ +//===- TargetSchedule.td - Target Independent Scheduling ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the target-independent scheduling interfaces which should +// be implemented by each target which is using TableGen based scheduling. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Processor functional unit - These values represent the function units +// available across all chip sets for the target. Eg., IntUnit, FPUnit, ... +// These may be independent values for each chip set or may be shared across +// all chip sets of the target. Each functional unit is treated as a resource +// during scheduling and has an affect instruction order based on availability +// during a time interval. +// +class FuncUnit; + +//===----------------------------------------------------------------------===// +// Instruction stage - These values represent a step in the execution of an +// instruction. The latency represents the number of discrete time slots used +// need to complete the stage. Units represent the choice of functional units +// that can be used to complete the stage. Eg. IntUnit1, IntUnit2. +// +class InstrStage<int cycles, list<FuncUnit> units> { + int Cycles = cycles; // length of stage in machine cycles + list<FuncUnit> Units = units; // choice of functional units +} + +//===----------------------------------------------------------------------===// +// Instruction itinerary - An itinerary represents a sequential series of steps +// required to complete an instruction. Itineraries are represented as lists of +// instruction stages. +// + +//===----------------------------------------------------------------------===// +// Instruction itinerary classes - These values represent 'named' instruction +// itinerary. Using named itineraries simplifies managing groups of +// instructions across chip sets. An instruction uses the same itinerary class +// across all chip sets. Thus a new chip set can be added without modifying +// instruction information. +// +class InstrItinClass; +def NoItinerary : InstrItinClass; + +//===----------------------------------------------------------------------===// +// Instruction itinerary data - These values provide a runtime map of an +// instruction itinerary class (name) to it's itinerary data. +// +class InstrItinData<InstrItinClass Class, list<InstrStage> stages> { + InstrItinClass TheClass = Class; + list<InstrStage> Stages = stages; +} + +//===----------------------------------------------------------------------===// +// Processor itineraries - These values represent the set of all itinerary +// classes for a given chip set. +// +class ProcessorItineraries<list<InstrItinData> iid> { + list<InstrItinData> IID = iid; +} + +// NoItineraries - A marker that can be used by processors without schedule +// info. +def NoItineraries : ProcessorItineraries<[]>; + diff --git a/include/llvm/Target/TargetSelectionDAG.td b/include/llvm/Target/TargetSelectionDAG.td new file mode 100644 index 0000000..c936f7a --- /dev/null +++ b/include/llvm/Target/TargetSelectionDAG.td @@ -0,0 +1,898 @@ +//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the target-independent interfaces used by SelectionDAG +// instruction selection generators. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Selection DAG Type Constraint definitions. +// +// Note that the semantics of these constraints are hard coded into tblgen. To +// modify or add constraints, you have to hack tblgen. +// + +class SDTypeConstraint<int opnum> { + int OperandNum = opnum; +} + +// SDTCisVT - The specified operand has exactly this VT. +class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { + ValueType VT = vt; +} + +class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>; + +// SDTCisInt - The specified operand is has integer type. +class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>; + +// SDTCisFP - The specified operand is has floating point type. +class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>; + +// SDTCisSameAs - The two specified operands have identical types. +class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { + int OtherOperandNum = OtherOp; +} + +// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is +// smaller than the 'Other' operand. +class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { + int OtherOperandNum = OtherOp; +} + +class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{ + int BigOperandNum = BigOp; +} + +/// SDTCisIntVectorOfSameSize - This indicates that ThisOp and OtherOp are +/// vector types, and that ThisOp is the result of +/// MVT::getIntVectorWithNumElements with the number of elements +/// that ThisOp has. +class SDTCisIntVectorOfSameSize<int ThisOp, int OtherOp> + : SDTypeConstraint<ThisOp> { + int OtherOpNum = OtherOp; +} + +/// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same +/// type as the element type of OtherOp, which is a vector type. +class SDTCisEltOfVec<int ThisOp, int OtherOp> + : SDTypeConstraint<ThisOp> { + int OtherOpNum = OtherOp; +} + +//===----------------------------------------------------------------------===// +// Selection DAG Type Profile definitions. +// +// These use the constraints defined above to describe the type requirements of +// the various nodes. These are not hard coded into tblgen, allowing targets to +// add their own if needed. +// + +// SDTypeProfile - This profile describes the type requirements of a Selection +// DAG node. +class SDTypeProfile<int numresults, int numoperands, + list<SDTypeConstraint> constraints> { + int NumResults = numresults; + int NumOperands = numoperands; + list<SDTypeConstraint> Constraints = constraints; +} + +// Builtin profiles. +def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. +def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'. +def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'. +def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'. +def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'. +def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert. + +def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. + SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> +]>; +def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl + SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2> +]>; +def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. + SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> +]>; +def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign. + SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2> +]>; +def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc. + SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0> +]>; +def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz + SDTCisSameAs<0, 1>, SDTCisInt<0> +]>; +def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext + SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0> +]>; +def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc + SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1> +]>; +def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc + SDTCisSameAs<0, 1>, SDTCisFP<0> +]>; +def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fround + SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1> +]>; +def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fextend + SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0> +]>; +def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp + SDTCisFP<0>, SDTCisInt<1> +]>; +def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int + SDTCisInt<0>, SDTCisFP<1> +]>; +def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg + SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, + SDTCisVTSmallerThanOp<2, 1> +]>; + +def SDTSetCC : SDTypeProfile<1, 3, [ // setcc + SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> +]>; + +def SDTSelect : SDTypeProfile<1, 3, [ // select + SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3> +]>; + +def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc + SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>, + SDTCisVT<5, OtherVT> +]>; + +def SDTBr : SDTypeProfile<0, 1, [ // br + SDTCisVT<0, OtherVT> +]>; + +def SDTBrcond : SDTypeProfile<0, 2, [ // brcond + SDTCisInt<0>, SDTCisVT<1, OtherVT> +]>; + +def SDTBrind : SDTypeProfile<0, 1, [ // brind + SDTCisPtrTy<0> +]>; + +def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap + +def SDTLoad : SDTypeProfile<1, 1, [ // load + SDTCisPtrTy<1> +]>; + +def SDTStore : SDTypeProfile<0, 2, [ // store + SDTCisPtrTy<1> +]>; + +def SDTIStore : SDTypeProfile<1, 3, [ // indexed store + SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3> +]>; + +def SDTVecShuffle : SDTypeProfile<1, 3, [ + SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisIntVectorOfSameSize<3, 0> +]>; +def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract + SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2> +]>; +def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert + SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> +]>; + +def STDPrefetch : SDTypeProfile<0, 3, [ // prefetch + SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisInt<1> +]>; + +def STDMemBarrier : SDTypeProfile<0, 5, [ // memory barier + SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>, + SDTCisInt<0> +]>; +def STDAtomic3 : SDTypeProfile<1, 3, [ + SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1> +]>; +def STDAtomic2 : SDTypeProfile<1, 2, [ + SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1> +]>; + +def SDTConvertOp : SDTypeProfile<1, 5, [ //cvtss, su, us, uu, ff, fs, fu, sf, su + SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>, SDTCisPtrTy<4>, SDTCisPtrTy<5> +]>; + +class SDCallSeqStart<list<SDTypeConstraint> constraints> : + SDTypeProfile<0, 1, constraints>; +class SDCallSeqEnd<list<SDTypeConstraint> constraints> : + SDTypeProfile<0, 2, constraints>; + +//===----------------------------------------------------------------------===// +// Selection DAG Node Properties. +// +// Note: These are hard coded into tblgen. +// +class SDNodeProperty; +def SDNPCommutative : SDNodeProperty; // X op Y == Y op X +def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z) +def SDNPHasChain : SDNodeProperty; // R/W chain operand and result +def SDNPOutFlag : SDNodeProperty; // Write a flag result +def SDNPInFlag : SDNodeProperty; // Read a flag operand +def SDNPOptInFlag : SDNodeProperty; // Optionally read a flag operand +def SDNPMayStore : SDNodeProperty; // May write to memory, sets 'mayStore'. +def SDNPMayLoad : SDNodeProperty; // May read memory, sets 'mayLoad'. +def SDNPSideEffect : SDNodeProperty; // Sets 'HasUnmodelledSideEffects'. +def SDNPMemOperand : SDNodeProperty; // Touches memory, has assoc MemOperand + +//===----------------------------------------------------------------------===// +// Selection DAG Node definitions. +// +class SDNode<string opcode, SDTypeProfile typeprof, + list<SDNodeProperty> props = [], string sdclass = "SDNode"> { + string Opcode = opcode; + string SDClass = sdclass; + list<SDNodeProperty> Properties = props; + SDTypeProfile TypeProfile = typeprof; +} + +def set; +def implicit; +def parallel; +def node; +def srcvalue; + +def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">; +def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">; +def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">; +def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">; +def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">; +def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">; +def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>; +def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [], + "GlobalAddressSDNode">; +def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [], + "GlobalAddressSDNode">; +def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [], + "GlobalAddressSDNode">; +def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [], + "GlobalAddressSDNode">; +def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [], + "ConstantPoolSDNode">; +def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [], + "ConstantPoolSDNode">; +def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [], + "JumpTableSDNode">; +def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [], + "JumpTableSDNode">; +def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [], + "FrameIndexSDNode">; +def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [], + "FrameIndexSDNode">; +def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [], + "ExternalSymbolSDNode">; +def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [], + "ExternalSymbolSDNode">; + +def add : SDNode<"ISD::ADD" , SDTIntBinOp , + [SDNPCommutative, SDNPAssociative]>; +def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; +def mul : SDNode<"ISD::MUL" , SDTIntBinOp, + [SDNPCommutative, SDNPAssociative]>; +def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; +def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; +def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; +def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; +def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; +def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; +def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>; +def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>; +def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>; +def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>; +def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>; +def and : SDNode<"ISD::AND" , SDTIntBinOp, + [SDNPCommutative, SDNPAssociative]>; +def or : SDNode<"ISD::OR" , SDTIntBinOp, + [SDNPCommutative, SDNPAssociative]>; +def xor : SDNode<"ISD::XOR" , SDTIntBinOp, + [SDNPCommutative, SDNPAssociative]>; +def addc : SDNode<"ISD::ADDC" , SDTIntBinOp, + [SDNPCommutative, SDNPOutFlag]>; +def adde : SDNode<"ISD::ADDE" , SDTIntBinOp, + [SDNPCommutative, SDNPOutFlag, SDNPInFlag]>; +def subc : SDNode<"ISD::SUBC" , SDTIntBinOp, + [SDNPOutFlag]>; +def sube : SDNode<"ISD::SUBE" , SDTIntBinOp, + [SDNPOutFlag, SDNPInFlag]>; + +def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; +def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>; +def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>; +def cttz : SDNode<"ISD::CTTZ" , SDTIntUnaryOp>; +def ctpop : SDNode<"ISD::CTPOP" , SDTIntUnaryOp>; +def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>; +def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>; +def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>; +def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>; +def bitconvert : SDNode<"ISD::BIT_CONVERT", SDTUnaryOp>; +def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>; +def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>; + + +def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; +def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; +def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; +def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; +def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; +def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; +def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; +def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; +def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>; +def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>; +def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>; +def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>; +def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>; +def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>; +def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>; + +def fround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>; +def fextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>; +def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>; + +def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>; +def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>; +def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>; +def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>; + +def setcc : SDNode<"ISD::SETCC" , SDTSetCC>; +def select : SDNode<"ISD::SELECT" , SDTSelect>; +def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>; +def vsetcc : SDNode<"ISD::VSETCC" , SDTSetCC>; + +def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>; +def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>; +def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>; +def ret : SDNode<"ISD::RET" , SDTNone, [SDNPHasChain]>; +def trap : SDNode<"ISD::TRAP" , SDTNone, + [SDNPHasChain, SDNPSideEffect]>; + +def prefetch : SDNode<"ISD::PREFETCH" , STDPrefetch, + [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>; + +def membarrier : SDNode<"ISD::MEMBARRIER" , STDMemBarrier, + [SDNPHasChain, SDNPSideEffect]>; + +def atomic_cmp_swap_8 : SDNode<"ISD::ATOMIC_CMP_SWAP_8" , STDAtomic3, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_add_8 : SDNode<"ISD::ATOMIC_LOAD_ADD_8" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_swap_8 : SDNode<"ISD::ATOMIC_SWAP_8", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_sub_8 : SDNode<"ISD::ATOMIC_LOAD_SUB_8" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_and_8 : SDNode<"ISD::ATOMIC_LOAD_AND_8" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_or_8 : SDNode<"ISD::ATOMIC_LOAD_OR_8" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_xor_8 : SDNode<"ISD::ATOMIC_LOAD_XOR_8" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_nand_8: SDNode<"ISD::ATOMIC_LOAD_NAND_8", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_min_8 : SDNode<"ISD::ATOMIC_LOAD_MIN_8", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_max_8 : SDNode<"ISD::ATOMIC_LOAD_MAX_8", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umin_8 : SDNode<"ISD::ATOMIC_LOAD_UMIN_8", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umax_8 : SDNode<"ISD::ATOMIC_LOAD_UMAX_8", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_cmp_swap_16 : SDNode<"ISD::ATOMIC_CMP_SWAP_16" , STDAtomic3, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_add_16 : SDNode<"ISD::ATOMIC_LOAD_ADD_16" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_swap_16 : SDNode<"ISD::ATOMIC_SWAP_16", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_sub_16 : SDNode<"ISD::ATOMIC_LOAD_SUB_16" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_and_16 : SDNode<"ISD::ATOMIC_LOAD_AND_16" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_or_16 : SDNode<"ISD::ATOMIC_LOAD_OR_16" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_xor_16 : SDNode<"ISD::ATOMIC_LOAD_XOR_16" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_nand_16: SDNode<"ISD::ATOMIC_LOAD_NAND_16", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_min_16 : SDNode<"ISD::ATOMIC_LOAD_MIN_16", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_max_16 : SDNode<"ISD::ATOMIC_LOAD_MAX_16", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umin_16 : SDNode<"ISD::ATOMIC_LOAD_UMIN_16", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umax_16 : SDNode<"ISD::ATOMIC_LOAD_UMAX_16", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_cmp_swap_32 : SDNode<"ISD::ATOMIC_CMP_SWAP_32" , STDAtomic3, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_add_32 : SDNode<"ISD::ATOMIC_LOAD_ADD_32" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_swap_32 : SDNode<"ISD::ATOMIC_SWAP_32", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_sub_32 : SDNode<"ISD::ATOMIC_LOAD_SUB_32" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_and_32 : SDNode<"ISD::ATOMIC_LOAD_AND_32" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_or_32 : SDNode<"ISD::ATOMIC_LOAD_OR_32" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_xor_32 : SDNode<"ISD::ATOMIC_LOAD_XOR_32" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_nand_32: SDNode<"ISD::ATOMIC_LOAD_NAND_32", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_min_32 : SDNode<"ISD::ATOMIC_LOAD_MIN_32", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_max_32 : SDNode<"ISD::ATOMIC_LOAD_MAX_32", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umin_32 : SDNode<"ISD::ATOMIC_LOAD_UMIN_32", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umax_32 : SDNode<"ISD::ATOMIC_LOAD_UMAX_32", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_cmp_swap_64 : SDNode<"ISD::ATOMIC_CMP_SWAP_64" , STDAtomic3, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_add_64 : SDNode<"ISD::ATOMIC_LOAD_ADD_64" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_swap_64 : SDNode<"ISD::ATOMIC_SWAP_64", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_sub_64 : SDNode<"ISD::ATOMIC_LOAD_SUB_64" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_and_64 : SDNode<"ISD::ATOMIC_LOAD_AND_64" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_or_64 : SDNode<"ISD::ATOMIC_LOAD_OR_64" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_xor_64 : SDNode<"ISD::ATOMIC_LOAD_XOR_64" , STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_nand_64: SDNode<"ISD::ATOMIC_LOAD_NAND_64", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_min_64 : SDNode<"ISD::ATOMIC_LOAD_MIN_64", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_max_64 : SDNode<"ISD::ATOMIC_LOAD_MAX_64", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umin_64 : SDNode<"ISD::ATOMIC_LOAD_UMIN_64", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; +def atomic_load_umax_64 : SDNode<"ISD::ATOMIC_LOAD_UMAX_64", STDAtomic2, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; + +// Do not use ld, st directly. Use load, extload, sextload, zextload, store, +// and truncst (see below). +def ld : SDNode<"ISD::LOAD" , SDTLoad, + [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; +def st : SDNode<"ISD::STORE" , SDTStore, + [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; +def ist : SDNode<"ISD::STORE" , SDTIStore, + [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; + +def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>; +def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>; +def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>, + []>; +def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT", + SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>; +def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT", + SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; + +def extract_subreg : SDNode<"ISD::EXTRACT_SUBREG", + SDTypeProfile<1, 2, []>>; +def insert_subreg : SDNode<"ISD::INSERT_SUBREG", + SDTypeProfile<1, 3, []>>; + +// Nodes for intrinsics, you should use the intrinsic itself and let tblgen use +// these internally. Don't reference these directly. +def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID", + SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, + [SDNPHasChain]>; +def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN", + SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, + [SDNPHasChain]>; +def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN", + SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>; + +// Do not use cvt directly. Use cvt forms below +def cvt : SDNode<"ISD::CONVERT_RNDSAT", SDTConvertOp>; + +//===----------------------------------------------------------------------===// +// Selection DAG Condition Codes + +class CondCode; // ISD::CondCode enums +def SETOEQ : CondCode; def SETOGT : CondCode; +def SETOGE : CondCode; def SETOLT : CondCode; def SETOLE : CondCode; +def SETONE : CondCode; def SETO : CondCode; def SETUO : CondCode; +def SETUEQ : CondCode; def SETUGT : CondCode; def SETUGE : CondCode; +def SETULT : CondCode; def SETULE : CondCode; def SETUNE : CondCode; + +def SETEQ : CondCode; def SETGT : CondCode; def SETGE : CondCode; +def SETLT : CondCode; def SETLE : CondCode; def SETNE : CondCode; + + +//===----------------------------------------------------------------------===// +// Selection DAG Node Transformation Functions. +// +// This mechanism allows targets to manipulate nodes in the output DAG once a +// match has been formed. This is typically used to manipulate immediate +// values. +// +class SDNodeXForm<SDNode opc, code xformFunction> { + SDNode Opcode = opc; + code XFormFunction = xformFunction; +} + +def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>; + + +//===----------------------------------------------------------------------===// +// Selection DAG Pattern Fragments. +// +// Pattern fragments are reusable chunks of dags that match specific things. +// They can take arguments and have C++ predicates that control whether they +// match. They are intended to make the patterns for common instructions more +// compact and readable. +// + +/// PatFrag - Represents a pattern fragment. This can match something on the +/// DAG, frame a single node to multiply nested other fragments. +/// +class PatFrag<dag ops, dag frag, code pred = [{}], + SDNodeXForm xform = NOOP_SDNodeXForm> { + dag Operands = ops; + dag Fragment = frag; + code Predicate = pred; + SDNodeXForm OperandTransform = xform; +} + +// PatLeaf's are pattern fragments that have no operands. This is just a helper +// to define immediates and other common things concisely. +class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> + : PatFrag<(ops), frag, pred, xform>; + +// Leaf fragments. + +def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>; +def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>; + +def immAllOnes : PatLeaf<(imm), [{ return N->isAllOnesValue(); }]>; +def immAllOnesV: PatLeaf<(build_vector), [{ + return ISD::isBuildVectorAllOnes(N); +}]>; +def immAllOnesV_bc: PatLeaf<(bitconvert), [{ + return ISD::isBuildVectorAllOnes(N); +}]>; +def immAllZerosV: PatLeaf<(build_vector), [{ + return ISD::isBuildVectorAllZeros(N); +}]>; +def immAllZerosV_bc: PatLeaf<(bitconvert), [{ + return ISD::isBuildVectorAllZeros(N); +}]>; + + + +// Other helper fragments. +def not : PatFrag<(ops node:$in), (xor node:$in, immAllOnes)>; +def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>; +def vnot_conv : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV_bc)>; +def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>; + +// load fragments. +def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ + return cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; +}]>; +def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ + return cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; +}]>; + +// extending load fragments. +def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ + return cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; +}]>; +def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ + return cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; +}]>; +def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ + return cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; +}]>; + +def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i1; +}]>; +def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8; +}]>; +def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16; +}]>; +def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32; +}]>; +def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::f32; +}]>; +def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::f64; +}]>; + +def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i1; +}]>; +def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8; +}]>; +def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16; +}]>; +def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32; +}]>; + +def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i1; +}]>; +def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8; +}]>; +def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16; +}]>; +def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ + return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32; +}]>; + +// store fragments. +def unindexedstore : PatFrag<(ops node:$val, node:$ptr), + (st node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; +}]>; +def store : PatFrag<(ops node:$val, node:$ptr), + (unindexedstore node:$val, node:$ptr), [{ + return !cast<StoreSDNode>(N)->isTruncatingStore(); +}]>; + +// truncstore fragments. +def truncstore : PatFrag<(ops node:$val, node:$ptr), + (unindexedstore node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->isTruncatingStore(); +}]>; +def truncstorei8 : PatFrag<(ops node:$val, node:$ptr), + (truncstore node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8; +}]>; +def truncstorei16 : PatFrag<(ops node:$val, node:$ptr), + (truncstore node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16; +}]>; +def truncstorei32 : PatFrag<(ops node:$val, node:$ptr), + (truncstore node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i32; +}]>; +def truncstoref32 : PatFrag<(ops node:$val, node:$ptr), + (truncstore node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f32; +}]>; +def truncstoref64 : PatFrag<(ops node:$val, node:$ptr), + (truncstore node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f64; +}]>; + +// indexed store fragments. +def istore : PatFrag<(ops node:$val, node:$base, node:$offset), + (ist node:$val, node:$base, node:$offset), [{ + return !cast<StoreSDNode>(N)->isTruncatingStore(); +}]>; + +def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset), + (istore node:$val, node:$base, node:$offset), [{ + ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); + return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; +}]>; + +def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset), + (ist node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->isTruncatingStore(); +}]>; +def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), + (itruncstore node:$val, node:$base, node:$offset), [{ + ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); + return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; +}]>; +def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), + (pre_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i1; +}]>; +def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), + (pre_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8; +}]>; +def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), + (pre_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16; +}]>; +def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), + (pre_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i32; +}]>; +def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), + (pre_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f32; +}]>; + +def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), + (istore node:$val, node:$ptr, node:$offset), [{ + ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); + return AM == ISD::POST_INC || AM == ISD::POST_DEC; +}]>; + +def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), + (itruncstore node:$val, node:$base, node:$offset), [{ + ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); + return AM == ISD::POST_INC || AM == ISD::POST_DEC; +}]>; +def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), + (post_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i1; +}]>; +def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), + (post_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8; +}]>; +def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), + (post_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16; +}]>; +def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), + (post_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i32; +}]>; +def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), + (post_truncst node:$val, node:$base, node:$offset), [{ + return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f32; +}]>; + +// setcc convenience fragments. +def setoeq : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETOEQ)>; +def setogt : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETOGT)>; +def setoge : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETOGE)>; +def setolt : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETOLT)>; +def setole : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETOLE)>; +def setone : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETONE)>; +def seto : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETO)>; +def setuo : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETUO)>; +def setueq : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETUEQ)>; +def setugt : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETUGT)>; +def setuge : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETUGE)>; +def setult : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETULT)>; +def setule : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETULE)>; +def setune : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETUNE)>; +def seteq : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETEQ)>; +def setgt : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETGT)>; +def setge : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETGE)>; +def setlt : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETLT)>; +def setle : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETLE)>; +def setne : PatFrag<(ops node:$lhs, node:$rhs), + (setcc node:$lhs, node:$rhs, SETNE)>; + +//===----------------------------------------------------------------------===// +// Selection DAG CONVERT_RNDSAT patterns + +def cvtff : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_FF; + }]>; + +def cvtss : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_SS; + }]>; + +def cvtsu : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_SU; + }]>; + +def cvtus : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_US; + }]>; + +def cvtuu : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_UU; + }]>; + +def cvtsf : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_SF; + }]>; + +def cvtuf : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_UF; + }]>; + +def cvtfs : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_FS; + }]>; + +def cvtfu : PatFrag<(ops node:$val, node:$dty, node:$sty, node:$rd, node:$sat), + (cvt node:$val, node:$dty, node:$sty, node:$rd, node:$sat), [{ + return cast<CvtRndSatSDNode>(N)->getCvtCode() == ISD::CVT_FU; + }]>; + +//===----------------------------------------------------------------------===// +// Selection DAG Pattern Support. +// +// Patterns are what are actually matched against the target-flavored +// instruction selection DAG. Instructions defined by the target implicitly +// define patterns in most cases, but patterns can also be explicitly added when +// an operation is defined by a sequence of instructions (e.g. loading a large +// immediate value on RISC targets that do not support immediates as large as +// their GPRs). +// + +class Pattern<dag patternToMatch, list<dag> resultInstrs> { + dag PatternToMatch = patternToMatch; + list<dag> ResultInstrs = resultInstrs; + list<Predicate> Predicates = []; // See class Instruction in Target.td. + int AddedComplexity = 0; // See class Instruction in Target.td. +} + +// Pat - A simple (but common) form of a pattern, which produces a simple result +// not needing a full list. +class Pat<dag pattern, dag result> : Pattern<pattern, [result]>; + +//===----------------------------------------------------------------------===// +// Complex pattern definitions. +// + +class CPAttribute; +// Pass the parent Operand as root to CP function rather +// than the root of the sub-DAG +def CPAttrParentAsRoot : CPAttribute; + +// Complex patterns, e.g. X86 addressing mode, requires pattern matching code +// in C++. NumOperands is the number of operands returned by the select function; +// SelectFunc is the name of the function used to pattern match the max. pattern; +// RootNodes are the list of possible root nodes of the sub-dags to match. +// e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>; +// +class ComplexPattern<ValueType ty, int numops, string fn, + list<SDNode> roots = [], list<SDNodeProperty> props = [], + list<CPAttribute> attrs = []> { + ValueType Ty = ty; + int NumOperands = numops; + string SelectFunc = fn; + list<SDNode> RootNodes = roots; + list<SDNodeProperty> Properties = props; + list<CPAttribute> Attributes = attrs; +} + +//===----------------------------------------------------------------------===// +// Dwarf support. +// +def SDT_dwarf_loc : SDTypeProfile<0, 3, + [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; +def dwarf_loc : SDNode<"ISD::DEBUG_LOC", SDT_dwarf_loc,[SDNPHasChain]>; |