aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DivergenceAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/DivergenceAnalysis.cpp')
-rw-r--r--lib/Analysis/DivergenceAnalysis.cpp337
1 files changed, 337 insertions, 0 deletions
diff --git a/lib/Analysis/DivergenceAnalysis.cpp b/lib/Analysis/DivergenceAnalysis.cpp
new file mode 100644
index 0000000..e5ee295
--- /dev/null
+++ b/lib/Analysis/DivergenceAnalysis.cpp
@@ -0,0 +1,337 @@
+//===- DivergenceAnalysis.cpp ------ Divergence Analysis ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines divergence analysis which determines whether a branch in a
+// GPU program is divergent. It can help branch optimizations such as jump
+// threading and loop unswitching to make better decisions.
+//
+// GPU programs typically use the SIMD execution model, where multiple threads
+// in the same execution group have to execute in lock-step. Therefore, if the
+// code contains divergent branches (i.e., threads in a group do not agree on
+// which path of the branch to take), the group of threads has to execute all
+// the paths from that branch with different subsets of threads enabled until
+// they converge at the immediately post-dominating BB of the paths.
+//
+// Due to this execution model, some optimizations such as jump
+// threading and loop unswitching can be unfortunately harmful when performed on
+// divergent branches. Therefore, an analysis that computes which branches in a
+// GPU program are divergent can help the compiler to selectively run these
+// optimizations.
+//
+// This file defines divergence analysis which computes a conservative but
+// non-trivial approximation of all divergent branches in a GPU program. It
+// partially implements the approach described in
+//
+// Divergence Analysis
+// Sampaio, Souza, Collange, Pereira
+// TOPLAS '13
+//
+// The divergence analysis identifies the sources of divergence (e.g., special
+// variables that hold the thread ID), and recursively marks variables that are
+// data or sync dependent on a source of divergence as divergent.
+//
+// While data dependency is a well-known concept, the notion of sync dependency
+// is worth more explanation. Sync dependence characterizes the control flow
+// aspect of the propagation of branch divergence. For example,
+//
+// %cond = icmp slt i32 %tid, 10
+// br i1 %cond, label %then, label %else
+// then:
+// br label %merge
+// else:
+// br label %merge
+// merge:
+// %a = phi i32 [ 0, %then ], [ 1, %else ]
+//
+// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
+// because %tid is not on its use-def chains, %a is sync dependent on %tid
+// because the branch "br i1 %cond" depends on %tid and affects which value %a
+// is assigned to.
+//
+// The current implementation has the following limitations:
+// 1. intra-procedural. It conservatively considers the arguments of a
+// non-kernel-entry function and the return value of a function call as
+// divergent.
+// 2. memory as black box. It conservatively considers values loaded from
+// generic or local address as divergent. This can be improved by leveraging
+// pointer analysis.
+//===----------------------------------------------------------------------===//
+
+#include <vector>
+#include "llvm/IR/Dominators.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "divergence"
+
+namespace {
+class DivergenceAnalysis : public FunctionPass {
+public:
+ static char ID;
+
+ DivergenceAnalysis() : FunctionPass(ID) {
+ initializeDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PostDominatorTree>();
+ AU.setPreservesAll();
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ // Print all divergent branches in the function.
+ void print(raw_ostream &OS, const Module *) const override;
+
+ // Returns true if V is divergent.
+ bool isDivergent(const Value *V) const { return DivergentValues.count(V); }
+ // Returns true if V is uniform/non-divergent.
+ bool isUniform(const Value *V) const { return !isDivergent(V); }
+
+private:
+ // Stores all divergent values.
+ DenseSet<const Value *> DivergentValues;
+};
+} // End of anonymous namespace
+
+// Register this pass.
+char DivergenceAnalysis::ID = 0;
+INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
+ false, true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
+INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
+ false, true)
+
+namespace {
+
+class DivergencePropagator {
+public:
+ DivergencePropagator(Function &F, TargetTransformInfo &TTI,
+ DominatorTree &DT, PostDominatorTree &PDT,
+ DenseSet<const Value *> &DV)
+ : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
+ void populateWithSourcesOfDivergence();
+ void propagate();
+
+private:
+ // A helper function that explores data dependents of V.
+ void exploreDataDependency(Value *V);
+ // A helper function that explores sync dependents of TI.
+ void exploreSyncDependency(TerminatorInst *TI);
+ // Computes the influence region from Start to End. This region includes all
+ // basic blocks on any path from Start to End.
+ void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
+ DenseSet<BasicBlock *> &InfluenceRegion);
+ // Finds all users of I that are outside the influence region, and add these
+ // users to Worklist.
+ void findUsersOutsideInfluenceRegion(
+ Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
+
+ Function &F;
+ TargetTransformInfo &TTI;
+ DominatorTree &DT;
+ PostDominatorTree &PDT;
+ std::vector<Value *> Worklist; // Stack for DFS.
+ DenseSet<const Value *> &DV; // Stores all divergent values.
+};
+
+void DivergencePropagator::populateWithSourcesOfDivergence() {
+ Worklist.clear();
+ DV.clear();
+ for (auto &I : inst_range(F)) {
+ if (TTI.isSourceOfDivergence(&I)) {
+ Worklist.push_back(&I);
+ DV.insert(&I);
+ }
+ }
+ for (auto &Arg : F.args()) {
+ if (TTI.isSourceOfDivergence(&Arg)) {
+ Worklist.push_back(&Arg);
+ DV.insert(&Arg);
+ }
+ }
+}
+
+void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
+ // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
+ // immediate post dominator are divergent. This rule handles if-then-else
+ // patterns. For example,
+ //
+ // if (tid < 5)
+ // a1 = 1;
+ // else
+ // a2 = 2;
+ // a = phi(a1, a2); // sync dependent on (tid < 5)
+ BasicBlock *ThisBB = TI->getParent();
+ BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
+ if (IPostDom == nullptr)
+ return;
+
+ for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
+ // A PHINode is uniform if it returns the same value no matter which path is
+ // taken.
+ if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(I).second)
+ Worklist.push_back(I);
+ }
+
+ // Propagation rule 2: if a value defined in a loop is used outside, the user
+ // is sync dependent on the condition of the loop exits that dominate the
+ // user. For example,
+ //
+ // int i = 0;
+ // do {
+ // i++;
+ // if (foo(i)) ... // uniform
+ // } while (i < tid);
+ // if (bar(i)) ... // divergent
+ //
+ // A program may contain unstructured loops. Therefore, we cannot leverage
+ // LoopInfo, which only recognizes natural loops.
+ //
+ // The algorithm used here handles both natural and unstructured loops. Given
+ // a branch TI, we first compute its influence region, the union of all simple
+ // paths from TI to its immediate post dominator (IPostDom). Then, we search
+ // for all the values defined in the influence region but used outside. All
+ // these users are sync dependent on TI.
+ DenseSet<BasicBlock *> InfluenceRegion;
+ computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
+ // An insight that can speed up the search process is that all the in-region
+ // values that are used outside must dominate TI. Therefore, instead of
+ // searching every basic blocks in the influence region, we search all the
+ // dominators of TI until it is outside the influence region.
+ BasicBlock *InfluencedBB = ThisBB;
+ while (InfluenceRegion.count(InfluencedBB)) {
+ for (auto &I : *InfluencedBB)
+ findUsersOutsideInfluenceRegion(I, InfluenceRegion);
+ DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
+ if (IDomNode == nullptr)
+ break;
+ InfluencedBB = IDomNode->getBlock();
+ }
+}
+
+void DivergencePropagator::findUsersOutsideInfluenceRegion(
+ Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
+ for (User *U : I.users()) {
+ Instruction *UserInst = cast<Instruction>(U);
+ if (!InfluenceRegion.count(UserInst->getParent())) {
+ if (DV.insert(UserInst).second)
+ Worklist.push_back(UserInst);
+ }
+ }
+}
+
+void DivergencePropagator::computeInfluenceRegion(
+ BasicBlock *Start, BasicBlock *End,
+ DenseSet<BasicBlock *> &InfluenceRegion) {
+ assert(PDT.properlyDominates(End, Start) &&
+ "End does not properly dominate Start");
+ std::vector<BasicBlock *> InfluenceStack;
+ InfluenceStack.push_back(Start);
+ InfluenceRegion.insert(Start);
+ while (!InfluenceStack.empty()) {
+ BasicBlock *BB = InfluenceStack.back();
+ InfluenceStack.pop_back();
+ for (BasicBlock *Succ : successors(BB)) {
+ if (End != Succ && InfluenceRegion.insert(Succ).second)
+ InfluenceStack.push_back(Succ);
+ }
+ }
+}
+
+void DivergencePropagator::exploreDataDependency(Value *V) {
+ // Follow def-use chains of V.
+ for (User *U : V->users()) {
+ Instruction *UserInst = cast<Instruction>(U);
+ if (DV.insert(UserInst).second)
+ Worklist.push_back(UserInst);
+ }
+}
+
+void DivergencePropagator::propagate() {
+ // Traverse the dependency graph using DFS.
+ while (!Worklist.empty()) {
+ Value *V = Worklist.back();
+ Worklist.pop_back();
+ if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
+ // Terminators with less than two successors won't introduce sync
+ // dependency. Ignore them.
+ if (TI->getNumSuccessors() > 1)
+ exploreSyncDependency(TI);
+ }
+ exploreDataDependency(V);
+ }
+}
+
+} /// end namespace anonymous
+
+FunctionPass *llvm::createDivergenceAnalysisPass() {
+ return new DivergenceAnalysis();
+}
+
+bool DivergenceAnalysis::runOnFunction(Function &F) {
+ auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
+ if (TTIWP == nullptr)
+ return false;
+
+ TargetTransformInfo &TTI = TTIWP->getTTI(F);
+ // Fast path: if the target does not have branch divergence, we do not mark
+ // any branch as divergent.
+ if (!TTI.hasBranchDivergence())
+ return false;
+
+ DivergentValues.clear();
+ DivergencePropagator DP(F, TTI,
+ getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<PostDominatorTree>(), DivergentValues);
+ DP.populateWithSourcesOfDivergence();
+ DP.propagate();
+ return false;
+}
+
+void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
+ if (DivergentValues.empty())
+ return;
+ const Value *FirstDivergentValue = *DivergentValues.begin();
+ const Function *F;
+ if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
+ F = Arg->getParent();
+ } else if (const Instruction *I =
+ dyn_cast<Instruction>(FirstDivergentValue)) {
+ F = I->getParent()->getParent();
+ } else {
+ llvm_unreachable("Only arguments and instructions can be divergent");
+ }
+
+ // Dumps all divergent values in F, arguments and then instructions.
+ for (auto &Arg : F->args()) {
+ if (DivergentValues.count(&Arg))
+ OS << "DIVERGENT: " << Arg << "\n";
+ }
+ // Iterate instructions using inst_range to ensure a deterministic order.
+ for (auto &I : inst_range(F)) {
+ if (DivergentValues.count(&I))
+ OS << "DIVERGENT:" << I << "\n";
+ }
+}