diff options
Diffstat (limited to 'lib/Analysis/EscapeAnalysis.cpp')
-rw-r--r-- | lib/Analysis/EscapeAnalysis.cpp | 158 |
1 files changed, 0 insertions, 158 deletions
diff --git a/lib/Analysis/EscapeAnalysis.cpp b/lib/Analysis/EscapeAnalysis.cpp deleted file mode 100644 index c621c9f..0000000 --- a/lib/Analysis/EscapeAnalysis.cpp +++ /dev/null @@ -1,158 +0,0 @@ -//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file provides the implementation of the pointer escape analysis. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "escape-analysis" -#include "llvm/Analysis/EscapeAnalysis.h" -#include "llvm/Constants.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Support/InstIterator.h" -#include "llvm/Target/TargetData.h" -#include "llvm/ADT/SmallPtrSet.h" -#include <vector> -using namespace llvm; - -char EscapeAnalysis::ID = 0; -static RegisterPass<EscapeAnalysis> X("escape-analysis", - "Pointer Escape Analysis", true, true); - - -void EscapeAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequiredTransitive<TargetData>(); - AU.addRequiredTransitive<AliasAnalysis>(); - AU.setPreservesAll(); -} - -/// runOnFunction - Precomputation for escape analysis. This collects all know -/// "escape points" in the def-use graph of the function. These are -/// instructions which allow their inputs to escape from the current function. -bool EscapeAnalysis::runOnFunction(Function& F) { - EscapePoints.clear(); - - TargetData& TD = getAnalysis<TargetData>(); - AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); - Module* M = F.getParent(); - - // Walk through all instructions in the function, identifying those that - // may allow their inputs to escape. - for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) { - Instruction* I = &*II; - - // The most obvious case is stores. Any store that may write to global - // memory or to a function argument potentially allows its input to escape. - if (StoreInst* S = dyn_cast<StoreInst>(I)) { - const Type* StoreType = S->getOperand(0)->getType(); - unsigned StoreSize = TD.getTypeStoreSize(StoreType); - Value* Pointer = S->getPointerOperand(); - - bool inserted = false; - for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); - AI != AE; ++AI) { - if (!isa<PointerType>(AI->getType())) continue; - AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0U); - if (R != AliasAnalysis::NoAlias) { - EscapePoints.insert(S); - inserted = true; - break; - } - } - - if (inserted) - continue; - - for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); - GI != GE; ++GI) { - AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0U); - if (R != AliasAnalysis::NoAlias) { - EscapePoints.insert(S); - break; - } - } - - // Calls and invokes potentially allow their parameters to escape. - // FIXME: This can and should be refined. Intrinsics have known escape - // behavior, and alias analysis may be able to tell us more about callees. - } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { - EscapePoints.insert(I); - - // Returns allow the return value to escape. This is mostly important - // for malloc to alloca promotion. - } else if (isa<ReturnInst>(I)) { - EscapePoints.insert(I); - - // Branching on the value of a pointer may allow the value to escape through - // methods not discoverable via def-use chaining. - } else if(isa<BranchInst>(I) || isa<SwitchInst>(I)) { - EscapePoints.insert(I); - } - - // FIXME: Are there any other possible escape points? - } - - return false; -} - -/// escapes - Determines whether the passed allocation can escape from the -/// current function. It does this by using a simple worklist algorithm to -/// search for a path in the def-use graph from the allocation to an -/// escape point. -/// FIXME: Once we've discovered a path, it would be a good idea to memoize it, -/// and all of its subpaths, to amortize the cost of future queries. -bool EscapeAnalysis::escapes(Value* A) { - assert(isa<PointerType>(A->getType()) && - "Can't do escape analysis on non-pointer types!"); - - std::vector<Value*> worklist; - worklist.push_back(A); - - SmallPtrSet<Value*, 8> visited; - visited.insert(A); - while (!worklist.empty()) { - Value* curr = worklist.back(); - worklist.pop_back(); - - if (Instruction* I = dyn_cast<Instruction>(curr)) - if (EscapePoints.count(I)) { - BranchInst* B = dyn_cast<BranchInst>(I); - if (!B) return true; - Value* condition = B->getCondition(); - ICmpInst* C = dyn_cast<ICmpInst>(condition); - if (!C) return true; - Value* O1 = C->getOperand(0); - Value* O2 = C->getOperand(1); - if (isa<MallocInst>(O1->stripPointerCasts())) { - if (!isa<ConstantPointerNull>(O2)) return true; - } else if(isa<MallocInst>(O2->stripPointerCasts())) { - if (!isa<ConstantPointerNull>(O1)) return true; - } else - return true; - } - - if (StoreInst* S = dyn_cast<StoreInst>(curr)) { - // We know this must be an instruction, because constant gep's would - // have been found to alias a global, so stores to them would have - // been in EscapePoints. - if (visited.insert(cast<Instruction>(S->getPointerOperand()))) - worklist.push_back(cast<Instruction>(S->getPointerOperand())); - } else { - for (Instruction::use_iterator UI = curr->use_begin(), - UE = curr->use_end(); UI != UE; ++UI) - if (Instruction* U = dyn_cast<Instruction>(UI)) - if (visited.insert(U)) - worklist.push_back(U); - } - } - - return false; -} |