aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/StratifiedSets.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/StratifiedSets.h')
-rw-r--r--lib/Analysis/StratifiedSets.h692
1 files changed, 692 insertions, 0 deletions
diff --git a/lib/Analysis/StratifiedSets.h b/lib/Analysis/StratifiedSets.h
new file mode 100644
index 0000000..fd3fbc0
--- /dev/null
+++ b/lib/Analysis/StratifiedSets.h
@@ -0,0 +1,692 @@
+//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STRATIFIEDSETS_H
+#define LLVM_ADT_STRATIFIEDSETS_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Compiler.h"
+#include <bitset>
+#include <cassert>
+#include <cmath>
+#include <limits>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+// \brief An index into Stratified Sets.
+typedef unsigned StratifiedIndex;
+// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
+// ~1M sets exist.
+
+// \brief Container of information related to a value in a StratifiedSet.
+struct StratifiedInfo {
+ StratifiedIndex Index;
+ // For field sensitivity, etc. we can tack attributes on to this struct.
+};
+
+// The number of attributes that StratifiedAttrs should contain. Attributes are
+// described below, and 32 was an arbitrary choice because it fits nicely in 32
+// bits (because we use a bitset for StratifiedAttrs).
+static const unsigned NumStratifiedAttrs = 32;
+
+// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
+// may use for various purposes. These also have the special property of that
+// they are merged down. So, if set A is above set B, and one decides to set an
+// attribute in set A, then the attribute will automatically be set in set B.
+typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
+
+// \brief A "link" between two StratifiedSets.
+struct StratifiedLink {
+ // \brief This is a value used to signify "does not exist" where
+ // the StratifiedIndex type is used. This is used instead of
+ // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
+ // eat up a considerable amount of extra memory, after struct
+ // padding/alignment is taken into account.
+ static const StratifiedIndex SetSentinel;
+
+ // \brief The index for the set "above" current
+ StratifiedIndex Above;
+
+ // \brief The link for the set "below" current
+ StratifiedIndex Below;
+
+ // \brief Attributes for these StratifiedSets.
+ StratifiedAttrs Attrs;
+
+ StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
+
+ bool hasBelow() const { return Below != SetSentinel; }
+ bool hasAbove() const { return Above != SetSentinel; }
+
+ void clearBelow() { Below = SetSentinel; }
+ void clearAbove() { Above = SetSentinel; }
+};
+
+// \brief These are stratified sets, as described in "Fast algorithms for
+// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
+// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
+// of Value*s. If two Value*s are in the same set, or if both sets have
+// overlapping attributes, then the Value*s are said to alias.
+//
+// Sets may be related by position, meaning that one set may be considered as
+// above or below another. In CFL Alias Analysis, this gives us an indication
+// of how two variables are related; if the set of variable A is below a set
+// containing variable B, then at some point, a variable that has interacted
+// with B (or B itself) was either used in order to extract the variable A, or
+// was used as storage of variable A.
+//
+// Sets may also have attributes (as noted above). These attributes are
+// generally used for noting whether a variable in the set has interacted with
+// a variable whose origins we don't quite know (i.e. globals/arguments), or if
+// the variable may have had operations performed on it (modified in a function
+// call). All attributes that exist in a set A must exist in all sets marked as
+// below set A.
+template <typename T> class StratifiedSets {
+public:
+ StratifiedSets() {}
+
+ StratifiedSets(DenseMap<T, StratifiedInfo> Map,
+ std::vector<StratifiedLink> Links)
+ : Values(std::move(Map)), Links(std::move(Links)) {}
+
+ StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
+
+ StratifiedSets &operator=(StratifiedSets<T> &&Other) {
+ Values = std::move(Other.Values);
+ Links = std::move(Other.Links);
+ return *this;
+ }
+
+ Optional<StratifiedInfo> find(const T &Elem) const {
+ auto Iter = Values.find(Elem);
+ if (Iter == Values.end()) {
+ return NoneType();
+ }
+ return Iter->second;
+ }
+
+ const StratifiedLink &getLink(StratifiedIndex Index) const {
+ assert(inbounds(Index));
+ return Links[Index];
+ }
+
+private:
+ DenseMap<T, StratifiedInfo> Values;
+ std::vector<StratifiedLink> Links;
+
+ bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
+};
+
+// \brief Generic Builder class that produces StratifiedSets instances.
+//
+// The goal of this builder is to efficiently produce correct StratifiedSets
+// instances. To this end, we use a few tricks:
+// > Set chains (A method for linking sets together)
+// > Set remaps (A method for marking a set as an alias [irony?] of another)
+//
+// ==== Set chains ====
+// This builder has a notion of some value A being above, below, or with some
+// other value B:
+// > The `A above B` relationship implies that there is a reference edge going
+// from A to B. Namely, it notes that A can store anything in B's set.
+// > The `A below B` relationship is the opposite of `A above B`. It implies
+// that there's a dereference edge going from A to B.
+// > The `A with B` relationship states that there's an assignment edge going
+// from A to B, and that A and B should be treated as equals.
+//
+// As an example, take the following code snippet:
+//
+// %a = alloca i32, align 4
+// %ap = alloca i32*, align 8
+// %app = alloca i32**, align 8
+// store %a, %ap
+// store %ap, %app
+// %aw = getelementptr %ap, 0
+//
+// Given this, the follow relations exist:
+// - %a below %ap & %ap above %a
+// - %ap below %app & %app above %ap
+// - %aw with %ap & %ap with %aw
+//
+// These relations produce the following sets:
+// [{%a}, {%ap, %aw}, {%app}]
+//
+// ...Which states that the only MayAlias relationship in the above program is
+// between %ap and %aw.
+//
+// Life gets more complicated when we actually have logic in our programs. So,
+// we either must remove this logic from our programs, or make consessions for
+// it in our AA algorithms. In this case, we have decided to select the latter
+// option.
+//
+// First complication: Conditionals
+// Motivation:
+// %ad = alloca int, align 4
+// %a = alloca int*, align 8
+// %b = alloca int*, align 8
+// %bp = alloca int**, align 8
+// %c = call i1 @SomeFunc()
+// %k = select %c, %ad, %bp
+// store %ad, %a
+// store %b, %bp
+//
+// %k has 'with' edges to both %a and %b, which ordinarily would not be linked
+// together. So, we merge the set that contains %a with the set that contains
+// %b. We then recursively merge the set above %a with the set above %b, and
+// the set below %a with the set below %b, etc. Ultimately, the sets for this
+// program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
+// {%a, %b, %c} is below {%ad}.
+//
+// Second complication: Arbitrary casts
+// Motivation:
+// %ip = alloca int*, align 8
+// %ipp = alloca int**, align 8
+// %i = bitcast ipp to int
+// store %ip, %ipp
+// store %i, %ip
+//
+// This is impossible to construct with any of the rules above, because a set
+// containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
+// to be below the set with %ip, and the set with %ip is supposed to be below
+// the set with %ipp. Because we don't allow circular relationships like this,
+// we merge all concerned sets into one. So, the above code would generate a
+// single StratifiedSet: {%ip, %ipp, %i}.
+//
+// ==== Set remaps ====
+// More of an implementation detail than anything -- when merging sets, we need
+// to update the numbers of all of the elements mapped to those sets. Rather
+// than doing this at each merge, we note in the BuilderLink structure that a
+// remap has occurred, and use this information so we can defer renumbering set
+// elements until build time.
+template <typename T> class StratifiedSetsBuilder {
+ // \brief Represents a Stratified Set, with information about the Stratified
+ // Set above it, the set below it, and whether the current set has been
+ // remapped to another.
+ struct BuilderLink {
+ const StratifiedIndex Number;
+
+ BuilderLink(StratifiedIndex N) : Number(N) {
+ Remap = StratifiedLink::SetSentinel;
+ }
+
+ bool hasAbove() const {
+ assert(!isRemapped());
+ return Link.hasAbove();
+ }
+
+ bool hasBelow() const {
+ assert(!isRemapped());
+ return Link.hasBelow();
+ }
+
+ void setBelow(StratifiedIndex I) {
+ assert(!isRemapped());
+ Link.Below = I;
+ }
+
+ void setAbove(StratifiedIndex I) {
+ assert(!isRemapped());
+ Link.Above = I;
+ }
+
+ void clearBelow() {
+ assert(!isRemapped());
+ Link.clearBelow();
+ }
+
+ void clearAbove() {
+ assert(!isRemapped());
+ Link.clearAbove();
+ }
+
+ StratifiedIndex getBelow() const {
+ assert(!isRemapped());
+ assert(hasBelow());
+ return Link.Below;
+ }
+
+ StratifiedIndex getAbove() const {
+ assert(!isRemapped());
+ assert(hasAbove());
+ return Link.Above;
+ }
+
+ StratifiedAttrs &getAttrs() {
+ assert(!isRemapped());
+ return Link.Attrs;
+ }
+
+ void setAttr(unsigned index) {
+ assert(!isRemapped());
+ assert(index < NumStratifiedAttrs);
+ Link.Attrs.set(index);
+ }
+
+ void setAttrs(const StratifiedAttrs &other) {
+ assert(!isRemapped());
+ Link.Attrs |= other;
+ }
+
+ bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
+
+ // \brief For initial remapping to another set
+ void remapTo(StratifiedIndex Other) {
+ assert(!isRemapped());
+ Remap = Other;
+ }
+
+ StratifiedIndex getRemapIndex() const {
+ assert(isRemapped());
+ return Remap;
+ }
+
+ // \brief Should only be called when we're already remapped.
+ void updateRemap(StratifiedIndex Other) {
+ assert(isRemapped());
+ Remap = Other;
+ }
+
+ // \brief Prefer the above functions to calling things directly on what's
+ // returned from this -- they guard against unexpected calls when the
+ // current BuilderLink is remapped.
+ const StratifiedLink &getLink() const { return Link; }
+
+ private:
+ StratifiedLink Link;
+ StratifiedIndex Remap;
+ };
+
+ // \brief This function performs all of the set unioning/value renumbering
+ // that we've been putting off, and generates a vector<StratifiedLink> that
+ // may be placed in a StratifiedSets instance.
+ void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
+ DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
+ for (auto &Link : Links) {
+ if (Link.isRemapped()) {
+ continue;
+ }
+
+ StratifiedIndex Number = StratLinks.size();
+ Remaps.insert(std::make_pair(Link.Number, Number));
+ StratLinks.push_back(Link.getLink());
+ }
+
+ for (auto &Link : StratLinks) {
+ if (Link.hasAbove()) {
+ auto &Above = linksAt(Link.Above);
+ auto Iter = Remaps.find(Above.Number);
+ assert(Iter != Remaps.end());
+ Link.Above = Iter->second;
+ }
+
+ if (Link.hasBelow()) {
+ auto &Below = linksAt(Link.Below);
+ auto Iter = Remaps.find(Below.Number);
+ assert(Iter != Remaps.end());
+ Link.Below = Iter->second;
+ }
+ }
+
+ for (auto &Pair : Values) {
+ auto &Info = Pair.second;
+ auto &Link = linksAt(Info.Index);
+ auto Iter = Remaps.find(Link.Number);
+ assert(Iter != Remaps.end());
+ Info.Index = Iter->second;
+ }
+ }
+
+ // \brief There's a guarantee in StratifiedLink where all bits set in a
+ // Link.externals will be set in all Link.externals "below" it.
+ static void propagateAttrs(std::vector<StratifiedLink> &Links) {
+ const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
+ const auto *Link = &Links[Idx];
+ while (Link->hasAbove()) {
+ Idx = Link->Above;
+ Link = &Links[Idx];
+ }
+ return Idx;
+ };
+
+ SmallSet<StratifiedIndex, 16> Visited;
+ for (unsigned I = 0, E = Links.size(); I < E; ++I) {
+ auto CurrentIndex = getHighestParentAbove(I);
+ if (!Visited.insert(CurrentIndex).second) {
+ continue;
+ }
+
+ while (Links[CurrentIndex].hasBelow()) {
+ auto &CurrentBits = Links[CurrentIndex].Attrs;
+ auto NextIndex = Links[CurrentIndex].Below;
+ auto &NextBits = Links[NextIndex].Attrs;
+ NextBits |= CurrentBits;
+ CurrentIndex = NextIndex;
+ }
+ }
+ }
+
+public:
+ // \brief Builds a StratifiedSet from the information we've been given since
+ // either construction or the prior build() call.
+ StratifiedSets<T> build() {
+ std::vector<StratifiedLink> StratLinks;
+ finalizeSets(StratLinks);
+ propagateAttrs(StratLinks);
+ Links.clear();
+ return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
+ }
+
+ std::size_t size() const { return Values.size(); }
+ std::size_t numSets() const { return Links.size(); }
+
+ bool has(const T &Elem) const { return get(Elem).hasValue(); }
+
+ bool add(const T &Main) {
+ if (get(Main).hasValue())
+ return false;
+
+ auto NewIndex = getNewUnlinkedIndex();
+ return addAtMerging(Main, NewIndex);
+ }
+
+ // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
+ // set above "Main". There are some cases where this is not possible (see
+ // above), so we merge them such that ToAdd and Main are in the same set.
+ bool addAbove(const T &Main, const T &ToAdd) {
+ assert(has(Main));
+ auto Index = *indexOf(Main);
+ if (!linksAt(Index).hasAbove())
+ addLinkAbove(Index);
+
+ auto Above = linksAt(Index).getAbove();
+ return addAtMerging(ToAdd, Above);
+ }
+
+ // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
+ // set below "Main". There are some cases where this is not possible (see
+ // above), so we merge them such that ToAdd and Main are in the same set.
+ bool addBelow(const T &Main, const T &ToAdd) {
+ assert(has(Main));
+ auto Index = *indexOf(Main);
+ if (!linksAt(Index).hasBelow())
+ addLinkBelow(Index);
+
+ auto Below = linksAt(Index).getBelow();
+ return addAtMerging(ToAdd, Below);
+ }
+
+ bool addWith(const T &Main, const T &ToAdd) {
+ assert(has(Main));
+ auto MainIndex = *indexOf(Main);
+ return addAtMerging(ToAdd, MainIndex);
+ }
+
+ void noteAttribute(const T &Main, unsigned AttrNum) {
+ assert(has(Main));
+ assert(AttrNum < StratifiedLink::SetSentinel);
+ auto *Info = *get(Main);
+ auto &Link = linksAt(Info->Index);
+ Link.setAttr(AttrNum);
+ }
+
+ void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
+ assert(has(Main));
+ auto *Info = *get(Main);
+ auto &Link = linksAt(Info->Index);
+ Link.setAttrs(NewAttrs);
+ }
+
+ StratifiedAttrs getAttributes(const T &Main) {
+ assert(has(Main));
+ auto *Info = *get(Main);
+ auto *Link = &linksAt(Info->Index);
+ auto Attrs = Link->getAttrs();
+ while (Link->hasAbove()) {
+ Link = &linksAt(Link->getAbove());
+ Attrs |= Link->getAttrs();
+ }
+
+ return Attrs;
+ }
+
+ bool getAttribute(const T &Main, unsigned AttrNum) {
+ assert(AttrNum < StratifiedLink::SetSentinel);
+ auto Attrs = getAttributes(Main);
+ return Attrs[AttrNum];
+ }
+
+ // \brief Gets the attributes that have been applied to the set that Main
+ // belongs to. It ignores attributes in any sets above the one that Main
+ // resides in.
+ StratifiedAttrs getRawAttributes(const T &Main) {
+ assert(has(Main));
+ auto *Info = *get(Main);
+ auto &Link = linksAt(Info->Index);
+ return Link.getAttrs();
+ }
+
+ // \brief Gets an attribute from the attributes that have been applied to the
+ // set that Main belongs to. It ignores attributes in any sets above the one
+ // that Main resides in.
+ bool getRawAttribute(const T &Main, unsigned AttrNum) {
+ assert(AttrNum < StratifiedLink::SetSentinel);
+ auto Attrs = getRawAttributes(Main);
+ return Attrs[AttrNum];
+ }
+
+private:
+ DenseMap<T, StratifiedInfo> Values;
+ std::vector<BuilderLink> Links;
+
+ // \brief Adds the given element at the given index, merging sets if
+ // necessary.
+ bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
+ StratifiedInfo Info = {Index};
+ auto Pair = Values.insert(std::make_pair(ToAdd, Info));
+ if (Pair.second)
+ return true;
+
+ auto &Iter = Pair.first;
+ auto &IterSet = linksAt(Iter->second.Index);
+ auto &ReqSet = linksAt(Index);
+
+ // Failed to add where we wanted to. Merge the sets.
+ if (&IterSet != &ReqSet)
+ merge(IterSet.Number, ReqSet.Number);
+
+ return false;
+ }
+
+ // \brief Gets the BuilderLink at the given index, taking set remapping into
+ // account.
+ BuilderLink &linksAt(StratifiedIndex Index) {
+ auto *Start = &Links[Index];
+ if (!Start->isRemapped())
+ return *Start;
+
+ auto *Current = Start;
+ while (Current->isRemapped())
+ Current = &Links[Current->getRemapIndex()];
+
+ auto NewRemap = Current->Number;
+
+ // Run through everything that has yet to be updated, and update them to
+ // remap to NewRemap
+ Current = Start;
+ while (Current->isRemapped()) {
+ auto *Next = &Links[Current->getRemapIndex()];
+ Current->updateRemap(NewRemap);
+ Current = Next;
+ }
+
+ return *Current;
+ }
+
+ // \brief Merges two sets into one another. Assumes that these sets are not
+ // already one in the same
+ void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
+ assert(inbounds(Idx1) && inbounds(Idx2));
+ assert(&linksAt(Idx1) != &linksAt(Idx2) &&
+ "Merging a set into itself is not allowed");
+
+ // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
+ // both the
+ // given sets, and all sets between them, into one.
+ if (tryMergeUpwards(Idx1, Idx2))
+ return;
+
+ if (tryMergeUpwards(Idx2, Idx1))
+ return;
+
+ // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
+ // We therefore need to merge the two chains together.
+ mergeDirect(Idx1, Idx2);
+ }
+
+ // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
+ // traversing above or below the set at `Idx2`.
+ void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
+ assert(inbounds(Idx1) && inbounds(Idx2));
+
+ auto *LinksInto = &linksAt(Idx1);
+ auto *LinksFrom = &linksAt(Idx2);
+ // Merging everything above LinksInto then proceeding to merge everything
+ // below LinksInto becomes problematic, so we go as far "up" as possible!
+ while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
+ LinksInto = &linksAt(LinksInto->getAbove());
+ LinksFrom = &linksAt(LinksFrom->getAbove());
+ }
+
+ if (LinksFrom->hasAbove()) {
+ LinksInto->setAbove(LinksFrom->getAbove());
+ auto &NewAbove = linksAt(LinksInto->getAbove());
+ NewAbove.setBelow(LinksInto->Number);
+ }
+
+ // Merging strategy:
+ // > If neither has links below, stop.
+ // > If only `LinksInto` has links below, stop.
+ // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
+ // match `LinksFrom.Below`
+ // > If both have links above, deal with those next.
+ while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
+ auto &FromAttrs = LinksFrom->getAttrs();
+ LinksInto->setAttrs(FromAttrs);
+
+ // Remap needs to happen after getBelow(), but before
+ // assignment of LinksFrom
+ auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
+ LinksFrom->remapTo(LinksInto->Number);
+ LinksFrom = NewLinksFrom;
+ LinksInto = &linksAt(LinksInto->getBelow());
+ }
+
+ if (LinksFrom->hasBelow()) {
+ LinksInto->setBelow(LinksFrom->getBelow());
+ auto &NewBelow = linksAt(LinksInto->getBelow());
+ NewBelow.setAbove(LinksInto->Number);
+ }
+
+ LinksFrom->remapTo(LinksInto->Number);
+ }
+
+ // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
+ // If so, it will merge lowerIndex with upperIndex (and all of the sets
+ // between) and return true. Otherwise, it will return false.
+ bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
+ assert(inbounds(LowerIndex) && inbounds(UpperIndex));
+ auto *Lower = &linksAt(LowerIndex);
+ auto *Upper = &linksAt(UpperIndex);
+ if (Lower == Upper)
+ return true;
+
+ SmallVector<BuilderLink *, 8> Found;
+ auto *Current = Lower;
+ auto Attrs = Current->getAttrs();
+ while (Current->hasAbove() && Current != Upper) {
+ Found.push_back(Current);
+ Attrs |= Current->getAttrs();
+ Current = &linksAt(Current->getAbove());
+ }
+
+ if (Current != Upper)
+ return false;
+
+ Upper->setAttrs(Attrs);
+
+ if (Lower->hasBelow()) {
+ auto NewBelowIndex = Lower->getBelow();
+ Upper->setBelow(NewBelowIndex);
+ auto &NewBelow = linksAt(NewBelowIndex);
+ NewBelow.setAbove(UpperIndex);
+ } else {
+ Upper->clearBelow();
+ }
+
+ for (const auto &Ptr : Found)
+ Ptr->remapTo(Upper->Number);
+
+ return true;
+ }
+
+ Optional<const StratifiedInfo *> get(const T &Val) const {
+ auto Result = Values.find(Val);
+ if (Result == Values.end())
+ return NoneType();
+ return &Result->second;
+ }
+
+ Optional<StratifiedInfo *> get(const T &Val) {
+ auto Result = Values.find(Val);
+ if (Result == Values.end())
+ return NoneType();
+ return &Result->second;
+ }
+
+ Optional<StratifiedIndex> indexOf(const T &Val) {
+ auto MaybeVal = get(Val);
+ if (!MaybeVal.hasValue())
+ return NoneType();
+ auto *Info = *MaybeVal;
+ auto &Link = linksAt(Info->Index);
+ return Link.Number;
+ }
+
+ StratifiedIndex addLinkBelow(StratifiedIndex Set) {
+ auto At = addLinks();
+ Links[Set].setBelow(At);
+ Links[At].setAbove(Set);
+ return At;
+ }
+
+ StratifiedIndex addLinkAbove(StratifiedIndex Set) {
+ auto At = addLinks();
+ Links[At].setBelow(Set);
+ Links[Set].setAbove(At);
+ return At;
+ }
+
+ StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
+
+ StratifiedIndex addLinks() {
+ auto Link = Links.size();
+ Links.push_back(BuilderLink(Link));
+ return Link;
+ }
+
+ bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
+};
+}
+#endif // LLVM_ADT_STRATIFIEDSETS_H