diff options
Diffstat (limited to 'lib/Analysis')
-rw-r--r-- | lib/Analysis/LoopInfo.cpp | 178 |
1 files changed, 178 insertions, 0 deletions
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp index bb53589..db5ce21 100644 --- a/lib/Analysis/LoopInfo.cpp +++ b/lib/Analysis/LoopInfo.cpp @@ -34,6 +34,184 @@ X("loops", "Natural Loop Information", true, true); // Loop implementation // +/// isLoopInvariant - Return true if the specified value is loop invariant +/// +bool Loop::isLoopInvariant(Value *V) const { + if (Instruction *I = dyn_cast<Instruction>(V)) + return !contains(I->getParent()); + return true; // All non-instructions are loop invariant +} + +/// getCanonicalInductionVariable - Check to see if the loop has a canonical +/// induction variable: an integer recurrence that starts at 0 and increments +/// by one each time through the loop. If so, return the phi node that +/// corresponds to it. +/// +/// The IndVarSimplify pass transforms loops to have a canonical induction +/// variable. +/// +PHINode *Loop::getCanonicalInductionVariable() const { + BasicBlock *H = getHeader(); + + BasicBlock *Incoming = 0, *Backedge = 0; + typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits; + InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H); + assert(PI != InvBlockTraits::child_end(H) && + "Loop must have at least one backedge!"); + Backedge = *PI++; + if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop + Incoming = *PI++; + if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges? + + if (contains(Incoming)) { + if (contains(Backedge)) + return 0; + std::swap(Incoming, Backedge); + } else if (!contains(Backedge)) + return 0; + + // Loop over all of the PHI nodes, looking for a canonical indvar. + for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + if (ConstantInt *CI = + dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) + if (CI->isNullValue()) + if (Instruction *Inc = + dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) + if (Inc->getOpcode() == Instruction::Add && + Inc->getOperand(0) == PN) + if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) + if (CI->equalsInt(1)) + return PN; + } + return 0; +} + +/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds +/// the canonical induction variable value for the "next" iteration of the +/// loop. This always succeeds if getCanonicalInductionVariable succeeds. +/// +Instruction *Loop::getCanonicalInductionVariableIncrement() const { + if (PHINode *PN = getCanonicalInductionVariable()) { + bool P1InLoop = contains(PN->getIncomingBlock(1)); + return cast<Instruction>(PN->getIncomingValue(P1InLoop)); + } + return 0; +} + +/// getTripCount - Return a loop-invariant LLVM value indicating the number of +/// times the loop will be executed. Note that this means that the backedge +/// of the loop executes N-1 times. If the trip-count cannot be determined, +/// this returns null. +/// +/// The IndVarSimplify pass transforms loops to have a form that this +/// function easily understands. +/// +Value *Loop::getTripCount() const { + // Canonical loops will end with a 'cmp ne I, V', where I is the incremented + // canonical induction variable and V is the trip count of the loop. + Instruction *Inc = getCanonicalInductionVariableIncrement(); + if (Inc == 0) return 0; + PHINode *IV = cast<PHINode>(Inc->getOperand(0)); + + BasicBlock *BackedgeBlock = + IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); + + if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) + if (BI->isConditional()) { + if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { + if (ICI->getOperand(0) == Inc) { + if (BI->getSuccessor(0) == getHeader()) { + if (ICI->getPredicate() == ICmpInst::ICMP_NE) + return ICI->getOperand(1); + } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { + return ICI->getOperand(1); + } + } + } + } + + return 0; +} + +/// getSmallConstantTripCount - Returns the trip count of this loop as a +/// normal unsigned value, if possible. Returns 0 if the trip count is unknown +/// of not constant. Will also return 0 if the trip count is very large +/// (>= 2^32) +unsigned Loop::getSmallConstantTripCount() const { + Value* TripCount = this->getTripCount(); + if (TripCount) { + if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) { + // Guard against huge trip counts. + if (TripCountC->getValue().getActiveBits() <= 32) { + return (unsigned)TripCountC->getZExtValue(); + } + } + } + return 0; +} + +/// getSmallConstantTripMultiple - Returns the largest constant divisor of the +/// trip count of this loop as a normal unsigned value, if possible. This +/// means that the actual trip count is always a multiple of the returned +/// value (don't forget the trip count could very well be zero as well!). +/// +/// Returns 1 if the trip count is unknown or not guaranteed to be the +/// multiple of a constant (which is also the case if the trip count is simply +/// constant, use getSmallConstantTripCount for that case), Will also return 1 +/// if the trip count is very large (>= 2^32). +unsigned Loop::getSmallConstantTripMultiple() const { + Value* TripCount = this->getTripCount(); + // This will hold the ConstantInt result, if any + ConstantInt *Result = NULL; + if (TripCount) { + // See if the trip count is constant itself + Result = dyn_cast<ConstantInt>(TripCount); + // if not, see if it is a multiplication + if (!Result) + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) { + switch (BO->getOpcode()) { + case BinaryOperator::Mul: + Result = dyn_cast<ConstantInt>(BO->getOperand(1)); + break; + default: + break; + } + } + } + // Guard against huge trip counts. + if (Result && Result->getValue().getActiveBits() <= 32) { + return (unsigned)Result->getZExtValue(); + } else { + return 1; + } +} + +/// isLCSSAForm - Return true if the Loop is in LCSSA form +bool Loop::isLCSSAForm() const { + // Sort the blocks vector so that we can use binary search to do quick + // lookups. + SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); + + for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { + BasicBlock *BB = *BI; + for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I) + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; + ++UI) { + BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); + if (PHINode *P = dyn_cast<PHINode>(*UI)) { + UserBB = P->getIncomingBlock(UI); + } + + // Check the current block, as a fast-path. Most values are used in + // the same block they are defined in. + if (UserBB != BB && !LoopBBs.count(UserBB)) + return false; + } + } + + return true; +} //===----------------------------------------------------------------------===// // LoopInfo implementation // |