aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/LoopInfo.cpp178
1 files changed, 178 insertions, 0 deletions
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index bb53589..db5ce21 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -34,6 +34,184 @@ X("loops", "Natural Loop Information", true, true);
// Loop implementation
//
+/// isLoopInvariant - Return true if the specified value is loop invariant
+///
+bool Loop::isLoopInvariant(Value *V) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return !contains(I->getParent());
+ return true; // All non-instructions are loop invariant
+}
+
+/// getCanonicalInductionVariable - Check to see if the loop has a canonical
+/// induction variable: an integer recurrence that starts at 0 and increments
+/// by one each time through the loop. If so, return the phi node that
+/// corresponds to it.
+///
+/// The IndVarSimplify pass transforms loops to have a canonical induction
+/// variable.
+///
+PHINode *Loop::getCanonicalInductionVariable() const {
+ BasicBlock *H = getHeader();
+
+ BasicBlock *Incoming = 0, *Backedge = 0;
+ typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
+ InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
+ assert(PI != InvBlockTraits::child_end(H) &&
+ "Loop must have at least one backedge!");
+ Backedge = *PI++;
+ if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
+ Incoming = *PI++;
+ if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
+
+ if (contains(Incoming)) {
+ if (contains(Backedge))
+ return 0;
+ std::swap(Incoming, Backedge);
+ } else if (!contains(Backedge))
+ return 0;
+
+ // Loop over all of the PHI nodes, looking for a canonical indvar.
+ for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
+ if (CI->isNullValue())
+ if (Instruction *Inc =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
+ if (Inc->getOpcode() == Instruction::Add &&
+ Inc->getOperand(0) == PN)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+ if (CI->equalsInt(1))
+ return PN;
+ }
+ return 0;
+}
+
+/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
+/// the canonical induction variable value for the "next" iteration of the
+/// loop. This always succeeds if getCanonicalInductionVariable succeeds.
+///
+Instruction *Loop::getCanonicalInductionVariableIncrement() const {
+ if (PHINode *PN = getCanonicalInductionVariable()) {
+ bool P1InLoop = contains(PN->getIncomingBlock(1));
+ return cast<Instruction>(PN->getIncomingValue(P1InLoop));
+ }
+ return 0;
+}
+
+/// getTripCount - Return a loop-invariant LLVM value indicating the number of
+/// times the loop will be executed. Note that this means that the backedge
+/// of the loop executes N-1 times. If the trip-count cannot be determined,
+/// this returns null.
+///
+/// The IndVarSimplify pass transforms loops to have a form that this
+/// function easily understands.
+///
+Value *Loop::getTripCount() const {
+ // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
+ // canonical induction variable and V is the trip count of the loop.
+ Instruction *Inc = getCanonicalInductionVariableIncrement();
+ if (Inc == 0) return 0;
+ PHINode *IV = cast<PHINode>(Inc->getOperand(0));
+
+ BasicBlock *BackedgeBlock =
+ IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
+ if (BI->isConditional()) {
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->getOperand(0) == Inc) {
+ if (BI->getSuccessor(0) == getHeader()) {
+ if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+ return ICI->getOperand(1);
+ } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
+ return ICI->getOperand(1);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// getSmallConstantTripCount - Returns the trip count of this loop as a
+/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
+/// of not constant. Will also return 0 if the trip count is very large
+/// (>= 2^32)
+unsigned Loop::getSmallConstantTripCount() const {
+ Value* TripCount = this->getTripCount();
+ if (TripCount) {
+ if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
+ // Guard against huge trip counts.
+ if (TripCountC->getValue().getActiveBits() <= 32) {
+ return (unsigned)TripCountC->getZExtValue();
+ }
+ }
+ }
+ return 0;
+}
+
+/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
+/// trip count of this loop as a normal unsigned value, if possible. This
+/// means that the actual trip count is always a multiple of the returned
+/// value (don't forget the trip count could very well be zero as well!).
+///
+/// Returns 1 if the trip count is unknown or not guaranteed to be the
+/// multiple of a constant (which is also the case if the trip count is simply
+/// constant, use getSmallConstantTripCount for that case), Will also return 1
+/// if the trip count is very large (>= 2^32).
+unsigned Loop::getSmallConstantTripMultiple() const {
+ Value* TripCount = this->getTripCount();
+ // This will hold the ConstantInt result, if any
+ ConstantInt *Result = NULL;
+ if (TripCount) {
+ // See if the trip count is constant itself
+ Result = dyn_cast<ConstantInt>(TripCount);
+ // if not, see if it is a multiplication
+ if (!Result)
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
+ switch (BO->getOpcode()) {
+ case BinaryOperator::Mul:
+ Result = dyn_cast<ConstantInt>(BO->getOperand(1));
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ // Guard against huge trip counts.
+ if (Result && Result->getValue().getActiveBits() <= 32) {
+ return (unsigned)Result->getZExtValue();
+ } else {
+ return 1;
+ }
+}
+
+/// isLCSSAForm - Return true if the Loop is in LCSSA form
+bool Loop::isLCSSAForm() const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
+
+ for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
+ BasicBlock *BB = *BI;
+ for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(*UI)) {
+ UserBB = P->getIncomingBlock(UI);
+ }
+
+ // Check the current block, as a fast-path. Most values are used in
+ // the same block they are defined in.
+ if (UserBB != BB && !LoopBBs.count(UserBB))
+ return false;
+ }
+ }
+
+ return true;
+}
//===----------------------------------------------------------------------===//
// LoopInfo implementation
//