diff options
Diffstat (limited to 'lib/Bytecode/Writer/InstructionWriter.cpp')
| -rw-r--r-- | lib/Bytecode/Writer/InstructionWriter.cpp | 348 | 
1 files changed, 0 insertions, 348 deletions
| diff --git a/lib/Bytecode/Writer/InstructionWriter.cpp b/lib/Bytecode/Writer/InstructionWriter.cpp deleted file mode 100644 index 1881367..0000000 --- a/lib/Bytecode/Writer/InstructionWriter.cpp +++ /dev/null @@ -1,348 +0,0 @@ -//===-- InstructionWriter.cpp - Functions for writing instructions --------===// -//  -//                     The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -//  -//===----------------------------------------------------------------------===// -// -// This file implements the routines for encoding instruction opcodes to a  -// bytecode stream. -// -//===----------------------------------------------------------------------===// - -#include "WriterInternals.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "Support/Statistic.h" -#include <algorithm> -using namespace llvm; - -typedef unsigned char uchar; - -// outputInstructionFormat0 - Output those wierd instructions that have a large -// number of operands or have large operands themselves... -// -// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] -// -static void outputInstructionFormat0(const Instruction *I, unsigned Opcode, -				     const SlotCalculator &Table, -				     unsigned Type, std::deque<uchar> &Out) { -  // Opcode must have top two bits clear... -  output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID -  output_vbr(Type, Out);                         // Result type - -  unsigned NumArgs = I->getNumOperands(); -  output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) || -                        isa<VAArgInst>(I)), Out); - -  if (!isa<GetElementPtrInst>(&I)) { -    for (unsigned i = 0; i < NumArgs; ++i) { -      int Slot = Table.getSlot(I->getOperand(i)); -      assert(Slot >= 0 && "No slot number for value!?!?");       -      output_vbr((unsigned)Slot, Out); -    } - -    if (isa<CastInst>(I) || isa<VAArgInst>(I)) { -      int Slot = Table.getSlot(I->getType()); -      assert(Slot != -1 && "Cast return type unknown?"); -      output_vbr((unsigned)Slot, Out); -    } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) { -      int Slot = Table.getSlot(VAI->getArgType()); -      assert(Slot != -1 && "VarArg argument type unknown?"); -      output_vbr((unsigned)Slot, Out); -    } - -  } else { -    int Slot = Table.getSlot(I->getOperand(0)); -    assert(Slot >= 0 && "No slot number for value!?!?");       -    output_vbr(unsigned(Slot), Out); - -    // We need to encode the type of sequential type indices into their slot # -    unsigned Idx = 1; -    for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I); -         Idx != NumArgs; ++TI, ++Idx) { -      Slot = Table.getSlot(I->getOperand(Idx)); -      assert(Slot >= 0 && "No slot number for value!?!?");       -     -      if (isa<SequentialType>(*TI)) { -        unsigned IdxId; -        switch (I->getOperand(Idx)->getType()->getTypeID()) { -        default: assert(0 && "Unknown index type!"); -        case Type::UIntTyID:  IdxId = 0; break; -        case Type::IntTyID:   IdxId = 1; break; -        case Type::ULongTyID: IdxId = 2; break; -        case Type::LongTyID:  IdxId = 3; break; -        } -        Slot = (Slot << 2) | IdxId; -      } -      output_vbr(unsigned(Slot), Out); -    } -  } - -  align32(Out);    // We must maintain correct alignment! -} - - -// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. -// This are more annoying than most because the signature of the call does not -// tell us anything about the types of the arguments in the varargs portion. -// Because of this, we encode (as type 0) all of the argument types explicitly -// before the argument value.  This really sucks, but you shouldn't be using -// varargs functions in your code! *death to printf*! -// -// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] -// -static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode, -				   const SlotCalculator &Table, unsigned Type, -				   std::deque<uchar> &Out) { -  assert(isa<CallInst>(I) || isa<InvokeInst>(I)); -  // Opcode must have top two bits clear... -  output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID -  output_vbr(Type, Out);                         // Result type (varargs type) - -  const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType()); -  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); -  unsigned NumParams = FTy->getNumParams(); - -  unsigned NumFixedOperands; -  if (isa<CallInst>(I)) { -    // Output an operand for the callee and each fixed argument, then two for -    // each variable argument. -    NumFixedOperands = 1+NumParams; -  } else { -    assert(isa<InvokeInst>(I) && "Not call or invoke??"); -    // Output an operand for the callee and destinations, then two for each -    // variable argument. -    NumFixedOperands = 3+NumParams; -  } -  output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out); - -  // The type for the function has already been emitted in the type field of the -  // instruction.  Just emit the slot # now. -  for (unsigned i = 0; i != NumFixedOperands; ++i) { -    int Slot = Table.getSlot(I->getOperand(i)); -    assert(Slot >= 0 && "No slot number for value!?!?");       -    output_vbr((unsigned)Slot, Out); -  } - -  for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) { -    // Output Arg Type ID -    int Slot = Table.getSlot(I->getOperand(i)->getType()); -    assert(Slot >= 0 && "No slot number for value!?!?");       -    output_vbr((unsigned)Slot, Out); -     -    // Output arg ID itself -    Slot = Table.getSlot(I->getOperand(i)); -    assert(Slot >= 0 && "No slot number for value!?!?");       -    output_vbr((unsigned)Slot, Out); -  } -  align32(Out);    // We must maintain correct alignment! -} - - -// outputInstructionFormat1 - Output one operand instructions, knowing that no -// operand index is >= 2^12. -// -static void outputInstructionFormat1(const Instruction *I, unsigned Opcode, -				     const SlotCalculator &Table, -                                     unsigned *Slots, unsigned Type,  -                                     std::deque<uchar> &Out) { -  // bits   Instruction format: -  // -------------------------- -  // 01-00: Opcode type, fixed to 1. -  // 07-02: Opcode -  // 19-08: Resulting type plane -  // 31-20: Operand #1 (if set to (2^12-1), then zero operands) -  // -  unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); -  //  cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; -  output(Bits, Out); -} - - -// outputInstructionFormat2 - Output two operand instructions, knowing that no -// operand index is >= 2^8. -// -static void outputInstructionFormat2(const Instruction *I, unsigned Opcode, -				     const SlotCalculator &Table, -                                     unsigned *Slots, unsigned Type,  -                                     std::deque<uchar> &Out) { -  // bits   Instruction format: -  // -------------------------- -  // 01-00: Opcode type, fixed to 2. -  // 07-02: Opcode -  // 15-08: Resulting type plane -  // 23-16: Operand #1 -  // 31-24: Operand #2   -  // -  unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | -                    (Slots[0] << 16) | (Slots[1] << 24); -  //  cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "  -  //       << Slots[1] << endl; -  output(Bits, Out); -} - - -// outputInstructionFormat3 - Output three operand instructions, knowing that no -// operand index is >= 2^6. -// -static void outputInstructionFormat3(const Instruction *I, unsigned Opcode, -				     const SlotCalculator &Table, -                                     unsigned *Slots, unsigned Type, -                                     std::deque<uchar> &Out) { -  // bits   Instruction format: -  // -------------------------- -  // 01-00: Opcode type, fixed to 3. -  // 07-02: Opcode -  // 13-08: Resulting type plane -  // 19-14: Operand #1 -  // 25-20: Operand #2 -  // 31-26: Operand #3 -  // -  unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | -          (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); -  //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "  -  //     << Slots[1] << " " << Slots[2] << endl; -  output(Bits, Out); -} - -void BytecodeWriter::outputInstruction(const Instruction &I) { -  assert(I.getOpcode() < 62 && "Opcode too big???"); -  unsigned Opcode = I.getOpcode(); -  unsigned NumOperands = I.getNumOperands(); - -  // Encode 'volatile load' as 62 and 'volatile store' as 63. -  if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) -    Opcode = 62; -  if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) -    Opcode = 63; - -  // Figure out which type to encode with the instruction.  Typically we want -  // the type of the first parameter, as opposed to the type of the instruction -  // (for example, with setcc, we always know it returns bool, but the type of -  // the first param is actually interesting).  But if we have no arguments -  // we take the type of the instruction itself.   -  // -  const Type *Ty; -  switch (I.getOpcode()) { -  case Instruction::Select: -  case Instruction::Malloc: -  case Instruction::Alloca: -    Ty = I.getType();  // These ALWAYS want to encode the return type -    break; -  case Instruction::Store: -    Ty = I.getOperand(1)->getType();  // Encode the pointer type... -    assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?"); -    break; -  default:              // Otherwise use the default behavior... -    Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); -    break; -  } - -  unsigned Type; -  int Slot = Table.getSlot(Ty); -  assert(Slot != -1 && "Type not available!!?!"); -  Type = (unsigned)Slot; - -  // Varargs calls and invokes are encoded entirely different from any other -  // instructions. -  if (const CallInst *CI = dyn_cast<CallInst>(&I)){ -    const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType()); -    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { -      outputInstrVarArgsCall(CI, Opcode, Table, Type, Out); -      return; -    } -  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { -    const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType()); -    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { -      outputInstrVarArgsCall(II, Opcode, Table, Type, Out); -      return; -    } -  } - -  if (NumOperands <= 3) { -    // Make sure that we take the type number into consideration.  We don't want -    // to overflow the field size for the instruction format we select. -    // -    unsigned MaxOpSlot = Type; -    unsigned Slots[3]; Slots[0] = (1 << 12)-1;   // Marker to signify 0 operands -     -    for (unsigned i = 0; i != NumOperands; ++i) { -      int slot = Table.getSlot(I.getOperand(i)); -      assert(slot != -1 && "Broken bytecode!"); -      if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot); -      Slots[i] = unsigned(slot); -    } - -    // Handle the special cases for various instructions... -    if (isa<CastInst>(I) || isa<VAArgInst>(I)) { -      // Cast has to encode the destination type as the second argument in the -      // packet, or else we won't know what type to cast to! -      Slots[1] = Table.getSlot(I.getType()); -      assert(Slots[1] != ~0U && "Cast return type unknown?"); -      if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; -      NumOperands++; -    } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) { -      Slots[1] = Table.getSlot(VANI->getArgType()); -      assert(Slots[1] != ~0U && "va_next return type unknown?"); -      if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; -      NumOperands++; -    } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { -      // We need to encode the type of sequential type indices into their slot # -      unsigned Idx = 1; -      for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); -           I != E; ++I, ++Idx) -        if (isa<SequentialType>(*I)) { -          unsigned IdxId; -          switch (GEP->getOperand(Idx)->getType()->getTypeID()) { -          default: assert(0 && "Unknown index type!"); -          case Type::UIntTyID:  IdxId = 0; break; -          case Type::IntTyID:   IdxId = 1; break; -          case Type::ULongTyID: IdxId = 2; break; -          case Type::LongTyID:  IdxId = 3; break; -          } -          Slots[Idx] = (Slots[Idx] << 2) | IdxId; -          if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx]; -        } -    } - -    // Decide which instruction encoding to use.  This is determined primarily -    // by the number of operands, and secondarily by whether or not the max -    // operand will fit into the instruction encoding.  More operands == fewer -    // bits per operand. -    // -    switch (NumOperands) { -    case 0: -    case 1: -      if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops -        outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out); -        return; -      } -      break; - -    case 2: -      if (MaxOpSlot < (1 << 8)) { -        outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out); -        return; -      } -      break; - -    case 3: -      if (MaxOpSlot < (1 << 6)) { -        outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out); -        return; -      } -      break; -    default: -      break; -    } -  } - -  // If we weren't handled before here, we either have a large number of -  // operands or a large operand index that we are referring to. -  outputInstructionFormat0(&I, Opcode, Table, Type, Out); -} | 
