aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/BasicTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/BasicTargetTransformInfo.cpp')
-rw-r--r--lib/CodeGen/BasicTargetTransformInfo.cpp632
1 files changed, 11 insertions, 621 deletions
diff --git a/lib/CodeGen/BasicTargetTransformInfo.cpp b/lib/CodeGen/BasicTargetTransformInfo.cpp
index b9b1fd8..82f5c48 100644
--- a/lib/CodeGen/BasicTargetTransformInfo.cpp
+++ b/lib/CodeGen/BasicTargetTransformInfo.cpp
@@ -15,633 +15,23 @@
///
//===----------------------------------------------------------------------===//
-#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfoImpl.h"
+#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetSubtargetInfo.h"
#include <utility>
using namespace llvm;
-static cl::opt<unsigned>
-PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
- cl::desc("Threshold for partial unrolling"), cl::Hidden);
-
#define DEBUG_TYPE "basictti"
-namespace {
-
-class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
- const TargetMachine *TM;
-
- /// Estimate the overhead of scalarizing an instruction. Insert and Extract
- /// are set if the result needs to be inserted and/or extracted from vectors.
- unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
-
- /// Estimate the cost overhead of SK_Alternate shuffle.
- unsigned getAltShuffleOverhead(Type *Ty) const;
-
- const TargetLoweringBase *getTLI() const {
- return TM->getSubtargetImpl()->getTargetLowering();
- }
-
-public:
- BasicTTI() : ImmutablePass(ID), TM(nullptr) {
- llvm_unreachable("This pass cannot be directly constructed");
- }
-
- BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
- initializeBasicTTIPass(*PassRegistry::getPassRegistry());
- }
-
- void initializePass() override {
- pushTTIStack(this);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- TargetTransformInfo::getAnalysisUsage(AU);
- }
-
- /// Pass identification.
- static char ID;
-
- /// Provide necessary pointer adjustments for the two base classes.
- void *getAdjustedAnalysisPointer(const void *ID) override {
- if (ID == &TargetTransformInfo::ID)
- return (TargetTransformInfo*)this;
- return this;
- }
-
- bool hasBranchDivergence() const override;
-
- /// \name Scalar TTI Implementations
- /// @{
-
- bool isLegalAddImmediate(int64_t imm) const override;
- bool isLegalICmpImmediate(int64_t imm) const override;
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const override;
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const override;
- bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
- bool isTypeLegal(Type *Ty) const override;
- unsigned getJumpBufAlignment() const override;
- unsigned getJumpBufSize() const override;
- bool shouldBuildLookupTables() const override;
- bool haveFastSqrt(Type *Ty) const override;
- void getUnrollingPreferences(const Function *F, Loop *L,
- UnrollingPreferences &UP) const override;
-
- /// @}
-
- /// \name Vector TTI Implementations
- /// @{
-
- unsigned getNumberOfRegisters(bool Vector) const override;
- unsigned getMaxInterleaveFactor() const override;
- unsigned getRegisterBitWidth(bool Vector) const override;
- unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
- OperandValueKind, OperandValueProperties,
- OperandValueProperties) const override;
- unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
- int Index, Type *SubTp) const override;
- unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const override;
- unsigned getCFInstrCost(unsigned Opcode) const override;
- unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) const override;
- unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) const override;
- unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) const override;
- unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
- ArrayRef<Type*> Tys) const override;
- unsigned getNumberOfParts(Type *Tp) const override;
- unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
- unsigned getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwise) const override;
-
- /// @}
-};
-
-}
-
-INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
- "Target independent code generator's TTI", true, true, false)
-char BasicTTI::ID = 0;
-
-ImmutablePass *
-llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
- return new BasicTTI(TM);
-}
-
-bool BasicTTI::hasBranchDivergence() const { return false; }
-
-bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
- return getTLI()->isLegalAddImmediate(imm);
-}
-
-bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
- return getTLI()->isLegalICmpImmediate(imm);
-}
-
-bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->isLegalAddressingMode(AM, Ty);
-}
-
-int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->getScalingFactorCost(AM, Ty);
-}
-
-bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
- return getTLI()->isTruncateFree(Ty1, Ty2);
-}
-
-bool BasicTTI::isTypeLegal(Type *Ty) const {
- EVT T = getTLI()->getValueType(Ty);
- return getTLI()->isTypeLegal(T);
-}
-
-unsigned BasicTTI::getJumpBufAlignment() const {
- return getTLI()->getJumpBufAlignment();
-}
-
-unsigned BasicTTI::getJumpBufSize() const {
- return getTLI()->getJumpBufSize();
-}
-
-bool BasicTTI::shouldBuildLookupTables() const {
- const TargetLoweringBase *TLI = getTLI();
- return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
-}
-
-bool BasicTTI::haveFastSqrt(Type *Ty) const {
- const TargetLoweringBase *TLI = getTLI();
- EVT VT = TLI->getValueType(Ty);
- return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
-}
-
-void BasicTTI::getUnrollingPreferences(const Function *F, Loop *L,
- UnrollingPreferences &UP) const {
- // This unrolling functionality is target independent, but to provide some
- // motivation for its intended use, for x86:
-
- // According to the Intel 64 and IA-32 Architectures Optimization Reference
- // Manual, Intel Core models and later have a loop stream detector
- // (and associated uop queue) that can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have no more than 4 (8 for Nehalem and later) branches
- // taken, and none of them may be calls.
- // - The loop can have no more than 18 (28 for Nehalem and later) uops.
-
- // According to the Software Optimization Guide for AMD Family 15h Processors,
- // models 30h-4fh (Steamroller and later) have a loop predictor and loop
- // buffer which can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have fewer than 16 branches
- // - The loop must have less than 40 uops in all executed loop branches
-
- // The number of taken branches in a loop is hard to estimate here, and
- // benchmarking has revealed that it is better not to be conservative when
- // estimating the branch count. As a result, we'll ignore the branch limits
- // until someone finds a case where it matters in practice.
-
- unsigned MaxOps;
- const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>(F);
- if (PartialUnrollingThreshold.getNumOccurrences() > 0)
- MaxOps = PartialUnrollingThreshold;
- else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
- MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
- else
- return;
-
- // Scan the loop: don't unroll loops with calls.
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I) {
- BasicBlock *BB = *I;
-
- for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
- if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
- ImmutableCallSite CS(J);
- if (const Function *F = CS.getCalledFunction()) {
- if (!TopTTI->isLoweredToCall(F))
- continue;
- }
-
- return;
- }
- }
-
- // Enable runtime and partial unrolling up to the specified size.
- UP.Partial = UP.Runtime = true;
- UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
-}
-
-//===----------------------------------------------------------------------===//
-//
-// Calls used by the vectorizers.
-//
-//===----------------------------------------------------------------------===//
-
-unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
- bool Extract) const {
- assert (Ty->isVectorTy() && "Can only scalarize vectors");
- unsigned Cost = 0;
-
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- if (Insert)
- Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- if (Extract)
- Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
-
- return Cost;
-}
-
-unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
- return 1;
-}
-
-unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
- return 32;
-}
-
-unsigned BasicTTI::getMaxInterleaveFactor() const {
- return 1;
-}
-
-unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind, OperandValueKind,
- OperandValueProperties,
- OperandValueProperties) const {
- // Check if any of the operands are vector operands.
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
-
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
-
- bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
- // Assume that floating point arithmetic operations cost twice as much as
- // integer operations.
- unsigned OpCost = (IsFloat ? 2 : 1);
-
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that there is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return LT.first * 2 * OpCost;
- return LT.first * 1 * OpCost;
- }
-
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // thare the code is twice as expensive.
- return LT.first * 2 * OpCost;
- }
-
- // Else, assume that we need to scalarize this op.
- if (Ty->isVectorTy()) {
- unsigned Num = Ty->getVectorNumElements();
- unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
- // return the cost of multiple scalar invocation plus the cost of inserting
- // and extracting the values.
- return getScalarizationOverhead(Ty, true, true) + Num * Cost;
- }
-
- // We don't know anything about this scalar instruction.
- return OpCost;
-}
-
-unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
- assert(Ty->isVectorTy() && "Can only shuffle vectors");
- unsigned Cost = 0;
- // Shuffle cost is equal to the cost of extracting element from its argument
- // plus the cost of inserting them onto the result vector.
-
- // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
- // 0 of first vector, index 1 of second vector,index 2 of first vector and
- // finally index 3 of second vector and insert them at index <0,1,2,3> of
- // result vector.
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
- return Cost;
-}
-
-unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) const {
- if (Kind == SK_Alternate) {
- return getAltShuffleOverhead(Tp);
- }
- return 1;
-}
-
-unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
-
- std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
- std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
-
- // Check for NOOP conversions.
- if (SrcLT.first == DstLT.first &&
- SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
-
- // Bitcast between types that are legalized to the same type are free.
- if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
- return 0;
- }
-
- if (Opcode == Instruction::Trunc &&
- TLI->isTruncateFree(SrcLT.second, DstLT.second))
- return 0;
-
- if (Opcode == Instruction::ZExt &&
- TLI->isZExtFree(SrcLT.second, DstLT.second))
- return 0;
-
- // If the cast is marked as legal (or promote) then assume low cost.
- if (SrcLT.first == DstLT.first &&
- TLI->isOperationLegalOrPromote(ISD, DstLT.second))
- return 1;
-
- // Handle scalar conversions.
- if (!Src->isVectorTy() && !Dst->isVectorTy()) {
-
- // Scalar bitcasts are usually free.
- if (Opcode == Instruction::BitCast)
- return 0;
-
- // Just check the op cost. If the operation is legal then assume it costs 1.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return 1;
-
- // Assume that illegal scalar instruction are expensive.
- return 4;
- }
-
- // Check vector-to-vector casts.
- if (Dst->isVectorTy() && Src->isVectorTy()) {
-
- // If the cast is between same-sized registers, then the check is simple.
- if (SrcLT.first == DstLT.first &&
- SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
-
- // Assume that Zext is done using AND.
- if (Opcode == Instruction::ZExt)
- return 1;
-
- // Assume that sext is done using SHL and SRA.
- if (Opcode == Instruction::SExt)
- return 2;
-
- // Just check the op cost. If the operation is legal then assume it costs
- // 1 and multiply by the type-legalization overhead.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return SrcLT.first * 1;
- }
-
- // If we are converting vectors and the operation is illegal, or
- // if the vectors are legalized to different types, estimate the
- // scalarization costs.
- unsigned Num = Dst->getVectorNumElements();
- unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
- Src->getScalarType());
-
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- return getScalarizationOverhead(Dst, true, true) + Num * Cost;
- }
-
- // We already handled vector-to-vector and scalar-to-scalar conversions. This
- // is where we handle bitcast between vectors and scalars. We need to assume
- // that the conversion is scalarized in one way or another.
- if (Opcode == Instruction::BitCast)
- // Illegal bitcasts are done by storing and loading from a stack slot.
- return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
- (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
-
- llvm_unreachable("Unhandled cast");
- }
-
-unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
- // Branches are assumed to be predicted.
- return 0;
-}
-
-unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) const {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
-
- // Selects on vectors are actually vector selects.
- if (ISD == ISD::SELECT) {
- assert(CondTy && "CondTy must exist");
- if (CondTy->isVectorTy())
- ISD = ISD::VSELECT;
- }
-
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
-
- if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
- !TLI->isOperationExpand(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1. Multiply
- // by the type-legalization overhead.
- return LT.first * 1;
- }
-
- // Otherwise, assume that the cast is scalarized.
- if (ValTy->isVectorTy()) {
- unsigned Num = ValTy->getVectorNumElements();
- if (CondTy)
- CondTy = CondTy->getScalarType();
- unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
- CondTy);
-
- // Return the cost of multiple scalar invocation plus the cost of inserting
- // and extracting the values.
- return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
- }
-
- // Unknown scalar opcode.
- return 1;
-}
-
-unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) const {
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Val->getScalarType());
-
- return LT.first;
-}
-
-unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) const {
- assert(!Src->isVoidTy() && "Invalid type");
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
-
- // Assuming that all loads of legal types cost 1.
- unsigned Cost = LT.first;
-
- if (Src->isVectorTy() &&
- Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
- // This is a vector load that legalizes to a larger type than the vector
- // itself. Unless the corresponding extending load or truncating store is
- // legal, then this will scalarize.
- TargetLowering::LegalizeAction LA = TargetLowering::Expand;
- EVT MemVT = getTLI()->getValueType(Src, true);
- if (MemVT.isSimple() && MemVT != MVT::Other) {
- if (Opcode == Instruction::Store)
- LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
- else
- LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
- }
-
- if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
- // This is a vector load/store for some illegal type that is scalarized.
- // We must account for the cost of building or decomposing the vector.
- Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
- Opcode == Instruction::Store);
- }
- }
-
- return Cost;
-}
-
-unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> Tys) const {
- unsigned ISD = 0;
- switch (IID) {
- default: {
- // Assume that we need to scalarize this intrinsic.
- unsigned ScalarizationCost = 0;
- unsigned ScalarCalls = 1;
- if (RetTy->isVectorTy()) {
- ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
- ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
- }
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- if (Tys[i]->isVectorTy()) {
- ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
- ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
- }
- }
-
- return ScalarCalls + ScalarizationCost;
- }
- // Look for intrinsics that can be lowered directly or turned into a scalar
- // intrinsic call.
- case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
- case Intrinsic::sin: ISD = ISD::FSIN; break;
- case Intrinsic::cos: ISD = ISD::FCOS; break;
- case Intrinsic::exp: ISD = ISD::FEXP; break;
- case Intrinsic::exp2: ISD = ISD::FEXP2; break;
- case Intrinsic::log: ISD = ISD::FLOG; break;
- case Intrinsic::log10: ISD = ISD::FLOG10; break;
- case Intrinsic::log2: ISD = ISD::FLOG2; break;
- case Intrinsic::fabs: ISD = ISD::FABS; break;
- case Intrinsic::minnum: ISD = ISD::FMINNUM; break;
- case Intrinsic::maxnum: ISD = ISD::FMAXNUM; break;
- case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
- case Intrinsic::floor: ISD = ISD::FFLOOR; break;
- case Intrinsic::ceil: ISD = ISD::FCEIL; break;
- case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
- case Intrinsic::nearbyint:
- ISD = ISD::FNEARBYINT; break;
- case Intrinsic::rint: ISD = ISD::FRINT; break;
- case Intrinsic::round: ISD = ISD::FROUND; break;
- case Intrinsic::pow: ISD = ISD::FPOW; break;
- case Intrinsic::fma: ISD = ISD::FMA; break;
- case Intrinsic::fmuladd: ISD = ISD::FMA; break;
- // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return 0;
- }
-
- const TargetLoweringBase *TLI = getTLI();
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
-
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that there is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return LT.first * 2;
- return LT.first * 1;
- }
-
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // thare the code is twice as expensive.
- return LT.first * 2;
- }
-
- // If we can't lower fmuladd into an FMA estimate the cost as a floating
- // point mul followed by an add.
- if (IID == Intrinsic::fmuladd)
- return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
- TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
-
- // Else, assume that we need to scalarize this intrinsic. For math builtins
- // this will emit a costly libcall, adding call overhead and spills. Make it
- // very expensive.
- if (RetTy->isVectorTy()) {
- unsigned Num = RetTy->getVectorNumElements();
- unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
- Tys);
- return 10 * Cost * Num;
- }
-
- // This is going to be turned into a library call, make it expensive.
- return 10;
-}
-
-unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
- return LT.first;
-}
-
-unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
- return 0;
-}
+// This flag is used by the template base class for BasicTTIImpl, and here to
+// provide a definition.
+cl::opt<unsigned>
+ llvm::PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
+ cl::desc("Threshold for partial unrolling"),
+ cl::Hidden);
-unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwise) const {
- assert(Ty->isVectorTy() && "Expect a vector type");
- unsigned NumVecElts = Ty->getVectorNumElements();
- unsigned NumReduxLevels = Log2_32(NumVecElts);
- unsigned ArithCost = NumReduxLevels *
- TopTTI->getArithmeticInstrCost(Opcode, Ty);
- // Assume the pairwise shuffles add a cost.
- unsigned ShuffleCost =
- NumReduxLevels * (IsPairwise + 1) *
- TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
- return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
-}
+BasicTTIImpl::BasicTTIImpl(const TargetMachine *TM, Function &F)
+ : BaseT(TM), ST(TM->getSubtargetImpl(F)), TLI(ST->getTargetLowering()) {}