aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/MachineScheduler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/MachineScheduler.cpp')
-rw-r--r--lib/CodeGen/MachineScheduler.cpp707
1 files changed, 531 insertions, 176 deletions
diff --git a/lib/CodeGen/MachineScheduler.cpp b/lib/CodeGen/MachineScheduler.cpp
index a6c5a9f..e71c4df 100644
--- a/lib/CodeGen/MachineScheduler.cpp
+++ b/lib/CodeGen/MachineScheduler.cpp
@@ -53,6 +53,12 @@ static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
static bool ViewMISchedDAGs = false;
#endif // NDEBUG
+static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
+ cl::desc("Enable register pressure scheduling."), cl::init(true));
+
+static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
+ cl::desc("Enable cyclic critical path analysis."), cl::init(true));
+
static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
cl::desc("Enable load clustering."), cl::init(true));
@@ -66,6 +72,10 @@ static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
// DAG subtrees must have at least this many nodes.
static const unsigned MinSubtreeSize = 8;
+// Pin the vtables to this file.
+void MachineSchedStrategy::anchor() {}
+void ScheduleDAGMutation::anchor() {}
+
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//
@@ -95,6 +105,9 @@ public:
virtual void print(raw_ostream &O, const Module* = 0) const;
static char ID; // Class identification, replacement for typeinfo
+
+protected:
+ ScheduleDAGInstrs *createMachineScheduler();
};
} // namespace
@@ -149,12 +162,13 @@ DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
/// Forward declare the standard machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
+static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C);
/// Decrement this iterator until reaching the top or a non-debug instr.
-static MachineBasicBlock::iterator
-priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
+static MachineBasicBlock::const_iterator
+priorNonDebug(MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator Beg) {
assert(I != Beg && "reached the top of the region, cannot decrement");
while (--I != Beg) {
if (!I->isDebugValue())
@@ -163,10 +177,19 @@ priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
return I;
}
+/// Non-const version.
+static MachineBasicBlock::iterator
+priorNonDebug(MachineBasicBlock::iterator I,
+ MachineBasicBlock::const_iterator Beg) {
+ return const_cast<MachineInstr*>(
+ &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
+}
+
/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
-static MachineBasicBlock::iterator
-nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
+static MachineBasicBlock::const_iterator
+nextIfDebug(MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator End) {
for(; I != End; ++I) {
if (!I->isDebugValue())
break;
@@ -174,6 +197,34 @@ nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
return I;
}
+/// Non-const version.
+static MachineBasicBlock::iterator
+nextIfDebug(MachineBasicBlock::iterator I,
+ MachineBasicBlock::const_iterator End) {
+ // Cast the return value to nonconst MachineInstr, then cast to an
+ // instr_iterator, which does not check for null, finally return a
+ // bundle_iterator.
+ return MachineBasicBlock::instr_iterator(
+ const_cast<MachineInstr*>(
+ &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
+}
+
+/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
+ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
+ // Select the scheduler, or set the default.
+ MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
+ if (Ctor != useDefaultMachineSched)
+ return Ctor(this);
+
+ // Get the default scheduler set by the target for this function.
+ ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
+ if (Scheduler)
+ return Scheduler;
+
+ // Default to GenericScheduler.
+ return createGenericSched(this);
+}
+
/// Top-level MachineScheduler pass driver.
///
/// Visit blocks in function order. Divide each block into scheduling regions
@@ -209,18 +260,9 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
}
RegClassInfo->runOnMachineFunction(*MF);
- // Select the scheduler, or set the default.
- MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
- if (Ctor == useDefaultMachineSched) {
- // Get the default scheduler set by the target.
- Ctor = MachineSchedRegistry::getDefault();
- if (!Ctor) {
- Ctor = createConvergingSched;
- MachineSchedRegistry::setDefault(Ctor);
- }
- }
- // Instantiate the selected scheduler.
- OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
+ // Instantiate the selected scheduler for this target, function, and
+ // optimization level.
+ OwningPtr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
// Visit all machine basic blocks.
//
@@ -255,14 +297,15 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
// The next region starts above the previous region. Look backward in the
// instruction stream until we find the nearest boundary.
+ unsigned NumRegionInstrs = 0;
MachineBasicBlock::iterator I = RegionEnd;
- for(;I != MBB->begin(); --I, --RemainingInstrs) {
+ for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
break;
}
// Notify the scheduler of the region, even if we may skip scheduling
// it. Perhaps it still needs to be bundled.
- Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
+ Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
@@ -277,7 +320,8 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
<< "\n From: " << *I << " To: ";
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
else dbgs() << "End";
- dbgs() << " Remaining: " << RemainingInstrs << "\n");
+ dbgs() << " RegionInstrs: " << NumRegionInstrs
+ << " Remaining: " << RemainingInstrs << "\n");
// Schedule a region: possibly reorder instructions.
// This invalidates 'RegionEnd' and 'I'.
@@ -446,13 +490,19 @@ bool ScheduleDAGMI::checkSchedLimit() {
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
- unsigned endcount)
+ unsigned regioninstrs)
{
- ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
+ ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
// For convenience remember the end of the liveness region.
LiveRegionEnd =
(RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
+
+ SUPressureDiffs.clear();
+
+ SchedImpl->initPolicy(begin, end, regioninstrs);
+
+ ShouldTrackPressure = SchedImpl->shouldTrackPressure();
}
// Setup the register pressure trackers for the top scheduled top and bottom
@@ -483,9 +533,16 @@ void ScheduleDAGMI::initRegPressure() {
dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
};
+ // For each live out vreg reduce the pressure change associated with other
+ // uses of the same vreg below the live-out reaching def.
+ updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
+
// Account for liveness generated by the region boundary.
- if (LiveRegionEnd != RegionEnd)
- BotRPTracker.recede();
+ if (LiveRegionEnd != RegionEnd) {
+ SmallVector<unsigned, 8> LiveUses;
+ BotRPTracker.recede(&LiveUses);
+ updatePressureDiffs(LiveUses);
+ }
assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
@@ -500,34 +557,83 @@ void ScheduleDAGMI::initRegPressure() {
DEBUG(dbgs() << TRI->getRegPressureSetName(i)
<< " Limit " << Limit
<< " Actual " << RegionPressure[i] << "\n");
- RegionCriticalPSets.push_back(PressureElement(i, 0));
+ RegionCriticalPSets.push_back(PressureChange(i));
}
}
DEBUG(dbgs() << "Excess PSets: ";
for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
dbgs() << TRI->getRegPressureSetName(
- RegionCriticalPSets[i].PSetID) << " ";
+ RegionCriticalPSets[i].getPSet()) << " ";
dbgs() << "\n");
}
-// FIXME: When the pressure tracker deals in pressure differences then we won't
-// iterate over all RegionCriticalPSets[i].
void ScheduleDAGMI::
-updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
- for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
- unsigned ID = RegionCriticalPSets[i].PSetID;
- int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
- if ((int)NewMaxPressure[ID] > MaxUnits)
- MaxUnits = NewMaxPressure[ID];
+updateScheduledPressure(const SUnit *SU,
+ const std::vector<unsigned> &NewMaxPressure) {
+ const PressureDiff &PDiff = getPressureDiff(SU);
+ unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
+ for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
+ I != E; ++I) {
+ if (!I->isValid())
+ break;
+ unsigned ID = I->getPSet();
+ while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
+ ++CritIdx;
+ if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
+ if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
+ && NewMaxPressure[ID] <= INT16_MAX)
+ RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
+ }
+ unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
+ if (NewMaxPressure[ID] >= Limit - 2) {
+ DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
+ << NewMaxPressure[ID] << " > " << Limit << "(+ "
+ << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
+ }
}
- DEBUG(
- for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
- unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
- if (NewMaxPressure[i] > Limit ) {
- dbgs() << " " << TRI->getRegPressureSetName(i) << ": "
- << NewMaxPressure[i] << " > " << Limit << "\n";
+}
+
+/// Update the PressureDiff array for liveness after scheduling this
+/// instruction.
+void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
+ for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
+ /// FIXME: Currently assuming single-use physregs.
+ unsigned Reg = LiveUses[LUIdx];
+ DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+
+ // This may be called before CurrentBottom has been initialized. However,
+ // BotRPTracker must have a valid position. We want the value live into the
+ // instruction or live out of the block, so ask for the previous
+ // instruction's live-out.
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ VNInfo *VNI;
+ MachineBasicBlock::const_iterator I =
+ nextIfDebug(BotRPTracker.getPos(), BB->end());
+ if (I == BB->end())
+ VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+ else {
+ LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
+ VNI = LRQ.valueIn();
+ }
+ // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
+ assert(VNI && "No live value at use.");
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ SUnit *SU = UI->SU;
+ DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
+ << *SU->getInstr());
+ // If this use comes before the reaching def, it cannot be a last use, so
+ // descrease its pressure change.
+ if (!SU->isScheduled && SU != &ExitSU) {
+ LiveQueryResult LRQ
+ = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
+ if (LRQ.valueIn() == VNI)
+ getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
}
- });
+ }
+ }
}
/// schedule - Called back from MachineScheduler::runOnMachineFunction
@@ -585,6 +691,13 @@ void ScheduleDAGMI::schedule() {
/// Build the DAG and setup three register pressure trackers.
void ScheduleDAGMI::buildDAGWithRegPressure() {
+ if (!ShouldTrackPressure) {
+ RPTracker.reset();
+ RegionCriticalPSets.clear();
+ buildSchedGraph(AA);
+ return;
+ }
+
// Initialize the register pressure tracker used by buildSchedGraph.
RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
/*TrackUntiedDefs=*/true);
@@ -594,7 +707,7 @@ void ScheduleDAGMI::buildDAGWithRegPressure() {
RPTracker.recede();
// Build the DAG, and compute current register pressure.
- buildSchedGraph(AA, &RPTracker);
+ buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
// Initialize top/bottom trackers after computing region pressure.
initRegPressure();
@@ -637,6 +750,91 @@ void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
ExitSU.biasCriticalPath();
}
+/// Compute the max cyclic critical path through the DAG. The scheduling DAG
+/// only provides the critical path for single block loops. To handle loops that
+/// span blocks, we could use the vreg path latencies provided by
+/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
+/// available for use in the scheduler.
+///
+/// The cyclic path estimation identifies a def-use pair that crosses the back
+/// edge and considers the depth and height of the nodes. For example, consider
+/// the following instruction sequence where each instruction has unit latency
+/// and defines an epomymous virtual register:
+///
+/// a->b(a,c)->c(b)->d(c)->exit
+///
+/// The cyclic critical path is a two cycles: b->c->b
+/// The acyclic critical path is four cycles: a->b->c->d->exit
+/// LiveOutHeight = height(c) = len(c->d->exit) = 2
+/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
+/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
+/// LiveInDepth = depth(b) = len(a->b) = 1
+///
+/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
+/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
+/// CyclicCriticalPath = min(2, 2) = 2
+unsigned ScheduleDAGMI::computeCyclicCriticalPath() {
+ // This only applies to single block loop.
+ if (!BB->isSuccessor(BB))
+ return 0;
+
+ unsigned MaxCyclicLatency = 0;
+ // Visit each live out vreg def to find def/use pairs that cross iterations.
+ ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
+ for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
+ RI != RE; ++RI) {
+ unsigned Reg = *RI;
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+ if (!DefVNI)
+ continue;
+
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
+ const SUnit *DefSU = getSUnit(DefMI);
+ if (!DefSU)
+ continue;
+
+ unsigned LiveOutHeight = DefSU->getHeight();
+ unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
+ // Visit all local users of the vreg def.
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ if (UI->SU == &ExitSU)
+ continue;
+
+ // Only consider uses of the phi.
+ LiveQueryResult LRQ =
+ LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
+ if (!LRQ.valueIn()->isPHIDef())
+ continue;
+
+ // Assume that a path spanning two iterations is a cycle, which could
+ // overestimate in strange cases. This allows cyclic latency to be
+ // estimated as the minimum slack of the vreg's depth or height.
+ unsigned CyclicLatency = 0;
+ if (LiveOutDepth > UI->SU->getDepth())
+ CyclicLatency = LiveOutDepth - UI->SU->getDepth();
+
+ unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
+ if (LiveInHeight > LiveOutHeight) {
+ if (LiveInHeight - LiveOutHeight < CyclicLatency)
+ CyclicLatency = LiveInHeight - LiveOutHeight;
+ }
+ else
+ CyclicLatency = 0;
+
+ DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
+ << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
+ if (CyclicLatency > MaxCyclicLatency)
+ MaxCyclicLatency = CyclicLatency;
+ }
+ }
+ DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
+ return MaxCyclicLatency;
+}
+
/// Identify DAG roots and setup scheduler queues.
void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
ArrayRef<SUnit*> BotRoots) {
@@ -664,11 +862,13 @@ void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
SchedImpl->registerRoots();
// Advance past initial DebugValues.
- assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
- TopRPTracker.setPos(CurrentTop);
-
CurrentBottom = RegionEnd;
+
+ if (ShouldTrackPressure) {
+ assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
+ TopRPTracker.setPos(CurrentTop);
+ }
}
/// Move an instruction and update register pressure.
@@ -685,10 +885,12 @@ void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
TopRPTracker.setPos(MI);
}
- // Update top scheduled pressure.
- TopRPTracker.advance();
- assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
- updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
+ if (ShouldTrackPressure) {
+ // Update top scheduled pressure.
+ TopRPTracker.advance();
+ assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
+ updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
+ }
}
else {
assert(SU->isBottomReady() && "node still has unscheduled dependencies");
@@ -704,10 +906,14 @@ void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
moveInstruction(MI, CurrentBottom);
CurrentBottom = MI;
}
- // Update bottom scheduled pressure.
- BotRPTracker.recede();
- assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
- updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
+ if (ShouldTrackPressure) {
+ // Update bottom scheduled pressure.
+ SmallVector<unsigned, 8> LiveUses;
+ BotRPTracker.recede(&LiveUses);
+ assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
+ updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
+ updatePressureDiffs(LiveUses);
+ }
}
}
@@ -1113,13 +1319,13 @@ void CopyConstrain::apply(ScheduleDAGMI *DAG) {
}
//===----------------------------------------------------------------------===//
-// ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
+// GenericScheduler - Implementation of the generic MachineSchedStrategy.
//===----------------------------------------------------------------------===//
namespace {
-/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
+/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
-class ConvergingScheduler : public MachineSchedStrategy {
+class GenericScheduler : public MachineSchedStrategy {
public:
/// Represent the type of SchedCandidate found within a single queue.
/// pickNodeBidirectional depends on these listed by decreasing priority.
@@ -1129,7 +1335,7 @@ public:
TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
#ifndef NDEBUG
- static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
+ static const char *getReasonStr(GenericScheduler::CandReason Reason);
#endif
/// Policy for scheduling the next instruction in the candidate's zone.
@@ -1160,7 +1366,7 @@ public:
}
};
- /// Store the state used by ConvergingScheduler heuristics, required for the
+ /// Store the state used by GenericScheduler heuristics, required for the
/// lifetime of one invocation of pickNode().
struct SchedCandidate {
CandPolicy Policy;
@@ -1205,16 +1411,21 @@ public:
struct SchedRemainder {
// Critical path through the DAG in expected latency.
unsigned CriticalPath;
+ unsigned CyclicCritPath;
// Scaled count of micro-ops left to schedule.
unsigned RemIssueCount;
+ bool IsAcyclicLatencyLimited;
+
// Unscheduled resources
SmallVector<unsigned, 16> RemainingCounts;
void reset() {
CriticalPath = 0;
+ CyclicCritPath = 0;
RemIssueCount = 0;
+ IsAcyclicLatencyLimited = false;
RemainingCounts.clear();
}
@@ -1288,13 +1499,16 @@ public:
void reset() {
// A new HazardRec is created for each DAG and owned by SchedBoundary.
- delete HazardRec;
-
+ // Destroying and reconstructing it is very expensive though. So keep
+ // invalid, placeholder HazardRecs.
+ if (HazardRec && HazardRec->isEnabled()) {
+ delete HazardRec;
+ HazardRec = 0;
+ }
Available.clear();
Pending.clear();
CheckPending = false;
NextSUs.clear();
- HazardRec = 0;
CurrCycle = 0;
CurrMOps = 0;
MinReadyCycle = UINT_MAX;
@@ -1316,7 +1530,7 @@ public:
/// PendingFlag set.
SchedBoundary(unsigned ID, const Twine &Name):
DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
- Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
+ Pending(ID << GenericScheduler::LogMaxQID, Name+".P"),
HazardRec(0) {
reset();
}
@@ -1327,7 +1541,7 @@ public:
SchedRemainder *rem);
bool isTop() const {
- return Available.getID() == ConvergingScheduler::TopQID;
+ return Available.getID() == GenericScheduler::TopQID;
}
#ifndef NDEBUG
@@ -1399,6 +1613,7 @@ public:
};
private:
+ const MachineSchedContext *Context;
ScheduleDAGMI *DAG;
const TargetSchedModel *SchedModel;
const TargetRegisterInfo *TRI;
@@ -1408,6 +1623,7 @@ private:
SchedBoundary Top;
SchedBoundary Bot;
+ MachineSchedPolicy RegionPolicy;
public:
/// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
enum {
@@ -1416,8 +1632,15 @@ public:
LogMaxQID = 2
};
- ConvergingScheduler():
- DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+ GenericScheduler(const MachineSchedContext *C):
+ Context(C), DAG(0), SchedModel(0), TRI(0),
+ Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+
+ virtual void initPolicy(MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ unsigned NumRegionInstrs);
+
+ bool shouldTrackPressure() const { return RegionPolicy.ShouldTrackPressure; }
virtual void initialize(ScheduleDAGMI *dag);
@@ -1432,6 +1655,8 @@ public:
virtual void registerRoots();
protected:
+ void checkAcyclicLatency();
+
void tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone,
@@ -1452,7 +1677,7 @@ protected:
};
} // namespace
-void ConvergingScheduler::SchedRemainder::
+void GenericScheduler::SchedRemainder::
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
reset();
if (!SchedModel->hasInstrSchedModel())
@@ -1473,7 +1698,7 @@ init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
}
}
-void ConvergingScheduler::SchedBoundary::
+void GenericScheduler::SchedBoundary::
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
reset();
DAG = dag;
@@ -1483,7 +1708,49 @@ init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
}
-void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
+/// Initialize the per-region scheduling policy.
+void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ unsigned NumRegionInstrs) {
+ const TargetMachine &TM = Context->MF->getTarget();
+
+ // Avoid setting up the register pressure tracker for small regions to save
+ // compile time. As a rough heuristic, only track pressure when the number of
+ // schedulable instructions exceeds half the integer register file.
+ unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
+ TM.getTargetLowering()->getRegClassFor(MVT::i32));
+
+ RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
+
+ // For generic targets, we default to bottom-up, because it's simpler and more
+ // compile-time optimizations have been implemented in that direction.
+ RegionPolicy.OnlyBottomUp = true;
+
+ // Allow the subtarget to override default policy.
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
+
+ // After subtarget overrides, apply command line options.
+ if (!EnableRegPressure)
+ RegionPolicy.ShouldTrackPressure = false;
+
+ // Check -misched-topdown/bottomup can force or unforce scheduling direction.
+ // e.g. -misched-bottomup=false allows scheduling in both directions.
+ assert((!ForceTopDown || !ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+ if (ForceBottomUp.getNumOccurrences() > 0) {
+ RegionPolicy.OnlyBottomUp = ForceBottomUp;
+ if (RegionPolicy.OnlyBottomUp)
+ RegionPolicy.OnlyTopDown = false;
+ }
+ if (ForceTopDown.getNumOccurrences() > 0) {
+ RegionPolicy.OnlyTopDown = ForceTopDown;
+ if (RegionPolicy.OnlyTopDown)
+ RegionPolicy.OnlyBottomUp = false;
+ }
+}
+
+void GenericScheduler::initialize(ScheduleDAGMI *dag) {
DAG = dag;
SchedModel = DAG->getSchedModel();
TRI = DAG->TRI;
@@ -1498,14 +1765,17 @@ void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
// are disabled, then these HazardRecs will be disabled.
const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
const TargetMachine &TM = DAG->MF.getTarget();
- Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
- Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
-
- assert((!ForceTopDown || !ForceBottomUp) &&
- "-misched-topdown incompatible with -misched-bottomup");
+ if (!Top.HazardRec) {
+ Top.HazardRec =
+ TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ }
+ if (!Bot.HazardRec) {
+ Bot.HazardRec =
+ TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ }
}
-void ConvergingScheduler::releaseTopNode(SUnit *SU) {
+void GenericScheduler::releaseTopNode(SUnit *SU) {
if (SU->isScheduled)
return;
@@ -1524,7 +1794,7 @@ void ConvergingScheduler::releaseTopNode(SUnit *SU) {
Top.releaseNode(SU, SU->TopReadyCycle);
}
-void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
+void GenericScheduler::releaseBottomNode(SUnit *SU) {
if (SU->isScheduled)
return;
@@ -1545,8 +1815,46 @@ void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
Bot.releaseNode(SU, SU->BotReadyCycle);
}
-void ConvergingScheduler::registerRoots() {
+/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
+/// critical path by more cycles than it takes to drain the instruction buffer.
+/// We estimate an upper bounds on in-flight instructions as:
+///
+/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
+/// InFlightIterations = AcyclicPath / CyclesPerIteration
+/// InFlightResources = InFlightIterations * LoopResources
+///
+/// TODO: Check execution resources in addition to IssueCount.
+void GenericScheduler::checkAcyclicLatency() {
+ if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
+ return;
+
+ // Scaled number of cycles per loop iteration.
+ unsigned IterCount =
+ std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
+ Rem.RemIssueCount);
+ // Scaled acyclic critical path.
+ unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
+ // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
+ unsigned InFlightCount =
+ (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
+ unsigned BufferLimit =
+ SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
+
+ Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
+
+ DEBUG(dbgs() << "IssueCycles="
+ << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
+ << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
+ << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
+ << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
+ << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
+ if (Rem.IsAcyclicLatencyLimited)
+ dbgs() << " ACYCLIC LATENCY LIMIT\n");
+}
+
+void GenericScheduler::registerRoots() {
Rem.CriticalPath = DAG->ExitSU.getDepth();
+
// Some roots may not feed into ExitSU. Check all of them in case.
for (std::vector<SUnit*>::const_iterator
I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
@@ -1554,6 +1862,11 @@ void ConvergingScheduler::registerRoots() {
Rem.CriticalPath = (*I)->getDepth();
}
DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+
+ if (EnableCyclicPath) {
+ Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
+ checkAcyclicLatency();
+ }
}
/// Does this SU have a hazard within the current instruction group.
@@ -1569,7 +1882,7 @@ void ConvergingScheduler::registerRoots() {
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
-bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
+bool GenericScheduler::SchedBoundary::checkHazard(SUnit *SU) {
if (HazardRec->isEnabled())
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
@@ -1583,7 +1896,7 @@ bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
}
// Find the unscheduled node in ReadySUs with the highest latency.
-unsigned ConvergingScheduler::SchedBoundary::
+unsigned GenericScheduler::SchedBoundary::
findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
SUnit *LateSU = 0;
unsigned RemLatency = 0;
@@ -1605,7 +1918,7 @@ findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
// Count resources in this zone and the remaining unscheduled
// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
// resource index, or zero if the zone is issue limited.
-unsigned ConvergingScheduler::SchedBoundary::
+unsigned GenericScheduler::SchedBoundary::
getOtherResourceCount(unsigned &OtherCritIdx) {
OtherCritIdx = 0;
if (!SchedModel->hasInstrSchedModel())
@@ -1633,7 +1946,7 @@ getOtherResourceCount(unsigned &OtherCritIdx) {
/// Set the CandPolicy for this zone given the current resources and latencies
/// inside and outside the zone.
-void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
+void GenericScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
SchedBoundary &OtherZone) {
// Now that potential stalls have been considered, apply preemptive heuristics
// based on the the total latency and resources inside and outside this
@@ -1692,7 +2005,7 @@ void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
Policy.DemandResIdx = OtherCritIdx;
}
-void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
+void GenericScheduler::SchedBoundary::releaseNode(SUnit *SU,
unsigned ReadyCycle) {
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
@@ -1710,7 +2023,7 @@ void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
}
/// Move the boundary of scheduled code by one cycle.
-void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
+void GenericScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
if (SchedModel->getMicroOpBufferSize() == 0) {
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
if (MinReadyCycle > NextCycle)
@@ -1748,7 +2061,7 @@ void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
}
-void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
+void GenericScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
unsigned Count) {
ExecutedResCounts[PIdx] += Count;
if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
@@ -1762,7 +2075,7 @@ void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
///
/// \return the next cycle at which the instruction may execute without
/// oversubscribing resources.
-unsigned ConvergingScheduler::SchedBoundary::
+unsigned GenericScheduler::SchedBoundary::
countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
unsigned Factor = SchedModel->getResourceFactor(PIdx);
unsigned Count = Factor * Cycles;
@@ -1787,7 +2100,7 @@ countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
}
/// Move the boundary of scheduled code by one SUnit.
-void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
+void GenericScheduler::SchedBoundary::bumpNode(SUnit *SU) {
// Update the reservation table.
if (HazardRec->isEnabled()) {
if (!isTop() && SU->isCall) {
@@ -1891,7 +2204,7 @@ void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
-void ConvergingScheduler::SchedBoundary::releasePending() {
+void GenericScheduler::SchedBoundary::releasePending() {
// If the available queue is empty, it is safe to reset MinReadyCycle.
if (Available.empty())
MinReadyCycle = UINT_MAX;
@@ -1921,7 +2234,7 @@ void ConvergingScheduler::SchedBoundary::releasePending() {
}
/// Remove SU from the ready set for this boundary.
-void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
+void GenericScheduler::SchedBoundary::removeReady(SUnit *SU) {
if (Available.isInQueue(SU))
Available.remove(Available.find(SU));
else {
@@ -1933,7 +2246,7 @@ void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
/// If this queue only has one ready candidate, return it. As a side effect,
/// defer any nodes that now hit a hazard, and advance the cycle until at least
/// one node is ready. If multiple instructions are ready, return NULL.
-SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
+SUnit *GenericScheduler::SchedBoundary::pickOnlyChoice() {
if (CheckPending)
releasePending();
@@ -1962,7 +2275,7 @@ SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
#ifndef NDEBUG
// This is useful information to dump after bumpNode.
// Note that the Queue contents are more useful before pickNodeFromQueue.
-void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
+void GenericScheduler::SchedBoundary::dumpScheduledState() {
unsigned ResFactor;
unsigned ResCount;
if (ZoneCritResIdx) {
@@ -1985,7 +2298,7 @@ void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
}
#endif
-void ConvergingScheduler::SchedCandidate::
+void GenericScheduler::SchedCandidate::
initResourceDelta(const ScheduleDAGMI *DAG,
const TargetSchedModel *SchedModel) {
if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
@@ -2005,9 +2318,9 @@ initResourceDelta(const ScheduleDAGMI *DAG,
/// Return true if this heuristic determines order.
static bool tryLess(int TryVal, int CandVal,
- ConvergingScheduler::SchedCandidate &TryCand,
- ConvergingScheduler::SchedCandidate &Cand,
- ConvergingScheduler::CandReason Reason) {
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
if (TryVal < CandVal) {
TryCand.Reason = Reason;
return true;
@@ -2022,9 +2335,9 @@ static bool tryLess(int TryVal, int CandVal,
}
static bool tryGreater(int TryVal, int CandVal,
- ConvergingScheduler::SchedCandidate &TryCand,
- ConvergingScheduler::SchedCandidate &Cand,
- ConvergingScheduler::CandReason Reason) {
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
if (TryVal > CandVal) {
TryCand.Reason = Reason;
return true;
@@ -2038,26 +2351,26 @@ static bool tryGreater(int TryVal, int CandVal,
return false;
}
-static bool tryPressure(const PressureElement &TryP,
- const PressureElement &CandP,
- ConvergingScheduler::SchedCandidate &TryCand,
- ConvergingScheduler::SchedCandidate &Cand,
- ConvergingScheduler::CandReason Reason) {
+static bool tryPressure(const PressureChange &TryP,
+ const PressureChange &CandP,
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
+ int TryRank = TryP.getPSetOrMax();
+ int CandRank = CandP.getPSetOrMax();
// If both candidates affect the same set, go with the smallest increase.
- if (TryP.PSetID == CandP.PSetID) {
- return tryLess(TryP.UnitIncrease, CandP.UnitIncrease, TryCand, Cand,
+ if (TryRank == CandRank) {
+ return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
Reason);
}
// If one candidate decreases and the other increases, go with it.
- if (tryLess(TryP.UnitIncrease < 0, CandP.UnitIncrease < 0, TryCand, Cand,
+ // Invalid candidates have UnitInc==0.
+ if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
Reason)) {
return true;
}
- // If TryP has lower Rank, it has a higher priority.
- int TryRank = TryP.PSetRank();
- int CandRank = CandP.PSetRank();
// If the candidates are decreasing pressure, reverse priority.
- if (TryP.UnitIncrease < 0)
+ if (TryP.getUnitInc() < 0)
std::swap(TryRank, CandRank);
return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
}
@@ -2094,6 +2407,32 @@ static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
return 0;
}
+static bool tryLatency(GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::SchedBoundary &Zone) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, GenericScheduler::TopDepthReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, GenericScheduler::TopPathReduce))
+ return true;
+ }
+ else {
+ if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, GenericScheduler::BotHeightReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, GenericScheduler::BotPathReduce))
+ return true;
+ }
+ return false;
+}
+
/// Apply a set of heursitics to a new candidate. Heuristics are currently
/// hierarchical. This may be more efficient than a graduated cost model because
/// we don't need to evaluate all aspects of the model for each node in the
@@ -2105,16 +2444,44 @@ static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
/// \param Zone describes the scheduled zone that we are extending.
/// \param RPTracker describes reg pressure within the scheduled zone.
/// \param TempTracker is a scratch pressure tracker to reuse in queries.
-void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
+void GenericScheduler::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone,
const RegPressureTracker &RPTracker,
RegPressureTracker &TempTracker) {
- // Always initialize TryCand's RPDelta.
- TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
- DAG->getRegionCriticalPSets(),
- DAG->getRegPressure().MaxSetPressure);
+ if (DAG->isTrackingPressure()) {
+ // Always initialize TryCand's RPDelta.
+ if (Zone.isTop()) {
+ TempTracker.getMaxDownwardPressureDelta(
+ TryCand.SU->getInstr(),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ else {
+ if (VerifyScheduling) {
+ TempTracker.getMaxUpwardPressureDelta(
+ TryCand.SU->getInstr(),
+ &DAG->getPressureDiff(TryCand.SU),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ else {
+ RPTracker.getUpwardPressureDelta(
+ TryCand.SU->getInstr(),
+ DAG->getPressureDiff(TryCand.SU),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ }
+ }
+ DEBUG(if (TryCand.RPDelta.Excess.isValid())
+ dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
+ << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
+ << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
// Initialize the candidate if needed.
if (!Cand.isValid()) {
@@ -2129,13 +2496,22 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
// Avoid exceeding the target's limit. If signed PSetID is negative, it is
// invalid; convert it to INT_MAX to give it lowest priority.
- if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
- RegExcess))
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
+ Cand.RPDelta.Excess,
+ TryCand, Cand, RegExcess))
return;
// Avoid increasing the max critical pressure in the scheduled region.
- if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
- TryCand, Cand, RegCritical))
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
+ Cand.RPDelta.CriticalMax,
+ TryCand, Cand, RegCritical))
+ return;
+
+ // For loops that are acyclic path limited, aggressively schedule for latency.
+ // This can result in very long dependence chains scheduled in sequence, so
+ // once every cycle (when CurrMOps == 0), switch to normal heuristics.
+ if (Rem.IsAcyclicLatencyLimited && !Zone.CurrMOps
+ && tryLatency(TryCand, Cand, Zone))
return;
// Keep clustered nodes together to encourage downstream peephole
@@ -2157,8 +2533,9 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
return;
}
// Avoid increasing the max pressure of the entire region.
- if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax,
- TryCand, Cand, RegMax))
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
+ Cand.RPDelta.CurrentMax,
+ TryCand, Cand, RegMax))
return;
// Avoid critical resource consumption and balance the schedule.
@@ -2172,27 +2549,10 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
return;
// Avoid serializing long latency dependence chains.
- if (Cand.Policy.ReduceLatency) {
- if (Zone.isTop()) {
- if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, TopDepthReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, TopPathReduce))
- return;
- }
- else {
- if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, BotHeightReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, BotPathReduce))
- return;
- }
+ // For acyclic path limited loops, latency was already checked above.
+ if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
+ && tryLatency(TryCand, Cand, Zone)) {
+ return;
}
// Prefer immediate defs/users of the last scheduled instruction. This is a
@@ -2210,8 +2570,8 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
}
#ifndef NDEBUG
-const char *ConvergingScheduler::getReasonStr(
- ConvergingScheduler::CandReason Reason) {
+const char *GenericScheduler::getReasonStr(
+ GenericScheduler::CandReason Reason) {
switch (Reason) {
case NoCand: return "NOCAND ";
case PhysRegCopy: return "PREG-COPY";
@@ -2232,8 +2592,8 @@ const char *ConvergingScheduler::getReasonStr(
llvm_unreachable("Unknown reason!");
}
-void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
- PressureElement P;
+void GenericScheduler::traceCandidate(const SchedCandidate &Cand) {
+ PressureChange P;
unsigned ResIdx = 0;
unsigned Latency = 0;
switch (Cand.Reason) {
@@ -2269,8 +2629,8 @@ void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
}
dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
if (P.isValid())
- dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
- << ":" << P.UnitIncrease << " ";
+ dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
+ << ":" << P.getUnitInc() << " ";
else
dbgs() << " ";
if (ResIdx)
@@ -2285,12 +2645,12 @@ void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
}
#endif
-/// Pick the best candidate from the top queue.
+/// Pick the best candidate from the queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
-void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
+void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
ReadyQueue &Q = Zone.Available;
@@ -2315,14 +2675,14 @@ void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
}
}
-static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
+static void tracePick(const GenericScheduler::SchedCandidate &Cand,
bool IsTop) {
DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
- << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
+ << GenericScheduler::getReasonStr(Cand.Reason) << '\n');
}
/// Pick the best candidate node from either the top or bottom queue.
-SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
+SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
@@ -2377,7 +2737,7 @@ SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
}
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
-SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
+SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
@@ -2385,24 +2745,26 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
}
SUnit *SU;
do {
- if (ForceTopDown) {
+ if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
SchedCandidate TopCand(NoPolicy);
pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
- assert(TopCand.Reason != NoCand && "failed to find the first candidate");
+ assert(TopCand.Reason != NoCand && "failed to find a candidate");
+ tracePick(TopCand, true);
SU = TopCand.SU;
}
IsTopNode = true;
}
- else if (ForceBottomUp) {
+ else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
SchedCandidate BotCand(NoPolicy);
pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
- assert(BotCand.Reason != NoCand && "failed to find the first candidate");
+ assert(BotCand.Reason != NoCand && "failed to find a candidate");
+ tracePick(BotCand, false);
SU = BotCand.SU;
}
IsTopNode = false;
@@ -2421,7 +2783,7 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
return SU;
}
-void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
+void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
MachineBasicBlock::iterator InsertPos = SU->getInstr();
if (!isTop)
@@ -2452,7 +2814,7 @@ void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
///
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
/// them here. See comments in biasPhysRegCopy.
-void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
if (IsTopNode) {
SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
Top.bumpNode(SU);
@@ -2469,25 +2831,23 @@ void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
/// Create the standard converging machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
- assert((!ForceTopDown || !ForceBottomUp) &&
- "-misched-topdown incompatible with -misched-bottomup");
- ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
+static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C) {
+ ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new GenericScheduler(C));
// Register DAG post-processors.
//
// FIXME: extend the mutation API to allow earlier mutations to instantiate
// data and pass it to later mutations. Have a single mutation that gathers
// the interesting nodes in one pass.
DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
- if (EnableLoadCluster)
+ if (EnableLoadCluster && DAG->TII->enableClusterLoads())
DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
if (EnableMacroFusion)
DAG->addMutation(new MacroFusion(DAG->TII));
return DAG;
}
static MachineSchedRegistry
-ConvergingSchedRegistry("converge", "Standard converging scheduler.",
- createConvergingSched);
+GenericSchedRegistry("converge", "Standard converging scheduler.",
+ createGenericSched);
//===----------------------------------------------------------------------===//
// ILP Scheduler. Currently for experimental analysis of heuristics.
@@ -2529,15 +2889,6 @@ struct ILPOrder {
/// \brief Schedule based on the ILP metric.
class ILPScheduler : public MachineSchedStrategy {
- /// In case all subtrees are eventually connected to a common root through
- /// data dependence (e.g. reduction), place an upper limit on their size.
- ///
- /// FIXME: A subtree limit is generally good, but in the situation commented
- /// above, where multiple similar subtrees feed a common root, we should
- /// only split at a point where the resulting subtrees will be balanced.
- /// (a motivating test case must be found).
- static const unsigned SubtreeLimit = 16;
-
ScheduleDAGMI *DAG;
ILPOrder Cmp;
@@ -2721,7 +3072,7 @@ struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
}
static bool isNodeHidden(const SUnit *Node) {
- return (Node->NumPreds > 10 || Node->NumSuccs > 10);
+ return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
}
static bool hasNodeAddressLabel(const SUnit *Node,
@@ -2744,7 +3095,11 @@ struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
std::string Str;
raw_string_ostream SS(Str);
- SS << "SU(" << SU->NodeNum << ')';
+ const SchedDFSResult *DFS =
+ static_cast<const ScheduleDAGMI*>(G)->getDFSResult();
+ SS << "SU:" << SU->NodeNum;
+ if (DFS)
+ SS << " I:" << DFS->getNumInstrs(SU);
return SS.str();
}
static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {