diff options
Diffstat (limited to 'lib/CodeGen/SplitKit.cpp')
-rw-r--r-- | lib/CodeGen/SplitKit.cpp | 1126 |
1 files changed, 622 insertions, 504 deletions
diff --git a/lib/CodeGen/SplitKit.cpp b/lib/CodeGen/SplitKit.cpp index 29474f0..ed2725e 100644 --- a/lib/CodeGen/SplitKit.cpp +++ b/lib/CodeGen/SplitKit.cpp @@ -12,11 +12,13 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "splitter" +#define DEBUG_TYPE "regalloc" #include "SplitKit.h" +#include "LiveRangeEdit.h" #include "VirtRegMap.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" @@ -68,7 +70,8 @@ void SplitAnalysis::analyzeUses() { MachineBasicBlock *MBB = MI->getParent(); if (usingBlocks_[MBB]++) continue; - if (MachineLoop *Loop = loops_.getLoopFor(MBB)) + for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; + Loop = Loop->getParentLoop()) usingLoops_[Loop]++; } DEBUG(dbgs() << " counted " @@ -77,32 +80,13 @@ void SplitAnalysis::analyzeUses() { << usingLoops_.size() << " loops.\n"); } -/// removeUse - Update statistics by noting that MI no longer uses curli. -void SplitAnalysis::removeUse(const MachineInstr *MI) { - if (!usingInstrs_.erase(MI)) - return; - - // Decrement MBB count. - const MachineBasicBlock *MBB = MI->getParent(); - BlockCountMap::iterator bi = usingBlocks_.find(MBB); - assert(bi != usingBlocks_.end() && "MBB missing"); - assert(bi->second && "0 count in map"); - if (--bi->second) - return; - // No more uses in MBB. - usingBlocks_.erase(bi); - - // Decrement loop count. - MachineLoop *Loop = loops_.getLoopFor(MBB); - if (!Loop) - return; - LoopCountMap::iterator li = usingLoops_.find(Loop); - assert(li != usingLoops_.end() && "Loop missing"); - assert(li->second && "0 count in map"); - if (--li->second) - return; - // No more blocks in Loop. - usingLoops_.erase(li); +void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { + for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { + unsigned count = usingBlocks_.lookup(*I); + OS << " BB#" << (*I)->getNumber(); + if (count) + OS << '(' << count << ')'; + } } // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, @@ -131,6 +115,15 @@ void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { } } +void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { + OS << "Loop:"; + print(B.Loop, OS); + OS << ", preds:"; + print(B.Preds, OS); + OS << ", exits:"; + print(B.Exits, OS); +} + /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in /// and around the Loop. SplitAnalysis::LoopPeripheralUse SplitAnalysis:: @@ -150,43 +143,72 @@ analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { if (Blocks.Loop.count(MBB)) continue; // It must be an unrelated block. + DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); return OutsideLoop; } return use; } /// getCriticalExits - It may be necessary to partially break critical edges -/// leaving the loop if an exit block has phi uses of curli. Collect the exit -/// blocks that need special treatment into CriticalExits. +/// leaving the loop if an exit block has predecessors from outside the loop +/// periphery. void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, BlockPtrSet &CriticalExits) { CriticalExits.clear(); - // A critical exit block contains a phi def of curli, and has a predecessor - // that is not in the loop nor a loop predecessor. - // For such an exit block, the edges carrying the new variable must be moved - // to a new pre-exit block. + // A critical exit block has curli live-in, and has a predecessor that is not + // in the loop nor a loop predecessor. For such an exit block, the edges + // carrying the new variable must be moved to a new pre-exit block. for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); I != E; ++I) { - const MachineBasicBlock *Succ = *I; - SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); - VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); - // This exit may not have curli live in at all. No need to split. - if (!SuccVNI) + const MachineBasicBlock *Exit = *I; + // A single-predecessor exit block is definitely not a critical edge. + if (Exit->pred_size() == 1) continue; - // If this is not a PHI def, it is either using a value from before the - // loop, or a value defined inside the loop. Both are safe. - if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) + // This exit may not have curli live in at all. No need to split. + if (!lis_.isLiveInToMBB(*curli_, Exit)) continue; - // This exit block does have a PHI. Does it also have a predecessor that is - // not a loop block or loop predecessor? - for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), - PE = Succ->pred_end(); PI != PE; ++PI) { + // Does this exit block have a predecessor that is not a loop block or loop + // predecessor? + for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), + PE = Exit->pred_end(); PI != PE; ++PI) { const MachineBasicBlock *Pred = *PI; if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) continue; // This is a critical exit block, and we need to split the exit edge. - CriticalExits.insert(Succ); + CriticalExits.insert(Exit); + break; + } + } +} + +void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, + BlockPtrSet &CriticalPreds) { + CriticalPreds.clear(); + + // A critical predecessor block has curli live-out, and has a successor that + // has curli live-in and is not in the loop nor a loop exit block. For such a + // predecessor block, we must carry the value in both the 'inside' and + // 'outside' registers. + for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); + I != E; ++I) { + const MachineBasicBlock *Pred = *I; + // Definitely not a critical edge. + if (Pred->succ_size() == 1) + continue; + // This block may not have curli live out at all if there is a PHI. + if (!lis_.isLiveOutOfMBB(*curli_, Pred)) + continue; + // Does this block have a successor outside the loop? + for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), + SE = Pred->succ_end(); SI != SE; ++SI) { + const MachineBasicBlock *Succ = *SI; + if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) + continue; + if (!lis_.isLiveInToMBB(*curli_, Succ)) + continue; + // This is a critical predecessor block. + CriticalPreds.insert(Pred); break; } } @@ -240,55 +262,48 @@ const MachineLoop *SplitAnalysis::getBestSplitLoop() { if (usingLoops_.empty()) return 0; - LoopPtrSet Loops, SecondLoops; + LoopPtrSet Loops; LoopBlocks Blocks; BlockPtrSet CriticalExits; - // Find first-class and second class candidate loops. - // We prefer to split around loops where curli is used outside the periphery. + // We split around loops where curli is used outside the periphery. for (LoopCountMap::const_iterator I = usingLoops_.begin(), E = usingLoops_.end(); I != E; ++I) { const MachineLoop *Loop = I->first; getLoopBlocks(Loop, Blocks); + DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); - // FIXME: We need an SSA updater to properly handle multiple exit blocks. - if (Blocks.Exits.size() > 1) { - DEBUG(dbgs() << " multiple exits from " << *Loop); - continue; - } - - LoopPtrSet *LPS = 0; switch(analyzeLoopPeripheralUse(Blocks)) { case OutsideLoop: - LPS = &Loops; break; case MultiPeripheral: - LPS = &SecondLoops; + // FIXME: We could split a live range with multiple uses in a peripheral + // block and still make progress. However, it is possible that splitting + // another live range will insert copies into a peripheral block, and + // there is a small chance we can enter an infinity loop, inserting copies + // forever. + // For safety, stick to splitting live ranges with uses outside the + // periphery. + DEBUG(dbgs() << ": multiple peripheral uses\n"); break; case ContainedInLoop: - DEBUG(dbgs() << " contained in " << *Loop); + DEBUG(dbgs() << ": fully contained\n"); continue; case SinglePeripheral: - DEBUG(dbgs() << " single peripheral use in " << *Loop); + DEBUG(dbgs() << ": single peripheral use\n"); continue; } // Will it be possible to split around this loop? getCriticalExits(Blocks, CriticalExits); - DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " - << *Loop); + DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); if (!canSplitCriticalExits(Blocks, CriticalExits)) continue; // This is a possible split. - assert(LPS); - LPS->insert(Loop); + Loops.insert(Loop); } - DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " - << SecondLoops.size() << " candidate loops.\n"); - - // If there are no first class loops available, look at second class loops. - if (Loops.empty()) - Loops = SecondLoops; + DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() + << " candidate loops.\n"); if (Loops.empty()) return 0; @@ -307,99 +322,84 @@ const MachineLoop *SplitAnalysis::getBestSplitLoop() { return Best; } -/// getMultiUseBlocks - if curli has more than one use in a basic block, it -/// may be an advantage to split curli for the duration of the block. -bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { - // If curli is local to one block, there is no point to splitting it. - if (usingBlocks_.size() <= 1) - return false; - // Add blocks with multiple uses. - for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); - I != E; ++I) - switch (I->second) { - case 0: - case 1: - continue; - case 2: { - // It doesn't pay to split a 2-instr block if it redefines curli. - VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); - VNInfo *VN2 = - curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); - // live-in and live-out with a different value. - if (VN1 && VN2 && VN1 != VN2) - continue; - } // Fall through. - default: - Blocks.insert(I->first); - } - return !Blocks.empty(); -} - //===----------------------------------------------------------------------===// // LiveIntervalMap //===----------------------------------------------------------------------===// +// Work around the fact that the std::pair constructors are broken for pointer +// pairs in some implementations. makeVV(x, 0) works. +static inline std::pair<const VNInfo*, VNInfo*> +makeVV(const VNInfo *a, VNInfo *b) { + return std::make_pair(a, b); +} + +void LiveIntervalMap::reset(LiveInterval *li) { + li_ = li; + valueMap_.clear(); + liveOutCache_.clear(); +} + +bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { + ValueMap::const_iterator i = valueMap_.find(ParentVNI); + return i != valueMap_.end() && i->second == 0; +} + // defValue - Introduce a li_ def for ParentVNI that could be later than // ParentVNI->def. VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { + assert(li_ && "call reset first"); assert(ParentVNI && "Mapping NULL value"); assert(Idx.isValid() && "Invalid SlotIndex"); assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); - // Is this a simple 1-1 mapping? Not likely. - if (Idx == ParentVNI->def) - return mapValue(ParentVNI, Idx); - - // This is a complex def. Mark with a NULL in valueMap. - VNInfo *OldVNI = - valueMap_.insert( - ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0))).first->second; - // The static_cast<VNInfo *> is only needed to work around a bug in an - // old version of the C++0x standard which the following compilers - // implemented and have yet to fix: - // - // Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel - // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 - // - // If/When we move to C++0x, this can be replaced by nullptr. - (void)OldVNI; - assert(OldVNI == 0 && "Simple/Complex values mixed"); - - // Should we insert a minimal snippet of VNI LiveRange, or can we count on - // callers to do that? We need it for lookups of complex values. - VNInfo *VNI = li_.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator()); + // Create a new value. + VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); + + // Preserve the PHIDef bit. + if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) + VNI->setIsPHIDef(true); + + // Use insert for lookup, so we can add missing values with a second lookup. + std::pair<ValueMap::iterator,bool> InsP = + valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); + + // This is now a complex def. Mark with a NULL in valueMap. + if (!InsP.second) + InsP.first->second = 0; + return VNI; } + // mapValue - Find the mapped value for ParentVNI at Idx. // Potentially create phi-def values. -VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) { +VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, + bool *simple) { + assert(li_ && "call reset first"); assert(ParentVNI && "Mapping NULL value"); assert(Idx.isValid() && "Invalid SlotIndex"); assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); // Use insert for lookup, so we can add missing values with a second lookup. std::pair<ValueMap::iterator,bool> InsP = - valueMap_.insert(ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0))); - // The static_cast<VNInfo *> is only needed to work around a bug in an - // old version of the C++0x standard which the following compilers - // implemented and have yet to fix: - // - // Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel - // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01 - // - // If/When we move to C++0x, this can be replaced by nullptr. + valueMap_.insert(makeVV(ParentVNI, 0)); // This was an unknown value. Create a simple mapping. - if (InsP.second) - return InsP.first->second = li_.createValueCopy(ParentVNI, - lis_.getVNInfoAllocator()); + if (InsP.second) { + if (simple) *simple = true; + return InsP.first->second = li_->createValueCopy(ParentVNI, + lis_.getVNInfoAllocator()); + } + // This was a simple mapped value. - if (InsP.first->second) + if (InsP.first->second) { + if (simple) *simple = true; return InsP.first->second; + } // This is a complex mapped value. There may be multiple defs, and we may need // to create phi-defs. + if (simple) *simple = false; MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); assert(IdxMBB && "No MBB at Idx"); @@ -409,113 +409,194 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) { // Now for the fun part. We know that ParentVNI potentially has multiple defs, // and we may need to create even more phi-defs to preserve VNInfo SSA form. - // Perform a depth-first search for predecessor blocks where we know the - // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. - - // Track MBBs where we have created or learned the dominating value. - // This may change during the DFS as we create new phi-defs. - typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; - MBBValueMap DomValue; - - for (idf_iterator<MachineBasicBlock*> - IDFI = idf_begin(IdxMBB), - IDFE = idf_end(IdxMBB); IDFI != IDFE;) { - MachineBasicBlock *MBB = *IDFI; - SlotIndex End = lis_.getMBBEndIdx(MBB); - - // We are operating on the restricted CFG where ParentVNI is live. - if (parentli_.getVNInfoAt(End.getPrevSlot()) != ParentVNI) { - IDFI.skipChildren(); - continue; - } - - // Do we have a dominating value in this block? - VNInfo *VNI = extendTo(MBB, End); - if (!VNI) { - ++IDFI; - continue; + // Perform a search for all predecessor blocks where we know the dominating + // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. + DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() + << " at " << Idx << " in " << *li_ << '\n'); + + // Blocks where li_ should be live-in. + SmallVector<MachineDomTreeNode*, 16> LiveIn; + LiveIn.push_back(mdt_[IdxMBB]); + + // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs. + for (unsigned i = 0; i != LiveIn.size(); ++i) { + MachineBasicBlock *MBB = LiveIn[i]->getBlock(); + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + MachineBasicBlock *Pred = *PI; + // Is this a known live-out block? + std::pair<LiveOutMap::iterator,bool> LOIP = + liveOutCache_.insert(std::make_pair(Pred, LiveOutPair())); + // Yes, we have been here before. + if (!LOIP.second) { + DEBUG(if (VNInfo *VNI = LOIP.first->second.first) + dbgs() << " known valno #" << VNI->id + << " at BB#" << Pred->getNumber() << '\n'); + continue; + } + + // Does Pred provide a live-out value? + SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot(); + if (VNInfo *VNI = extendTo(Pred, Last)) { + MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def); + DEBUG(dbgs() << " found valno #" << VNI->id + << " from BB#" << DefMBB->getNumber() + << " at BB#" << Pred->getNumber() << '\n'); + LiveOutPair &LOP = LOIP.first->second; + LOP.first = VNI; + LOP.second = mdt_[DefMBB]; + continue; + } + // No, we need a live-in value for Pred as well + if (Pred != IdxMBB) + LiveIn.push_back(mdt_[Pred]); } + } - // Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs - // as needed along the way. - for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { - // Start from MBB's immediate successor. End at IdxMBB. - MachineBasicBlock *Succ = IDFI.getPath(PI-1); - std::pair<MBBValueMap::iterator, bool> InsP = - DomValue.insert(MBBValueMap::value_type(Succ, VNI)); - - // This is the first time we backtrack to Succ. - if (InsP.second) - continue; - - // We reached Succ again with the same VNI. Nothing is going to change. - VNInfo *OVNI = InsP.first->second; - if (OVNI == VNI) - break; + // We may need to add phi-def values to preserve the SSA form. + // This is essentially the same iterative algorithm that SSAUpdater uses, + // except we already have a dominator tree, so we don't have to recompute it. + VNInfo *IdxVNI = 0; + unsigned Changes; + do { + Changes = 0; + DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); + // Propagate live-out values down the dominator tree, inserting phi-defs when + // necessary. Since LiveIn was created by a BFS, going backwards makes it more + // likely for us to visit immediate dominators before their children. + for (unsigned i = LiveIn.size(); i; --i) { + MachineDomTreeNode *Node = LiveIn[i-1]; + MachineBasicBlock *MBB = Node->getBlock(); + MachineDomTreeNode *IDom = Node->getIDom(); + LiveOutPair IDomValue; + // We need a live-in value to a block with no immediate dominator? + // This is probably an unreachable block that has survived somehow. + bool needPHI = !IDom; + + // Get the IDom live-out value. + if (!needPHI) { + LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock()); + if (I != liveOutCache_.end()) + IDomValue = I->second; + else + // If IDom is outside our set of live-out blocks, there must be new + // defs, and we need a phi-def here. + needPHI = true; + } - // Succ already has a phi-def. No need to continue. - SlotIndex Start = lis_.getMBBStartIdx(Succ); - if (OVNI->def == Start) - break; + // IDom dominates all of our predecessors, but it may not be the immediate + // dominator. Check if any of them have live-out values that are properly + // dominated by IDom. If so, we need a phi-def here. + if (!needPHI) { + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + LiveOutPair Value = liveOutCache_[*PI]; + if (!Value.first || Value.first == IDomValue.first) + continue; + // This predecessor is carrying something other than IDomValue. + // It could be because IDomValue hasn't propagated yet, or it could be + // because MBB is in the dominance frontier of that value. + if (mdt_.dominates(IDom, Value.second)) { + needPHI = true; + break; + } + } + } - // We have a collision between the old and new VNI at Succ. That means - // neither dominates and we need a new phi-def. - VNI = li_.getNextValue(Start, 0, true, lis_.getVNInfoAllocator()); - VNI->setIsPHIDef(true); - InsP.first->second = VNI; - - // Replace OVNI with VNI in the remaining path. - for (; PI > 1 ; --PI) { - MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); - if (I == DomValue.end() || I->second != OVNI) - break; - I->second = VNI; + // Create a phi-def if required. + if (needPHI) { + ++Changes; + SlotIndex Start = lis_.getMBBStartIdx(MBB); + VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); + VNI->setIsPHIDef(true); + DEBUG(dbgs() << " - BB#" << MBB->getNumber() + << " phi-def #" << VNI->id << " at " << Start << '\n'); + // We no longer need li_ to be live-in. + LiveIn.erase(LiveIn.begin()+(i-1)); + // Blocks in LiveIn are either IdxMBB, or have a value live-through. + if (MBB == IdxMBB) + IdxVNI = VNI; + // Check if we need to update live-out info. + LiveOutMap::iterator I = liveOutCache_.find(MBB); + if (I == liveOutCache_.end() || I->second.second == Node) { + // We already have a live-out defined in MBB, so this must be IdxMBB. + assert(MBB == IdxMBB && "Adding phi-def to known live-out"); + li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); + } else { + // This phi-def is also live-out, so color the whole block. + li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); + I->second = LiveOutPair(VNI, Node); + } + } else if (IDomValue.first) { + // No phi-def here. Remember incoming value for IdxMBB. + if (MBB == IdxMBB) + IdxVNI = IDomValue.first; + // Propagate IDomValue if needed: + // MBB is live-out and doesn't define its own value. + LiveOutMap::iterator I = liveOutCache_.find(MBB); + if (I != liveOutCache_.end() && I->second.second != Node && + I->second.first != IDomValue.first) { + ++Changes; + I->second = IDomValue; + DEBUG(dbgs() << " - BB#" << MBB->getNumber() + << " idom valno #" << IDomValue.first->id + << " from BB#" << IDom->getBlock()->getNumber() << '\n'); + } } } + DEBUG(dbgs() << " - made " << Changes << " changes.\n"); + } while (Changes); - // No need to search the children, we found a dominating value. - IDFI.skipChildren(); - } + assert(IdxVNI && "Didn't find value for Idx"); - // The search should at least find a dominating value for IdxMBB. - assert(!DomValue.empty() && "Couldn't find a reaching definition"); +#ifndef NDEBUG + // Check the liveOutCache_ invariants. + for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end(); + I != E; ++I) { + assert(I->first && "Null MBB entry in cache"); + assert(I->second.first && "Null VNInfo in cache"); + assert(I->second.second && "Null DomTreeNode in cache"); + if (I->second.second->getBlock() == I->first) + continue; + for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), + PE = I->first->pred_end(); PI != PE; ++PI) + assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant"); + } +#endif - // Since we went through the trouble of a full DFS visiting all reaching defs, - // the values in DomValue are now accurate. No more phi-defs are needed for - // these blocks, so we can color the live ranges. + // Since we went through the trouble of a full BFS visiting all reaching defs, + // the values in LiveIn are now accurate. No more phi-defs are needed + // for these blocks, so we can color the live ranges. // This makes the next mapValue call much faster. - VNInfo *IdxVNI = 0; - for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; - ++I) { - MachineBasicBlock *MBB = I->first; - VNInfo *VNI = I->second; - SlotIndex Start = lis_.getMBBStartIdx(MBB); - if (MBB == IdxMBB) { - // Don't add full liveness to IdxMBB, stop at Idx. - if (Start != Idx) - li_.addRange(LiveRange(Start, Idx, VNI)); - // The caller had better add some liveness to IdxVNI, or it leaks. - IdxVNI = VNI; - } else - li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); + for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { + MachineBasicBlock *MBB = LiveIn[i]->getBlock(); + SlotIndex Start = lis_.getMBBStartIdx(MBB); + if (MBB == IdxMBB) { + li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); + continue; + } + // Anything in LiveIn other than IdxMBB is live-through. + VNInfo *VNI = liveOutCache_.lookup(MBB).first; + assert(VNI && "Missing block value"); + li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); } - assert(IdxVNI && "Didn't find value for Idx"); return IdxVNI; } // extendTo - Find the last li_ value defined in MBB at or before Idx. The // parentli_ is assumed to be live at Idx. Extend the live range to Idx. // Return the found VNInfo, or NULL. -VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { - LiveInterval::iterator I = std::upper_bound(li_.begin(), li_.end(), Idx); - if (I == li_.begin()) +VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { + assert(li_ && "call reset first"); + LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); + if (I == li_->begin()) return 0; --I; - if (I->start < lis_.getMBBStartIdx(MBB)) + if (I->end <= lis_.getMBBStartIdx(MBB)) return 0; - if (I->end < Idx) - I->end = Idx; + if (I->end <= Idx) + I->end = Idx.getNextSlot(); return I->valno; } @@ -523,42 +604,45 @@ VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { // ParentVNI must be live in the [Start;End) interval. void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI) { - VNInfo *VNI = mapValue(ParentVNI, Start); - // A simple mappoing is easy. - if (VNI->def == ParentVNI->def) { - li_.addRange(LiveRange(Start, End, VNI)); + assert(li_ && "call reset first"); + bool simple; + VNInfo *VNI = mapValue(ParentVNI, Start, &simple); + // A simple mapping is easy. + if (simple) { + li_->addRange(LiveRange(Start, End, VNI)); return; } // ParentVNI is a complex value. We must map per MBB. MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); - MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End); + MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); if (MBB == MBBE) { - li_.addRange(LiveRange(Start, End, VNI)); + li_->addRange(LiveRange(Start, End, VNI)); return; } // First block. - li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); + li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); // Run sequence of full blocks. for (++MBB; MBB != MBBE; ++MBB) { Start = lis_.getMBBStartIdx(MBB); - li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), - mapValue(ParentVNI, Start))); + li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), + mapValue(ParentVNI, Start))); } // Final block. Start = lis_.getMBBStartIdx(MBB); if (Start != End) - li_.addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); + li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); } /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. /// All needed values whose def is not inside [Start;End) must be defined /// beforehand so mapValue will work. void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { + assert(li_ && "call reset first"); LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); LiveInterval::const_iterator I = std::lower_bound(B, E, Start); @@ -575,147 +659,113 @@ void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { addSimpleRange(I->start, std::min(End, I->end), I->valno); } + //===----------------------------------------------------------------------===// // Split Editor //===----------------------------------------------------------------------===// /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. -SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, - SmallVectorImpl<LiveInterval*> &intervals) +SplitEditor::SplitEditor(SplitAnalysis &sa, + LiveIntervals &lis, + VirtRegMap &vrm, + MachineDominatorTree &mdt, + LiveRangeEdit &edit) : sa_(sa), lis_(lis), vrm_(vrm), mri_(vrm.getMachineFunction().getRegInfo()), tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), - curli_(sa_.getCurLI()), - dupli_(0), openli_(0), - intervals_(intervals), - firstInterval(intervals_.size()) + tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()), + edit_(edit), + dupli_(lis_, mdt, edit.getParent()), + openli_(lis_, mdt, edit.getParent()) { - assert(curli_ && "SplitEditor created from empty SplitAnalysis"); - - // Make sure curli_ is assigned a stack slot, so all our intervals get the - // same slot as curli_. - if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) - vrm_.assignVirt2StackSlot(curli_->reg); - + // We don't need an AliasAnalysis since we will only be performing + // cheap-as-a-copy remats anyway. + edit_.anyRematerializable(lis_, tii_, 0); } -LiveInterval *SplitEditor::createInterval() { - unsigned curli = sa_.getCurLI()->reg; - unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli)); - LiveInterval &Intv = lis_.getOrCreateInterval(Reg); - vrm_.grow(); - vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli)); - return &Intv; +bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { + for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) + if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) + return true; + return false; } -LiveInterval *SplitEditor::getDupLI() { - if (!dupli_) { - // Create an interval for dupli that is a copy of curli. - dupli_ = createInterval(); - dupli_->Copy(*curli_, &mri_, lis_.getVNInfoAllocator()); +VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg, + VNInfo *ParentVNI, + SlotIndex UseIdx, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) { + VNInfo *VNI = 0; + MachineInstr *CopyMI = 0; + SlotIndex Def; + + // Attempt cheap-as-a-copy rematerialization. + LiveRangeEdit::Remat RM(ParentVNI); + if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) { + Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM, + lis_, tii_, tri_); + } else { + // Can't remat, just insert a copy from parent. + CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), + Reg.getLI()->reg).addReg(edit_.getReg()); + Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex(); } - return dupli_; -} -VNInfo *SplitEditor::mapValue(const VNInfo *curliVNI) { - VNInfo *&VNI = valueMap_[curliVNI]; - if (!VNI) - VNI = openli_->createValueCopy(curliVNI, lis_.getVNInfoAllocator()); - return VNI; -} + // Define the value in Reg. + VNI = Reg.defValue(ParentVNI, Def); + VNI->setCopy(CopyMI); -/// Insert a COPY instruction curli -> li. Allocate a new value from li -/// defined by the COPY. Note that rewrite() will deal with the curli -/// register, so this function can be used to copy from any interval - openli, -/// curli, or dupli. -VNInfo *SplitEditor::insertCopy(LiveInterval &LI, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator I) { - MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), - LI.reg).addReg(curli_->reg); - SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); - return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator()); + // Add minimal liveness for the new value. + if (UseIdx < Def) + UseIdx = Def; + Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI)); + return VNI; } /// Create a new virtual register and live interval. void SplitEditor::openIntv() { - assert(!openli_ && "Previous LI not closed before openIntv"); - openli_ = createInterval(); - intervals_.push_back(openli_); - liveThrough_ = false; + assert(!openli_.getLI() && "Previous LI not closed before openIntv"); + if (!dupli_.getLI()) + dupli_.reset(&edit_.create(mri_, lis_, vrm_)); + + openli_.reset(&edit_.create(mri_, lis_, vrm_)); } /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is /// not live before Idx, a COPY is not inserted. void SplitEditor::enterIntvBefore(SlotIndex Idx) { - assert(openli_ && "openIntv not called before enterIntvBefore"); - - // Copy from curli_ if it is live. - if (VNInfo *CurVNI = curli_->getVNInfoAt(Idx.getUseIndex())) { - MachineInstr *MI = lis_.getInstructionFromIndex(Idx); - assert(MI && "enterIntvBefore called with invalid index"); - VNInfo *VNI = insertCopy(*openli_, *MI->getParent(), MI); - openli_->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); - - // Make sure CurVNI is properly mapped. - VNInfo *&mapVNI = valueMap_[CurVNI]; - // We dont have SSA update yet, so only one entry per value is allowed. - assert(!mapVNI && "enterIntvBefore called more than once for the same value"); - mapVNI = VNI; - } - DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_ << '\n'); -} - -/// enterIntvAtEnd - Enter openli at the end of MBB. -/// PhiMBB is a successor inside openli where a PHI value is created. -/// Currently, all entries must share the same PhiMBB. -void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) { - assert(openli_ && "openIntv not called before enterIntvAtEnd"); - - SlotIndex EndA = lis_.getMBBEndIdx(&A); - VNInfo *CurVNIA = curli_->getVNInfoAt(EndA.getPrevIndex()); - if (!CurVNIA) { - DEBUG(dbgs() << " enterIntvAtEnd, curli not live out of BB#" - << A.getNumber() << ".\n"); + assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); + Idx = Idx.getUseIndex(); + DEBUG(dbgs() << " enterIntvBefore " << Idx); + VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); return; } + DEBUG(dbgs() << ": valno " << ParentVNI->id); + truncatedValues.insert(ParentVNI); + MachineInstr *MI = lis_.getInstructionFromIndex(Idx); + assert(MI && "enterIntvBefore called with invalid index"); - // Add a phi kill value and live range out of A. - VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator()); - openli_->addRange(LiveRange(VNIA->def, EndA, VNIA)); - - // FIXME: If this is the only entry edge, we don't need the extra PHI value. - // FIXME: If there are multiple entry blocks (so not a loop), we need proper - // SSA update. - - // Now look at the start of B. - SlotIndex StartB = lis_.getMBBStartIdx(&B); - SlotIndex EndB = lis_.getMBBEndIdx(&B); - const LiveRange *CurB = curli_->getLiveRangeContaining(StartB); - if (!CurB) { - DEBUG(dbgs() << " enterIntvAtEnd: curli not live in to BB#" - << B.getNumber() << ".\n"); - return; - } + defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI); - VNInfo *VNIB = openli_->getVNInfoAt(StartB); - if (!VNIB) { - // Create a phi value. - VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false, - lis_.getVNInfoAllocator()); - VNIB->setIsPHIDef(true); - VNInfo *&mapVNI = valueMap_[CurB->valno]; - if (mapVNI) { - // Multiple copies - must create PHI value. - abort(); - } else { - // This is the first copy of dupLR. Mark the mapping. - mapVNI = VNIB; - } + DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); +} +/// enterIntvAtEnd - Enter openli at the end of MBB. +void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { + assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); + SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot(); + DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); + VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); + return; } - - DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_ << '\n'); + DEBUG(dbgs() << ": valno " << ParentVNI->id); + truncatedValues.insert(ParentVNI); + defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator()); + DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// useIntv - indicate that all instructions in MBB should use openli. @@ -724,166 +774,75 @@ void SplitEditor::useIntv(const MachineBasicBlock &MBB) { } void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { - assert(openli_ && "openIntv not called before useIntv"); - - // Map the curli values from the interval into openli_ - LiveInterval::const_iterator B = curli_->begin(), E = curli_->end(); - LiveInterval::const_iterator I = std::lower_bound(B, E, Start); - - if (I != B) { - --I; - // I begins before Start, but overlaps. - if (I->end > Start) - openli_->addRange(LiveRange(Start, std::min(End, I->end), - mapValue(I->valno))); - ++I; - } - - // The remaining ranges begin after Start. - for (;I != E && I->start < End; ++I) - openli_->addRange(LiveRange(I->start, std::min(End, I->end), - mapValue(I->valno))); - DEBUG(dbgs() << " use [" << Start << ';' << End << "): " << *openli_ - << '\n'); + assert(openli_.getLI() && "openIntv not called before useIntv"); + openli_.addRange(Start, End); + DEBUG(dbgs() << " use [" << Start << ';' << End << "): " + << *openli_.getLI() << '\n'); } /// leaveIntvAfter - Leave openli after the instruction at Idx. void SplitEditor::leaveIntvAfter(SlotIndex Idx) { - assert(openli_ && "openIntv not called before leaveIntvAfter"); - - const LiveRange *CurLR = curli_->getLiveRangeContaining(Idx.getDefIndex()); - if (!CurLR || CurLR->end <= Idx.getBoundaryIndex()) { - DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); + assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); + DEBUG(dbgs() << " leaveIntvAfter " << Idx); + + // The interval must be live beyond the instruction at Idx. + Idx = Idx.getBoundaryIndex(); + VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); return; } + DEBUG(dbgs() << ": valno " << ParentVNI->id); - // Was this value of curli live through openli? - if (!openli_->liveAt(CurLR->valno->def)) { - DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": using external value\n"); - liveThrough_ = true; - return; - } + MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); + VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx, + *MII->getParent(), llvm::next(MII)); + + // Make sure that openli is properly extended from Idx to the new copy. + // FIXME: This shouldn't be necessary for remats. + openli_.addSimpleRange(Idx, VNI->def, ParentVNI); - // We are going to insert a back copy, so we must have a dupli_. - LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Idx.getDefIndex()); - assert(DupLR && "dupli not live into black, but curli is?"); - - // Insert the COPY instruction. - MachineBasicBlock::iterator I = lis_.getInstructionFromIndex(Idx); - MachineInstr *MI = BuildMI(*I->getParent(), llvm::next(I), I->getDebugLoc(), - tii_.get(TargetOpcode::COPY), dupli_->reg) - .addReg(openli_->reg); - SlotIndex CopyIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); - openli_->addRange(LiveRange(Idx.getDefIndex(), CopyIdx, - mapValue(CurLR->valno))); - DupLR->valno->def = CopyIdx; - DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_ << '\n'); + DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// leaveIntvAtTop - Leave the interval at the top of MBB. /// Currently, only one value can leave the interval. void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { - assert(openli_ && "openIntv not called before leaveIntvAtTop"); - + assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); SlotIndex Start = lis_.getMBBStartIdx(&MBB); - const LiveRange *CurLR = curli_->getLiveRangeContaining(Start); + DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); - // Is curli even live-in to MBB? - if (!CurLR) { - DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); + VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); return; } - // Is curli defined by PHI at the beginning of MBB? - bool isPHIDef = CurLR->valno->isPHIDef() && - CurLR->valno->def.getBaseIndex() == Start; - - // If MBB is using a value of curli that was defined outside the openli range, - // we don't want to copy it back here. - if (!isPHIDef && !openli_->liveAt(CurLR->valno->def)) { - DEBUG(dbgs() << " leaveIntvAtTop at " << Start - << ": using external value\n"); - liveThrough_ = true; - return; - } - - // We are going to insert a back copy, so we must have a dupli_. - LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Start); - assert(DupLR && "dupli not live into black, but curli is?"); - - // Insert the COPY instruction. - MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(), - tii_.get(TargetOpcode::COPY), dupli_->reg) - .addReg(openli_->reg); - SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); - - // Adjust dupli and openli values. - if (isPHIDef) { - // dupli was already a PHI on entry to MBB. Simply insert an openli PHI, - // and shift the dupli def down to the COPY. - VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false, - lis_.getVNInfoAllocator()); - VNI->setIsPHIDef(true); - openli_->addRange(LiveRange(VNI->def, Idx, VNI)); - - dupli_->removeRange(Start, Idx); - DupLR->valno->def = Idx; - DupLR->valno->setIsPHIDef(false); - } else { - // The dupli value was defined somewhere inside the openli range. - DEBUG(dbgs() << " leaveIntvAtTop source value defined at " - << DupLR->valno->def << "\n"); - // FIXME: We may not need a PHI here if all predecessors have the same - // value. - VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false, - lis_.getVNInfoAllocator()); - VNI->setIsPHIDef(true); - openli_->addRange(LiveRange(VNI->def, Idx, VNI)); - - // FIXME: What if DupLR->valno is used by multiple exits? SSA Update. + VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB, + MBB.SkipPHIsAndLabels(MBB.begin())); - // closeIntv is going to remove the superfluous live ranges. - DupLR->valno->def = Idx; - DupLR->valno->setIsPHIDef(false); - } - - DEBUG(dbgs() << " leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n'); + // Finally we must make sure that openli is properly extended from Start to + // the new copy. + openli_.addSimpleRange(Start, VNI->def, ParentVNI); + DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// closeIntv - Indicate that we are done editing the currently open /// LiveInterval, and ranges can be trimmed. void SplitEditor::closeIntv() { - assert(openli_ && "openIntv not called before closeIntv"); + assert(openli_.getLI() && "openIntv not called before closeIntv"); DEBUG(dbgs() << " closeIntv cleaning up\n"); - DEBUG(dbgs() << " open " << *openli_ << '\n'); - - if (liveThrough_) { - DEBUG(dbgs() << " value live through region, leaving dupli as is.\n"); - } else { - // live out with copies inserted, or killed by region. Either way we need to - // remove the overlapping region from dupli. - getDupLI(); - for (LiveInterval::iterator I = openli_->begin(), E = openli_->end(); - I != E; ++I) { - dupli_->removeRange(I->start, I->end); - } - // FIXME: A block branching to the entry block may also branch elsewhere - // curli is live. We need both openli and curli to be live in that case. - DEBUG(dbgs() << " dup2 " << *dupli_ << '\n'); - } - openli_ = 0; - valueMap_.clear(); + DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); + openli_.reset(0); } -/// rewrite - after all the new live ranges have been created, rewrite -/// instructions using curli to use the new intervals. -void SplitEditor::rewrite() { - assert(!openli_ && "Previous LI not closed before rewrite"); - const LiveInterval *curli = sa_.getCurLI(); - for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), +/// rewrite - Rewrite all uses of reg to use the new registers. +void SplitEditor::rewrite(unsigned reg) { + for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), RE = mri_.reg_end(); RI != RE;) { MachineOperand &MO = RI.getOperand(); + unsigned OpNum = RI.getOperandNo(); MachineInstr *MI = MO.getParent(); ++RI; if (MI->isDebugValue()) { @@ -894,37 +853,166 @@ void SplitEditor::rewrite() { } SlotIndex Idx = lis_.getInstructionIndex(MI); Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); - LiveInterval *LI = dupli_; - for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { - LiveInterval *testli = intervals_[i]; + LiveInterval *LI = 0; + for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; + ++I) { + LiveInterval *testli = *I; if (testli->liveAt(Idx)) { LI = testli; break; } } - if (LI) { - MO.setReg(LI->reg); - sa_.removeUse(MI); - DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); + DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); + assert(LI && "No register was live at use"); + MO.setReg(LI->reg); + if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum)) + MO.setIsKill(LI->killedAt(Idx.getDefIndex())); + DEBUG(dbgs() << '\t' << *MI); + } +} + +void +SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { + // Build vector of iterator pairs from the intervals. + typedef std::pair<LiveInterval::const_iterator, + LiveInterval::const_iterator> IIPair; + SmallVector<IIPair, 8> Iters; + for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; + ++LI) { + if (*LI == dupli_.getLI()) + continue; + LiveInterval::const_iterator I = (*LI)->find(Start); + LiveInterval::const_iterator E = (*LI)->end(); + if (I != E) + Iters.push_back(std::make_pair(I, E)); + } + + SlotIndex sidx = Start; + // Break [Start;End) into segments that don't overlap any intervals. + for (;;) { + SlotIndex next = sidx, eidx = End; + // Find overlapping intervals. + for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { + LiveInterval::const_iterator I = Iters[i].first; + // Interval I is overlapping [sidx;eidx). Trim sidx. + if (I->start <= sidx) { + sidx = I->end; + // Move to the next run, remove iters when all are consumed. + I = ++Iters[i].first; + if (I == Iters[i].second) { + Iters.erase(Iters.begin() + i); + --i; + continue; + } + } + // Trim eidx too if needed. + if (I->start >= eidx) + continue; + eidx = I->start; + next = I->end; + } + // Now, [sidx;eidx) doesn't overlap anything in intervals_. + if (sidx < eidx) + dupli_.addSimpleRange(sidx, eidx, VNI); + // If the interval end was truncated, we can try again from next. + if (next <= sidx) + break; + sidx = next; + } +} + +void SplitEditor::computeRemainder() { + // First we need to fill in the live ranges in dupli. + // If values were redefined, we need a full recoloring with SSA update. + // If values were truncated, we only need to truncate the ranges. + // If values were partially rematted, we should shrink to uses. + // If values were fully rematted, they should be omitted. + // FIXME: If a single value is redefined, just move the def and truncate. + LiveInterval &parent = edit_.getParent(); + + // Values that are fully contained in the split intervals. + SmallPtrSet<const VNInfo*, 8> deadValues; + // Map all curli values that should have live defs in dupli. + for (LiveInterval::const_vni_iterator I = parent.vni_begin(), + E = parent.vni_end(); I != E; ++I) { + const VNInfo *VNI = *I; + // Don't transfer unused values to the new intervals. + if (VNI->isUnused()) + continue; + // Original def is contained in the split intervals. + if (intervalsLiveAt(VNI->def)) { + // Did this value escape? + if (dupli_.isMapped(VNI)) + truncatedValues.insert(VNI); + else + deadValues.insert(VNI); + continue; } + // Add minimal live range at the definition. + VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); + dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); } - // dupli_ goes in last, after rewriting. - if (dupli_) { - if (dupli_->empty()) { - DEBUG(dbgs() << " dupli became empty?\n"); - lis_.removeInterval(dupli_->reg); - dupli_ = 0; - } else { - dupli_->RenumberValues(lis_); - intervals_.push_back(dupli_); + // Add all ranges to dupli. + for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); + I != E; ++I) { + const LiveRange &LR = *I; + if (truncatedValues.count(LR.valno)) { + // recolor after removing intervals_. + addTruncSimpleRange(LR.start, LR.end, LR.valno); + } else if (!deadValues.count(LR.valno)) { + // recolor without truncation. + dupli_.addSimpleRange(LR.start, LR.end, LR.valno); } } + // Extend dupli_ to be live out of any critical loop predecessors. + // This means we have multiple registers live out of those blocks. + // The alternative would be to split the critical edges. + if (criticalPreds_.empty()) + return; + for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(), + E = criticalPreds_.end(); I != E; ++I) + dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot()); + criticalPreds_.clear(); +} + +void SplitEditor::finish() { + assert(!openli_.getLI() && "Previous LI not closed before rewrite"); + assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); + + // Complete dupli liveness. + computeRemainder(); + + // Get rid of unused values and set phi-kill flags. + for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) + (*I)->RenumberValues(lis_); + + // Rewrite instructions. + rewrite(edit_.getReg()); + + // Now check if any registers were separated into multiple components. + ConnectedVNInfoEqClasses ConEQ(lis_); + for (unsigned i = 0, e = edit_.size(); i != e; ++i) { + // Don't use iterators, they are invalidated by create() below. + LiveInterval *li = edit_.get(i); + unsigned NumComp = ConEQ.Classify(li); + if (NumComp <= 1) + continue; + DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); + SmallVector<LiveInterval*, 8> dups; + dups.push_back(li); + for (unsigned i = 1; i != NumComp; ++i) + dups.push_back(&edit_.create(mri_, lis_, vrm_)); + ConEQ.Distribute(&dups[0]); + // Rewrite uses to the new regs. + rewrite(li->reg); + } + // Calculate spill weight and allocation hints for new intervals. VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); - for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { - LiveInterval &li = *intervals_[i]; + for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ + LiveInterval &li = **I; vrai.CalculateRegClass(li.reg); vrai.CalculateWeightAndHint(li); DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() @@ -937,15 +1025,22 @@ void SplitEditor::rewrite() { // Loop Splitting //===----------------------------------------------------------------------===// -bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { +void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { SplitAnalysis::LoopBlocks Blocks; sa_.getLoopBlocks(Loop, Blocks); + DEBUG({ + dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; + }); + // Break critical edges as needed. SplitAnalysis::BlockPtrSet CriticalExits; sa_.getCriticalExits(Blocks, CriticalExits); assert(CriticalExits.empty() && "Cannot break critical exits yet"); + // Get critical predecessors so computeRemainder can deal with them. + sa_.getCriticalPreds(Blocks, criticalPreds_); + // Create new live interval for the loop. openIntv(); @@ -953,7 +1048,7 @@ bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); I != E; ++I) { MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); - enterIntvAtEnd(MBB, *Loop->getHeader()); + enterIntvAtEnd(MBB); } // Switch all loop blocks. @@ -970,8 +1065,7 @@ bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { // Done. closeIntv(); - rewrite(); - return dupli_; + finish(); } @@ -979,10 +1073,38 @@ bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { // Single Block Splitting //===----------------------------------------------------------------------===// +/// getMultiUseBlocks - if curli has more than one use in a basic block, it +/// may be an advantage to split curli for the duration of the block. +bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { + // If curli is local to one block, there is no point to splitting it. + if (usingBlocks_.size() <= 1) + return false; + // Add blocks with multiple uses. + for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); + I != E; ++I) + switch (I->second) { + case 0: + case 1: + continue; + case 2: { + // When there are only two uses and curli is both live in and live out, + // we don't really win anything by isolating the block since we would be + // inserting two copies. + // The remaing register would still have two uses in the block. (Unless it + // separates into disconnected components). + if (lis_.isLiveInToMBB(*curli_, I->first) && + lis_.isLiveOutOfMBB(*curli_, I->first)) + continue; + } // Fall through. + default: + Blocks.insert(I->first); + } + return !Blocks.empty(); +} + /// splitSingleBlocks - Split curli into a separate live interval inside each -/// basic block in Blocks. Return true if curli has been completely replaced, -/// false if curli is still intact, and needs to be spilled or split further. -bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { +/// basic block in Blocks. +void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); // Determine the first and last instruction using curli in each block. typedef std::pair<SlotIndex,SlotIndex> IndexPair; @@ -1016,8 +1138,7 @@ bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { leaveIntvAfter(IP.second); closeIntv(); } - rewrite(); - return dupli_; + finish(); } @@ -1040,10 +1161,8 @@ const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { return usingBlocks_.begin()->first; } -/// splitInsideBlock - Split curli into multiple intervals inside MBB. Return -/// true if curli has been completely replaced, false if curli is still -/// intact, and needs to be spilled or split further. -bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { +/// splitInsideBlock - Split curli into multiple intervals inside MBB. +void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { SmallVector<SlotIndex, 32> Uses; Uses.reserve(sa_.usingInstrs_.size()); for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), @@ -1092,6 +1211,5 @@ bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { closeIntv(); } - rewrite(); - return dupli_; + finish(); } |