diff options
Diffstat (limited to 'lib/CodeGen/TargetLoweringBase.cpp')
-rw-r--r-- | lib/CodeGen/TargetLoweringBase.cpp | 195 |
1 files changed, 165 insertions, 30 deletions
diff --git a/lib/CodeGen/TargetLoweringBase.cpp b/lib/CodeGen/TargetLoweringBase.cpp index e833fd3..9048a44 100644 --- a/lib/CodeGen/TargetLoweringBase.cpp +++ b/lib/CodeGen/TargetLoweringBase.cpp @@ -414,7 +414,7 @@ static void InitLibcallNames(const char **Names, const Triple &TT) { Names[RTLIB::SINCOS_PPCF128] = nullptr; } - if (TT.getOS() != Triple::OpenBSD) { + if (!TT.isOSOpenBSD()) { Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; } else { // These are generally not available. @@ -696,7 +696,7 @@ static void InitCmpLibcallCCs(ISD::CondCode *CCs) { /// NOTE: The TargetMachine owns TLOF. TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) - : TM(tm), DL(TM.getSubtargetImpl()->getDataLayout()) { + : TM(tm), DL(TM.getDataLayout()) { initActions(); // Perform these initializations only once. @@ -710,10 +710,12 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) HasMultipleConditionRegisters = false; HasExtractBitsInsn = false; IntDivIsCheap = false; + FsqrtIsCheap = false; Pow2SDivIsCheap = false; JumpIsExpensive = false; PredictableSelectIsExpensive = false; MaskAndBranchFoldingIsLegal = false; + EnableExtLdPromotion = false; HasFloatingPointExceptions = true; StackPointerRegisterToSaveRestore = 0; ExceptionPointerRegister = 0; @@ -747,37 +749,33 @@ void TargetLoweringBase::initActions() { memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); // Set default actions for various operations. - for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { + for (MVT VT : MVT::all_valuetypes()) { // Default all indexed load / store to expand. for (unsigned IM = (unsigned)ISD::PRE_INC; IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { - setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); - setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); + setIndexedLoadAction(IM, VT, Expand); + setIndexedStoreAction(IM, VT, Expand); } // Most backends expect to see the node which just returns the value loaded. - setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, - (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); // These operations default to expand. - setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FMINNUM, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FMAXNUM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FGETSIGN, VT, Expand); + setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); + setOperationAction(ISD::FMINNUM, VT, Expand); + setOperationAction(ISD::FMAXNUM, VT, Expand); + setOperationAction(ISD::FMAD, VT, Expand); // These library functions default to expand. - setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FROUND, VT, Expand); // These operations default to expand for vector types. - if (VT >= MVT::FIRST_VECTOR_VALUETYPE && - VT <= MVT::LAST_VECTOR_VALUETYPE) { - setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, - (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, - (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, - (MVT::SimpleValueType)VT, Expand); + if (VT.isVector()) { + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); + setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); } } @@ -897,6 +895,138 @@ bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { } } +TargetLoweringBase::LegalizeKind +TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { + // If this is a simple type, use the ComputeRegisterProp mechanism. + if (VT.isSimple()) { + MVT SVT = VT.getSimpleVT(); + assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); + MVT NVT = TransformToType[SVT.SimpleTy]; + LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); + + assert((LA == TypeLegal || LA == TypeSoftenFloat || + ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && + "Promote may not follow Expand or Promote"); + + if (LA == TypeSplitVector) + return LegalizeKind(LA, + EVT::getVectorVT(Context, SVT.getVectorElementType(), + SVT.getVectorNumElements() / 2)); + if (LA == TypeScalarizeVector) + return LegalizeKind(LA, SVT.getVectorElementType()); + return LegalizeKind(LA, NVT); + } + + // Handle Extended Scalar Types. + if (!VT.isVector()) { + assert(VT.isInteger() && "Float types must be simple"); + unsigned BitSize = VT.getSizeInBits(); + // First promote to a power-of-two size, then expand if necessary. + if (BitSize < 8 || !isPowerOf2_32(BitSize)) { + EVT NVT = VT.getRoundIntegerType(Context); + assert(NVT != VT && "Unable to round integer VT"); + LegalizeKind NextStep = getTypeConversion(Context, NVT); + // Avoid multi-step promotion. + if (NextStep.first == TypePromoteInteger) + return NextStep; + // Return rounded integer type. + return LegalizeKind(TypePromoteInteger, NVT); + } + + return LegalizeKind(TypeExpandInteger, + EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); + } + + // Handle vector types. + unsigned NumElts = VT.getVectorNumElements(); + EVT EltVT = VT.getVectorElementType(); + + // Vectors with only one element are always scalarized. + if (NumElts == 1) + return LegalizeKind(TypeScalarizeVector, EltVT); + + // Try to widen vector elements until the element type is a power of two and + // promote it to a legal type later on, for example: + // <3 x i8> -> <4 x i8> -> <4 x i32> + if (EltVT.isInteger()) { + // Vectors with a number of elements that is not a power of two are always + // widened, for example <3 x i8> -> <4 x i8>. + if (!VT.isPow2VectorType()) { + NumElts = (unsigned)NextPowerOf2(NumElts); + EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); + return LegalizeKind(TypeWidenVector, NVT); + } + + // Examine the element type. + LegalizeKind LK = getTypeConversion(Context, EltVT); + + // If type is to be expanded, split the vector. + // <4 x i140> -> <2 x i140> + if (LK.first == TypeExpandInteger) + return LegalizeKind(TypeSplitVector, + EVT::getVectorVT(Context, EltVT, NumElts / 2)); + + // Promote the integer element types until a legal vector type is found + // or until the element integer type is too big. If a legal type was not + // found, fallback to the usual mechanism of widening/splitting the + // vector. + EVT OldEltVT = EltVT; + while (1) { + // Increase the bitwidth of the element to the next pow-of-two + // (which is greater than 8 bits). + EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) + .getRoundIntegerType(Context); + + // Stop trying when getting a non-simple element type. + // Note that vector elements may be greater than legal vector element + // types. Example: X86 XMM registers hold 64bit element on 32bit + // systems. + if (!EltVT.isSimple()) + break; + + // Build a new vector type and check if it is legal. + MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); + // Found a legal promoted vector type. + if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) + return LegalizeKind(TypePromoteInteger, + EVT::getVectorVT(Context, EltVT, NumElts)); + } + + // Reset the type to the unexpanded type if we did not find a legal vector + // type with a promoted vector element type. + EltVT = OldEltVT; + } + + // Try to widen the vector until a legal type is found. + // If there is no wider legal type, split the vector. + while (1) { + // Round up to the next power of 2. + NumElts = (unsigned)NextPowerOf2(NumElts); + + // If there is no simple vector type with this many elements then there + // cannot be a larger legal vector type. Note that this assumes that + // there are no skipped intermediate vector types in the simple types. + if (!EltVT.isSimple()) + break; + MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); + if (LargerVector == MVT()) + break; + + // If this type is legal then widen the vector. + if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) + return LegalizeKind(TypeWidenVector, LargerVector); + } + + // Widen odd vectors to next power of two. + if (!VT.isPow2VectorType()) { + EVT NVT = VT.getPow2VectorType(Context); + return LegalizeKind(TypeWidenVector, NVT); + } + + // Vectors with illegal element types are expanded. + EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); + return LegalizeKind(TypeSplitVector, NVT); +} static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, @@ -992,10 +1122,15 @@ TargetLoweringBase::emitPatchPoint(MachineInstr *MI, // Add a new memory operand for this FI. const MachineFrameInfo &MFI = *MF.getFrameInfo(); assert(MFI.getObjectOffset(FI) != -1); + + unsigned Flags = MachineMemOperand::MOLoad; + if (MI->getOpcode() == TargetOpcode::STATEPOINT) { + Flags |= MachineMemOperand::MOStore; + Flags |= MachineMemOperand::MOVolatile; + } MachineMemOperand *MMO = MF.getMachineMemOperand( - MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad, - TM.getSubtargetImpl()->getDataLayout()->getPointerSize(), - MFI.getObjectAlignment(FI)); + MachinePointerInfo::getFixedStack(FI), Flags, + TM.getDataLayout()->getPointerSize(), MFI.getObjectAlignment(FI)); MIB->addMemOperand(MF, MMO); // Replace the instruction and update the operand index. @@ -1009,10 +1144,9 @@ TargetLoweringBase::emitPatchPoint(MachineInstr *MI, /// findRepresentativeClass - Return the largest legal super-reg register class /// of the register class for the specified type and its associated "cost". -std::pair<const TargetRegisterClass*, uint8_t> -TargetLoweringBase::findRepresentativeClass(MVT VT) const { - const TargetRegisterInfo *TRI = - getTargetMachine().getSubtargetImpl()->getRegisterInfo(); +std::pair<const TargetRegisterClass *, uint8_t> +TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, + MVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; if (!RC) return std::make_pair(RC, 0); @@ -1038,7 +1172,8 @@ TargetLoweringBase::findRepresentativeClass(MVT VT) const { /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. -void TargetLoweringBase::computeRegisterProperties() { +void TargetLoweringBase::computeRegisterProperties( + const TargetRegisterInfo *TRI) { static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, "Too many value types for ValueTypeActions to hold!"); @@ -1220,7 +1355,7 @@ void TargetLoweringBase::computeRegisterProperties() { for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { const TargetRegisterClass* RRC; uint8_t Cost; - std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); + std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); RepRegClassForVT[i] = RRC; RepRegClassCostForVT[i] = Cost; } |