aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/WinEHPrepare.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/WinEHPrepare.cpp')
-rw-r--r--lib/CodeGen/WinEHPrepare.cpp1629
1 files changed, 1244 insertions, 385 deletions
diff --git a/lib/CodeGen/WinEHPrepare.cpp b/lib/CodeGen/WinEHPrepare.cpp
index 6f712a9..ab0f96e 100644
--- a/lib/CodeGen/WinEHPrepare.cpp
+++ b/lib/CodeGen/WinEHPrepare.cpp
@@ -16,6 +16,8 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/IR/Function.h"
@@ -25,6 +27,10 @@
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <memory>
@@ -36,25 +42,31 @@ using namespace llvm::PatternMatch;
namespace {
-struct HandlerAllocas {
- TinyPtrVector<AllocaInst *> Allocas;
- int ParentFrameAllocationIndex;
-};
-
// This map is used to model frame variable usage during outlining, to
// construct a structure type to hold the frame variables in a frame
// allocation block, and to remap the frame variable allocas (including
// spill locations as needed) to GEPs that get the variable from the
// frame allocation structure.
-typedef MapVector<AllocaInst *, HandlerAllocas> FrameVarInfoMap;
+typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
-class WinEHPrepare : public FunctionPass {
- std::unique_ptr<FunctionPass> DwarfPrepare;
+typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
+
+enum ActionType { Catch, Cleanup };
+
+class LandingPadActions;
+class ActionHandler;
+class CatchHandler;
+class CleanupHandler;
+class LandingPadMap;
+typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
+typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
+
+class WinEHPrepare : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid.
WinEHPrepare(const TargetMachine *TM = nullptr)
- : FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {}
+ : FunctionPass(ID) {}
bool runOnFunction(Function &Fn) override;
@@ -67,11 +79,24 @@ public:
}
private:
- bool prepareCPPEHHandlers(Function &F,
- SmallVectorImpl<LandingPadInst *> &LPads);
- bool outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
- LandingPadInst *LPad, CallInst *&EHAlloc,
- AllocaInst *&EHObjPtr, FrameVarInfoMap &VarInfo);
+ bool prepareExceptionHandlers(Function &F,
+ SmallVectorImpl<LandingPadInst *> &LPads);
+ bool outlineHandler(ActionHandler *Action, Function *SrcFn,
+ LandingPadInst *LPad, BasicBlock *StartBB,
+ FrameVarInfoMap &VarInfo);
+
+ void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
+ CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
+ VisitedBlockSet &VisitedBlocks);
+ CleanupHandler *findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB);
+
+ void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
+
+ // All fields are reset by runOnFunction.
+ EHPersonality Personality;
+ CatchHandlerMapTy CatchHandlerMap;
+ CleanupHandlerMapTy CleanupHandlerMap;
+ DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
};
class WinEHFrameVariableMaterializer : public ValueMaterializer {
@@ -87,34 +112,218 @@ private:
IRBuilder<> Builder;
};
-class WinEHCatchDirector : public CloningDirector {
+class LandingPadMap {
+public:
+ LandingPadMap() : OriginLPad(nullptr) {}
+ void mapLandingPad(const LandingPadInst *LPad);
+
+ bool isInitialized() { return OriginLPad != nullptr; }
+
+ bool mapIfEHPtrLoad(const LoadInst *Load) {
+ return mapIfEHLoad(Load, EHPtrStores, EHPtrStoreAddrs);
+ }
+ bool mapIfSelectorLoad(const LoadInst *Load) {
+ return mapIfEHLoad(Load, SelectorStores, SelectorStoreAddrs);
+ }
+
+ bool isLandingPadSpecificInst(const Instruction *Inst) const;
+
+ void remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const;
+
+private:
+ bool mapIfEHLoad(const LoadInst *Load,
+ SmallVectorImpl<const StoreInst *> &Stores,
+ SmallVectorImpl<const Value *> &StoreAddrs);
+
+ const LandingPadInst *OriginLPad;
+ // We will normally only see one of each of these instructions, but
+ // if more than one occurs for some reason we can handle that.
+ TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
+ TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
+
+ // In optimized code, there will typically be at most one instance of
+ // each of the following, but in unoptimized IR it is not uncommon
+ // for the values to be stored, loaded and then stored again. In that
+ // case we will create a second entry for each store and store address.
+ SmallVector<const StoreInst *, 2> EHPtrStores;
+ SmallVector<const StoreInst *, 2> SelectorStores;
+ SmallVector<const Value *, 2> EHPtrStoreAddrs;
+ SmallVector<const Value *, 2> SelectorStoreAddrs;
+};
+
+class WinEHCloningDirectorBase : public CloningDirector {
public:
- WinEHCatchDirector(LandingPadInst *LPI, Function *CatchFn, Value *Selector,
- Value *EHObj, FrameVarInfoMap &VarInfo)
- : LPI(LPI), CurrentSelector(Selector->stripPointerCasts()), EHObj(EHObj),
- Materializer(CatchFn, VarInfo),
- SelectorIDType(Type::getInt32Ty(LPI->getContext())),
- Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {}
+ WinEHCloningDirectorBase(Function *HandlerFn,
+ FrameVarInfoMap &VarInfo,
+ LandingPadMap &LPadMap)
+ : Materializer(HandlerFn, VarInfo),
+ SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
+ Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
+ LPadMap(LPadMap) {}
CloningAction handleInstruction(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
+ virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) = 0;
+ virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) = 0;
+ virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) = 0;
+ virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
+ const InvokeInst *Invoke,
+ BasicBlock *NewBB) = 0;
+ virtual CloningAction handleResume(ValueToValueMapTy &VMap,
+ const ResumeInst *Resume,
+ BasicBlock *NewBB) = 0;
+
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
-private:
- LandingPadInst *LPI;
- Value *CurrentSelector;
- Value *EHObj;
+protected:
WinEHFrameVariableMaterializer Materializer;
Type *SelectorIDType;
Type *Int8PtrType;
+ LandingPadMap &LPadMap;
+};
+
+class WinEHCatchDirector : public WinEHCloningDirectorBase {
+public:
+ WinEHCatchDirector(Function *CatchFn, Value *Selector,
+ FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
+ : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap),
+ CurrentSelector(Selector->stripPointerCasts()),
+ ExceptionObjectVar(nullptr) {}
+
+ CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) override;
+ CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
+ BasicBlock *NewBB) override;
+ CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) override;
+ CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
+ BasicBlock *NewBB) override;
+ CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
+ BasicBlock *NewBB) override;
+
+ const Value *getExceptionVar() { return ExceptionObjectVar; }
+ TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
+
+private:
+ Value *CurrentSelector;
- const Value *ExtractedEHPtr;
- const Value *ExtractedSelector;
- const Value *EHPtrStoreAddr;
- const Value *SelectorStoreAddr;
+ const Value *ExceptionObjectVar;
+ TinyPtrVector<BasicBlock *> ReturnTargets;
};
+
+class WinEHCleanupDirector : public WinEHCloningDirectorBase {
+public:
+ WinEHCleanupDirector(Function *CleanupFn,
+ FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
+ : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {}
+
+ CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) override;
+ CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
+ BasicBlock *NewBB) override;
+ CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
+ const Instruction *Inst,
+ BasicBlock *NewBB) override;
+ CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
+ BasicBlock *NewBB) override;
+ CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
+ BasicBlock *NewBB) override;
+};
+
+class ActionHandler {
+public:
+ ActionHandler(BasicBlock *BB, ActionType Type)
+ : StartBB(BB), Type(Type), HandlerBlockOrFunc(nullptr) {}
+
+ ActionType getType() const { return Type; }
+ BasicBlock *getStartBlock() const { return StartBB; }
+
+ bool hasBeenProcessed() { return HandlerBlockOrFunc != nullptr; }
+
+ void setHandlerBlockOrFunc(Constant *F) { HandlerBlockOrFunc = F; }
+ Constant *getHandlerBlockOrFunc() { return HandlerBlockOrFunc; }
+
+private:
+ BasicBlock *StartBB;
+ ActionType Type;
+
+ // Can be either a BlockAddress or a Function depending on the EH personality.
+ Constant *HandlerBlockOrFunc;
+};
+
+class CatchHandler : public ActionHandler {
+public:
+ CatchHandler(BasicBlock *BB, Constant *Selector, BasicBlock *NextBB)
+ : ActionHandler(BB, ActionType::Catch), Selector(Selector),
+ NextBB(NextBB), ExceptionObjectVar(nullptr) {}
+
+ // Method for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ActionHandler *H) {
+ return H->getType() == ActionType::Catch;
+ }
+
+ Constant *getSelector() const { return Selector; }
+ BasicBlock *getNextBB() const { return NextBB; }
+
+ const Value *getExceptionVar() { return ExceptionObjectVar; }
+ TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
+
+ void setExceptionVar(const Value *Val) { ExceptionObjectVar = Val; }
+ void setReturnTargets(TinyPtrVector<BasicBlock *> &Targets) {
+ ReturnTargets = Targets;
+ }
+
+private:
+ Constant *Selector;
+ BasicBlock *NextBB;
+ const Value *ExceptionObjectVar;
+ TinyPtrVector<BasicBlock *> ReturnTargets;
+};
+
+class CleanupHandler : public ActionHandler {
+public:
+ CleanupHandler(BasicBlock *BB) : ActionHandler(BB, ActionType::Cleanup) {}
+
+ // Method for support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ActionHandler *H) {
+ return H->getType() == ActionType::Cleanup;
+ }
+};
+
+class LandingPadActions {
+public:
+ LandingPadActions() : HasCleanupHandlers(false) {}
+
+ void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
+ void insertCleanupHandler(CleanupHandler *Action) {
+ Actions.push_back(Action);
+ HasCleanupHandlers = true;
+ }
+
+ bool includesCleanup() const { return HasCleanupHandlers; }
+
+ SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
+ SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
+
+private:
+ // Note that this class does not own the ActionHandler objects in this vector.
+ // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
+ // in the WinEHPrepare class.
+ SmallVector<ActionHandler *, 4> Actions;
+ bool HasCleanupHandlers;
+};
+
} // end anonymous namespace
char WinEHPrepare::ID = 0;
@@ -125,10 +334,10 @@ FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
return new WinEHPrepare(TM);
}
-static bool isMSVCPersonality(EHPersonality Pers) {
- return Pers == EHPersonality::MSVC_Win64SEH ||
- Pers == EHPersonality::MSVC_CXX;
-}
+// FIXME: Remove this once the backend can handle the prepared IR.
+static cl::opt<bool>
+SEHPrepare("sehprepare", cl::Hidden,
+ cl::desc("Prepare functions with SEH personalities"));
bool WinEHPrepare::runOnFunction(Function &Fn) {
SmallVector<LandingPadInst *, 4> LPads;
@@ -145,60 +354,67 @@ bool WinEHPrepare::runOnFunction(Function &Fn) {
return false;
// Classify the personality to see what kind of preparation we need.
- EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn());
-
- // Delegate through to the DWARF pass if this is unrecognized.
- if (!isMSVCPersonality(Pers))
- return DwarfPrepare->runOnFunction(Fn);
+ Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
- // FIXME: This only returns true if the C++ EH handlers were outlined.
- // When that code is complete, it should always return whatever
- // prepareCPPEHHandlers returns.
- if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads))
- return true;
-
- // FIXME: SEH Cleanups are unimplemented. Replace them with unreachable.
- if (Resumes.empty())
+ // Do nothing if this is not an MSVC personality.
+ if (!isMSVCEHPersonality(Personality))
return false;
- for (ResumeInst *Resume : Resumes) {
- IRBuilder<>(Resume).CreateUnreachable();
- Resume->eraseFromParent();
+ if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) {
+ // Replace all resume instructions with unreachable.
+ // FIXME: Remove this once the backend can handle the prepared IR.
+ for (ResumeInst *Resume : Resumes) {
+ IRBuilder<>(Resume).CreateUnreachable();
+ Resume->eraseFromParent();
+ }
+ return true;
}
+ // If there were any landing pads, prepareExceptionHandlers will make changes.
+ prepareExceptionHandlers(Fn, LPads);
return true;
}
bool WinEHPrepare::doFinalization(Module &M) {
- return DwarfPrepare->doFinalization(M);
+ return false;
}
-void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
- DwarfPrepare->getAnalysisUsage(AU);
-}
+void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
-bool WinEHPrepare::prepareCPPEHHandlers(
+bool WinEHPrepare::prepareExceptionHandlers(
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
// These containers are used to re-map frame variables that are used in
// outlined catch and cleanup handlers. They will be populated as the
// handlers are outlined.
FrameVarInfoMap FrameVarInfo;
- SmallVector<CallInst *, 4> HandlerAllocs;
- SmallVector<AllocaInst *, 4> HandlerEHObjPtrs;
bool HandlersOutlined = false;
+ Module *M = F.getParent();
+ LLVMContext &Context = M->getContext();
+
+ // Create a new function to receive the handler contents.
+ PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
+ Type *Int32Type = Type::getInt32Ty(Context);
+ Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
+
for (LandingPadInst *LPad : LPads) {
// Look for evidence that this landingpad has already been processed.
bool LPadHasActionList = false;
BasicBlock *LPadBB = LPad->getParent();
- for (Instruction &Inst : LPadBB->getInstList()) {
- // FIXME: Make this an intrinsic.
- if (auto *Call = dyn_cast<CallInst>(&Inst))
- if (Call->getCalledFunction()->getName() == "llvm.eh.actions") {
+ for (Instruction &Inst : *LPadBB) {
+ if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Inst)) {
+ if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) {
LPadHasActionList = true;
break;
}
+ }
+ // FIXME: This is here to help with the development of nested landing pad
+ // outlining. It should be removed when that is finished.
+ if (isa<UnreachableInst>(Inst)) {
+ LPadHasActionList = true;
+ break;
+ }
}
// If we've already outlined the handlers for this landingpad,
@@ -206,177 +422,244 @@ bool WinEHPrepare::prepareCPPEHHandlers(
if (LPadHasActionList)
continue;
- for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses;
- ++Idx) {
- if (LPad->isCatch(Idx)) {
- // Create a new instance of the handler data structure in the
- // HandlerData vector.
- CallInst *EHAlloc = nullptr;
- AllocaInst *EHObjPtr = nullptr;
- bool Outlined = outlineCatchHandler(&F, LPad->getClause(Idx), LPad,
- EHAlloc, EHObjPtr, FrameVarInfo);
- if (Outlined) {
+ LandingPadActions Actions;
+ mapLandingPadBlocks(LPad, Actions);
+
+ for (ActionHandler *Action : Actions) {
+ if (Action->hasBeenProcessed())
+ continue;
+ BasicBlock *StartBB = Action->getStartBlock();
+
+ // SEH doesn't do any outlining for catches. Instead, pass the handler
+ // basic block addr to llvm.eh.actions and list the block as a return
+ // target.
+ if (isAsynchronousEHPersonality(Personality)) {
+ if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
+ processSEHCatchHandler(CatchAction, StartBB);
HandlersOutlined = true;
- // These values must be resolved after all handlers have been
- // outlined.
- if (EHAlloc)
- HandlerAllocs.push_back(EHAlloc);
- if (EHObjPtr)
- HandlerEHObjPtrs.push_back(EHObjPtr);
+ continue;
}
- } // End if (isCatch)
- } // End for each clause
- } // End for each landingpad
+ }
+
+ if (outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo)) {
+ HandlersOutlined = true;
+ }
+ } // End for each Action
+
+ // FIXME: We need a guard against partially outlined functions.
+ if (!HandlersOutlined)
+ continue;
+
+ // Replace the landing pad with a new llvm.eh.action based landing pad.
+ BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB);
+ assert(!isa<PHINode>(LPadBB->begin()));
+ Instruction *NewLPad = LPad->clone();
+ NewLPadBB->getInstList().push_back(NewLPad);
+ while (!pred_empty(LPadBB)) {
+ auto *pred = *pred_begin(LPadBB);
+ InvokeInst *Invoke = cast<InvokeInst>(pred->getTerminator());
+ Invoke->setUnwindDest(NewLPadBB);
+ }
+
+ // Replace uses of the old lpad in phis with this block and delete the old
+ // block.
+ LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB);
+ LPadBB->getTerminator()->eraseFromParent();
+ new UnreachableInst(LPadBB->getContext(), LPadBB);
+
+ // Add a call to describe the actions for this landing pad.
+ std::vector<Value *> ActionArgs;
+ for (ActionHandler *Action : Actions) {
+ // Action codes from docs are: 0 cleanup, 1 catch.
+ if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
+ ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
+ ActionArgs.push_back(CatchAction->getSelector());
+ Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
+ if (EHObj)
+ ActionArgs.push_back(EHObj);
+ else
+ ActionArgs.push_back(ConstantPointerNull::get(Int8PtrType));
+ } else {
+ ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
+ }
+ ActionArgs.push_back(Action->getHandlerBlockOrFunc());
+ }
+ CallInst *Recover =
+ CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB);
+
+ // Add an indirect branch listing possible successors of the catch handlers.
+ IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB);
+ for (ActionHandler *Action : Actions) {
+ if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
+ for (auto *Target : CatchAction->getReturnTargets()) {
+ Branch->addDestination(Target);
+ }
+ }
+ }
+ } // End for each landingpad
// If nothing got outlined, there is no more processing to be done.
if (!HandlersOutlined)
return false;
- // FIXME: We will replace the landingpad bodies with llvm.eh.actions
- // calls and indirect branches here and then delete blocks
- // which are no longer reachable. That will get rid of the
- // handlers that we have outlined. There is code below
- // that looks for allocas with no uses in the parent function.
- // That will only happen after the pruning is implemented.
-
- // Remap the frame variables.
- SmallVector<Type *, 2> StructTys;
- StructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state
- StructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object
-
- // Start the index at two since we always have the above fields at 0 and 1.
- int Idx = 2;
-
- // FIXME: Sort the FrameVarInfo vector by the ParentAlloca size and alignment
- // and add padding as necessary to provide the proper alignment.
-
- // Map the alloca instructions to the corresponding index in the
- // frame allocation structure. If any alloca is used only in a single
- // handler and is not used in the parent frame after outlining, it will
- // be assigned an index of -1, meaning the handler can keep its
- // "temporary" alloca and the original alloca can be erased from the
- // parent function. If we later encounter this alloca in a second
- // handler, we will assign it a place in the frame allocation structure
- // at that time. Since the instruction replacement doesn't happen until
- // all the entries in the HandlerData have been processed this isn't a
- // problem.
- for (auto &VarInfoEntry : FrameVarInfo) {
- AllocaInst *ParentAlloca = VarInfoEntry.first;
- HandlerAllocas &AllocaInfo = VarInfoEntry.second;
-
- // If the instruction still has uses in the parent function or if it is
- // referenced by more than one handler, add it to the frame allocation
- // structure.
- if (ParentAlloca->getNumUses() != 0 || AllocaInfo.Allocas.size() > 1) {
- Type *VarTy = ParentAlloca->getAllocatedType();
- StructTys.push_back(VarTy);
- AllocaInfo.ParentFrameAllocationIndex = Idx++;
- } else {
- // If the variable is not used in the parent frame and it is only used
- // in one handler, the alloca can be removed from the parent frame
- // and the handler will keep its "temporary" alloca to define the value.
- // An element index of -1 is used to indicate this condition.
- AllocaInfo.ParentFrameAllocationIndex = -1;
- }
- }
+ // Delete any blocks that were only used by handlers that were outlined above.
+ removeUnreachableBlocks(F);
- // Having filled the StructTys vector and assigned an index to each element,
- // we can now create the structure.
- StructType *EHDataStructTy = StructType::create(
- F.getContext(), StructTys, "struct." + F.getName().str() + ".ehdata");
- IRBuilder<> Builder(F.getParent()->getContext());
-
- // Create a frame allocation.
- Module *M = F.getParent();
- LLVMContext &Context = M->getContext();
BasicBlock *Entry = &F.getEntryBlock();
+ IRBuilder<> Builder(F.getParent()->getContext());
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
- Function *FrameAllocFn =
- Intrinsic::getDeclaration(M, Intrinsic::frameallocate);
- uint64_t EHAllocSize = M->getDataLayout()->getTypeAllocSize(EHDataStructTy);
- Value *FrameAllocArgs[] = {
- ConstantInt::get(Type::getInt32Ty(Context), EHAllocSize)};
- CallInst *FrameAlloc =
- Builder.CreateCall(FrameAllocFn, FrameAllocArgs, "frame.alloc");
-
- Value *FrameEHData = Builder.CreateBitCast(
- FrameAlloc, EHDataStructTy->getPointerTo(), "eh.data");
-
- // Now visit each handler that is using the structure and bitcast its EHAlloc
- // value to be a pointer to the frame alloc structure.
- DenseMap<Function *, Value *> EHDataMap;
- for (CallInst *EHAlloc : HandlerAllocs) {
- // The EHAlloc has no uses at this time, so we need to just insert the
- // cast before the next instruction. There is always a next instruction.
- BasicBlock::iterator II = EHAlloc;
- ++II;
- Builder.SetInsertPoint(cast<Instruction>(II));
- Value *EHData = Builder.CreateBitCast(
- EHAlloc, EHDataStructTy->getPointerTo(), "eh.data");
- EHDataMap[EHAlloc->getParent()->getParent()] = EHData;
- }
- // Next, replace the place-holder EHObjPtr allocas with GEP instructions
- // that pull the EHObjPtr from the frame alloc structure
- for (AllocaInst *EHObjPtr : HandlerEHObjPtrs) {
- Value *EHData = EHDataMap[EHObjPtr->getParent()->getParent()];
- Builder.SetInsertPoint(EHObjPtr);
- Value *ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, 1);
- EHObjPtr->replaceAllUsesWith(ElementPtr);
- EHObjPtr->removeFromParent();
- ElementPtr->takeName(EHObjPtr);
- delete EHObjPtr;
- }
+ Function *FrameEscapeFn =
+ Intrinsic::getDeclaration(M, Intrinsic::frameescape);
+ Function *RecoverFrameFn =
+ Intrinsic::getDeclaration(M, Intrinsic::framerecover);
// Finally, replace all of the temporary allocas for frame variables used in
- // the outlined handlers and the original frame allocas with GEP instructions
- // that get the equivalent pointer from the frame allocation struct.
+ // the outlined handlers with calls to llvm.framerecover.
+ BasicBlock::iterator II = Entry->getFirstInsertionPt();
+ Instruction *AllocaInsertPt = II;
+ SmallVector<Value *, 8> AllocasToEscape;
for (auto &VarInfoEntry : FrameVarInfo) {
- AllocaInst *ParentAlloca = VarInfoEntry.first;
- HandlerAllocas &AllocaInfo = VarInfoEntry.second;
- int Idx = AllocaInfo.ParentFrameAllocationIndex;
-
- // If we have an index of -1 for this instruction, it means it isn't used
- // outside of this handler. In that case, we just keep the "temporary"
- // alloca in the handler and erase the original alloca from the parent.
- if (Idx == -1) {
+ Value *ParentVal = VarInfoEntry.first;
+ TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
+
+ // If the mapped value isn't already an alloca, we need to spill it if it
+ // is a computed value or copy it if it is an argument.
+ AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
+ if (!ParentAlloca) {
+ if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
+ // Lower this argument to a copy and then demote that to the stack.
+ // We can't just use the argument location because the handler needs
+ // it to be in the frame allocation block.
+ // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
+ Value *TrueValue = ConstantInt::getTrue(Context);
+ Value *UndefValue = UndefValue::get(Arg->getType());
+ Instruction *SI =
+ SelectInst::Create(TrueValue, Arg, UndefValue,
+ Arg->getName() + ".tmp", AllocaInsertPt);
+ Arg->replaceAllUsesWith(SI);
+ // Reset the select operand, because it was clobbered by the RAUW above.
+ SI->setOperand(1, Arg);
+ ParentAlloca = DemoteRegToStack(*SI, true, SI);
+ } else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
+ ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
+ } else {
+ Instruction *ParentInst = cast<Instruction>(ParentVal);
+ // FIXME: This is a work-around to temporarily handle the case where an
+ // instruction that is only used in handlers is not sunk.
+ // Without uses, DemoteRegToStack would just eliminate the value.
+ // This will fail if ParentInst is an invoke.
+ if (ParentInst->getNumUses() == 0) {
+ BasicBlock::iterator InsertPt = ParentInst;
+ ++InsertPt;
+ ParentAlloca =
+ new AllocaInst(ParentInst->getType(), nullptr,
+ ParentInst->getName() + ".reg2mem", InsertPt);
+ new StoreInst(ParentInst, ParentAlloca, InsertPt);
+ } else {
+ ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst);
+ }
+ }
+ }
+
+ // If the parent alloca is no longer used and only one of the handlers used
+ // it, erase the parent and leave the copy in the outlined handler.
+ if (ParentAlloca->getNumUses() == 0 && Allocas.size() == 1) {
ParentAlloca->eraseFromParent();
- } else {
- // Otherwise, we replace the parent alloca and all outlined allocas
- // which map to it with GEP instructions.
-
- // First replace the original alloca.
- Builder.SetInsertPoint(ParentAlloca);
- Builder.SetCurrentDebugLocation(ParentAlloca->getDebugLoc());
- Value *ElementPtr =
- Builder.CreateConstInBoundsGEP2_32(FrameEHData, 0, Idx);
- ParentAlloca->replaceAllUsesWith(ElementPtr);
- ParentAlloca->removeFromParent();
- ElementPtr->takeName(ParentAlloca);
- delete ParentAlloca;
-
- // Next replace all outlined allocas that are mapped to it.
- for (AllocaInst *TempAlloca : AllocaInfo.Allocas) {
- Value *EHData = EHDataMap[TempAlloca->getParent()->getParent()];
- // FIXME: Sink this GEP into the blocks where it is used.
- Builder.SetInsertPoint(TempAlloca);
- Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
- ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, Idx);
- TempAlloca->replaceAllUsesWith(ElementPtr);
- TempAlloca->removeFromParent();
- ElementPtr->takeName(TempAlloca);
- delete TempAlloca;
+ continue;
+ }
+
+ // Add this alloca to the list of things to escape.
+ AllocasToEscape.push_back(ParentAlloca);
+
+ // Next replace all outlined allocas that are mapped to it.
+ for (AllocaInst *TempAlloca : Allocas) {
+ Function *HandlerFn = TempAlloca->getParent()->getParent();
+ // FIXME: Sink this GEP into the blocks where it is used.
+ Builder.SetInsertPoint(TempAlloca);
+ Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
+ Value *RecoverArgs[] = {
+ Builder.CreateBitCast(&F, Int8PtrType, ""),
+ &(HandlerFn->getArgumentList().back()),
+ llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
+ Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs);
+ // Add a pointer bitcast if the alloca wasn't an i8.
+ if (RecoveredAlloca->getType() != TempAlloca->getType()) {
+ RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
+ RecoveredAlloca =
+ Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType());
}
- } // end else of if (Idx == -1)
- } // End for each FrameVarInfo entry.
+ TempAlloca->replaceAllUsesWith(RecoveredAlloca);
+ TempAlloca->removeFromParent();
+ RecoveredAlloca->takeName(TempAlloca);
+ delete TempAlloca;
+ }
+ } // End for each FrameVarInfo entry.
+
+ // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
+ // block.
+ Builder.SetInsertPoint(&F.getEntryBlock().back());
+ Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
+
+ // Insert an alloca for the EH state in the entry block. On x86, we will also
+ // insert stores to update the EH state, but on other ISAs, the runtime does
+ // it for us.
+ // FIXME: This record is different on x86.
+ Type *UnwindHelpTy = Type::getInt64Ty(Context);
+ AllocaInst *UnwindHelp =
+ new AllocaInst(UnwindHelpTy, "unwindhelp", &F.getEntryBlock().front());
+ Builder.CreateStore(llvm::ConstantInt::get(UnwindHelpTy, -2), UnwindHelp);
+ Function *UnwindHelpFn =
+ Intrinsic::getDeclaration(M, Intrinsic::eh_unwindhelp);
+ Builder.CreateCall(UnwindHelpFn,
+ Builder.CreateBitCast(UnwindHelp, Int8PtrType));
+
+ // Clean up the handler action maps we created for this function
+ DeleteContainerSeconds(CatchHandlerMap);
+ CatchHandlerMap.clear();
+ DeleteContainerSeconds(CleanupHandlerMap);
+ CleanupHandlerMap.clear();
return HandlersOutlined;
}
-bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
- LandingPadInst *LPad, CallInst *&EHAlloc,
- AllocaInst *&EHObjPtr,
- FrameVarInfoMap &VarInfo) {
+// This function examines a block to determine whether the block ends with a
+// conditional branch to a catch handler based on a selector comparison.
+// This function is used both by the WinEHPrepare::findSelectorComparison() and
+// WinEHCleanupDirector::handleTypeIdFor().
+static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
+ Constant *&Selector, BasicBlock *&NextBB) {
+ ICmpInst::Predicate Pred;
+ BasicBlock *TBB, *FBB;
+ Value *LHS, *RHS;
+
+ if (!match(BB->getTerminator(),
+ m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
+ return false;
+
+ if (!match(LHS,
+ m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
+ !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
+ return false;
+
+ if (Pred == CmpInst::ICMP_EQ) {
+ CatchHandler = TBB;
+ NextBB = FBB;
+ return true;
+ }
+
+ if (Pred == CmpInst::ICMP_NE) {
+ CatchHandler = FBB;
+ NextBB = TBB;
+ return true;
+ }
+
+ return false;
+}
+
+bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
+ LandingPadInst *LPad, BasicBlock *StartBB,
+ FrameVarInfoMap &VarInfo) {
Module *M = SrcFn->getParent();
LLVMContext &Context = M->getContext();
@@ -385,133 +668,241 @@ bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
std::vector<Type *> ArgTys;
ArgTys.push_back(Int8PtrType);
ArgTys.push_back(Int8PtrType);
- FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
- Function *CatchHandler = Function::Create(
- FnType, GlobalVariable::ExternalLinkage, SrcFn->getName() + ".catch", M);
+ Function *Handler;
+ if (Action->getType() == Catch) {
+ FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
+ Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
+ SrcFn->getName() + ".catch", M);
+ } else {
+ FunctionType *FnType =
+ FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
+ Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
+ SrcFn->getName() + ".cleanup", M);
+ }
// Generate a standard prolog to setup the frame recovery structure.
IRBuilder<> Builder(Context);
- BasicBlock *Entry = BasicBlock::Create(Context, "catch.entry");
- CatchHandler->getBasicBlockList().push_front(Entry);
+ BasicBlock *Entry = BasicBlock::Create(Context, "entry");
+ Handler->getBasicBlockList().push_front(Entry);
Builder.SetInsertPoint(Entry);
Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
- // The outlined handler will be called with the parent's frame pointer as
- // its second argument. To enable the handler to access variables from
- // the parent frame, we use that pointer to get locate a special block
- // of memory that was allocated using llvm.eh.allocateframe for this
- // purpose. During the outlining process we will determine which frame
- // variables are used in handlers and create a structure that maps these
- // variables into the frame allocation block.
- //
- // The frame allocation block also contains an exception state variable
- // used by the runtime and a pointer to the exception object pointer
- // which will be filled in by the runtime for use in the handler.
- Function *RecoverFrameFn =
- Intrinsic::getDeclaration(M, Intrinsic::framerecover);
- Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""),
- &(CatchHandler->getArgumentList().back())};
- EHAlloc = Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");
-
- // This alloca is only temporary. We'll be replacing it once we know all the
- // frame variables that need to go in the frame allocation structure.
- EHObjPtr = Builder.CreateAlloca(Int8PtrType, 0, "eh.obj.ptr");
-
- // This will give us a raw pointer to the exception object, which
- // corresponds to the formal parameter of the catch statement. If the
- // handler uses this object, we will generate code during the outlining
- // process to cast the pointer to the appropriate type and deference it
- // as necessary. The un-outlined landing pad code represents the
- // exception object as the result of the llvm.eh.begincatch call.
- Value *EHObj = Builder.CreateLoad(EHObjPtr, false, "eh.obj");
+ std::unique_ptr<WinEHCloningDirectorBase> Director;
ValueToValueMapTy VMap;
- // FIXME: Map other values referenced in the filter handler.
-
- WinEHCatchDirector Director(LPad, CatchHandler, SelectorType, EHObj, VarInfo);
+ LandingPadMap &LPadMap = LPadMaps[LPad];
+ if (!LPadMap.isInitialized())
+ LPadMap.mapLandingPad(LPad);
+ if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
+ Constant *Sel = CatchAction->getSelector();
+ Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap));
+ LPadMap.remapSelector(VMap, ConstantInt::get(Type::getInt32Ty(Context), 1));
+ } else {
+ Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap));
+ }
SmallVector<ReturnInst *, 8> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
+ ClonedCodeInfo OutlinedFunctionInfo;
+
+ // If the start block contains PHI nodes, we need to map them.
+ BasicBlock::iterator II = StartBB->begin();
+ while (auto *PN = dyn_cast<PHINode>(II)) {
+ bool Mapped = false;
+ // Look for PHI values that we have already mapped (such as the selector).
+ for (Value *Val : PN->incoming_values()) {
+ if (VMap.count(Val)) {
+ VMap[PN] = VMap[Val];
+ Mapped = true;
+ }
+ }
+ // If we didn't find a match for this value, map it as an undef.
+ if (!Mapped) {
+ VMap[PN] = UndefValue::get(PN->getType());
+ }
+ ++II;
+ }
- BasicBlock::iterator II = LPad;
+ // Skip over PHIs and, if applicable, landingpad instructions.
+ II = StartBB->getFirstInsertionPt();
- CloneAndPruneIntoFromInst(CatchHandler, SrcFn, ++II, VMap,
+ CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
/*ModuleLevelChanges=*/false, Returns, "",
- &InlinedFunctionInfo,
- SrcFn->getParent()->getDataLayout(), &Director);
+ &OutlinedFunctionInfo, Director.get());
// Move all the instructions in the first cloned block into our entry block.
BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
FirstClonedBB->eraseFromParent();
+ if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
+ WinEHCatchDirector *CatchDirector =
+ reinterpret_cast<WinEHCatchDirector *>(Director.get());
+ CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
+ CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
+ }
+
+ Action->setHandlerBlockOrFunc(Handler);
+
return true;
}
-CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
- ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
- // Intercept instructions which extract values from the landing pad aggregate.
- if (auto *Extract = dyn_cast<ExtractValueInst>(Inst)) {
- if (Extract->getAggregateOperand() == LPI) {
- assert(Extract->getNumIndices() == 1 &&
- "Unexpected operation: extracting both landing pad values");
- assert((*(Extract->idx_begin()) == 0 || *(Extract->idx_begin()) == 1) &&
- "Unexpected operation: extracting an unknown landing pad element");
-
- if (*(Extract->idx_begin()) == 0) {
- // Element 0 doesn't directly corresponds to anything in the WinEH
- // scheme.
- // It will be stored to a memory location, then later loaded and finally
- // the loaded value will be used as the argument to an
- // llvm.eh.begincatch
- // call. We're tracking it here so that we can skip the store and load.
- ExtractedEHPtr = Inst;
- } else {
- // Element 1 corresponds to the filter selector. We'll map it to 1 for
- // matching purposes, but it will also probably be stored to memory and
- // reloaded, so we need to track the instuction so that we can map the
- // loaded value too.
- VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
- ExtractedSelector = Inst;
- }
-
- // Tell the caller not to clone this instruction.
- return CloningDirector::SkipInstruction;
- }
- // Other extract value instructions just get cloned.
- return CloningDirector::CloneInstruction;
+/// This BB must end in a selector dispatch. All we need to do is pass the
+/// handler block to llvm.eh.actions and list it as a possible indirectbr
+/// target.
+void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
+ BasicBlock *StartBB) {
+ BasicBlock *HandlerBB;
+ BasicBlock *NextBB;
+ Constant *Selector;
+ bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
+ if (Res) {
+ // If this was EH dispatch, this must be a conditional branch to the handler
+ // block.
+ // FIXME: Handle instructions in the dispatch block. Currently we drop them,
+ // leading to crashes if some optimization hoists stuff here.
+ assert(CatchAction->getSelector() && HandlerBB &&
+ "expected catch EH dispatch");
+ } else {
+ // This must be a catch-all. Split the block after the landingpad.
+ assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
+ HandlerBB =
+ StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all");
}
+ CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
+ TinyPtrVector<BasicBlock *> Targets(HandlerBB);
+ CatchAction->setReturnTargets(Targets);
+}
- if (auto *Store = dyn_cast<StoreInst>(Inst)) {
- // Look for and suppress stores of the extracted landingpad values.
- const Value *StoredValue = Store->getValueOperand();
- if (StoredValue == ExtractedEHPtr) {
- EHPtrStoreAddr = Store->getPointerOperand();
- return CloningDirector::SkipInstruction;
+void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
+ // Each instance of this class should only ever be used to map a single
+ // landing pad.
+ assert(OriginLPad == nullptr || OriginLPad == LPad);
+
+ // If the landing pad has already been mapped, there's nothing more to do.
+ if (OriginLPad == LPad)
+ return;
+
+ OriginLPad = LPad;
+
+ // The landingpad instruction returns an aggregate value. Typically, its
+ // value will be passed to a pair of extract value instructions and the
+ // results of those extracts are often passed to store instructions.
+ // In unoptimized code the stored value will often be loaded and then stored
+ // again.
+ for (auto *U : LPad->users()) {
+ const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
+ if (!Extract)
+ continue;
+ assert(Extract->getNumIndices() == 1 &&
+ "Unexpected operation: extracting both landing pad values");
+ unsigned int Idx = *(Extract->idx_begin());
+ assert((Idx == 0 || Idx == 1) &&
+ "Unexpected operation: extracting an unknown landing pad element");
+ if (Idx == 0) {
+ // Element 0 doesn't directly corresponds to anything in the WinEH
+ // scheme.
+ // It will be stored to a memory location, then later loaded and finally
+ // the loaded value will be used as the argument to an
+ // llvm.eh.begincatch
+ // call. We're tracking it here so that we can skip the store and load.
+ ExtractedEHPtrs.push_back(Extract);
+ } else if (Idx == 1) {
+ // Element 1 corresponds to the filter selector. We'll map it to 1 for
+ // matching purposes, but it will also probably be stored to memory and
+ // reloaded, so we need to track the instuction so that we can map the
+ // loaded value too.
+ ExtractedSelectors.push_back(Extract);
}
- if (StoredValue == ExtractedSelector) {
- SelectorStoreAddr = Store->getPointerOperand();
- return CloningDirector::SkipInstruction;
+
+ // Look for stores of the extracted values.
+ for (auto *EU : Extract->users()) {
+ if (auto *Store = dyn_cast<StoreInst>(EU)) {
+ if (Idx == 1) {
+ SelectorStores.push_back(Store);
+ SelectorStoreAddrs.push_back(Store->getPointerOperand());
+ } else {
+ EHPtrStores.push_back(Store);
+ EHPtrStoreAddrs.push_back(Store->getPointerOperand());
+ }
+ }
}
+ }
+}
- // Any other store just gets cloned.
- return CloningDirector::CloneInstruction;
+bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
+ if (Inst == OriginLPad)
+ return true;
+ for (auto *Extract : ExtractedEHPtrs) {
+ if (Inst == Extract)
+ return true;
+ }
+ for (auto *Extract : ExtractedSelectors) {
+ if (Inst == Extract)
+ return true;
+ }
+ for (auto *Store : EHPtrStores) {
+ if (Inst == Store)
+ return true;
+ }
+ for (auto *Store : SelectorStores) {
+ if (Inst == Store)
+ return true;
+ }
+
+ return false;
+}
+
+void LandingPadMap::remapSelector(ValueToValueMapTy &VMap,
+ Value *MappedValue) const {
+ // Remap all selector extract instructions to the specified value.
+ for (auto *Extract : ExtractedSelectors)
+ VMap[Extract] = MappedValue;
+}
+
+bool LandingPadMap::mapIfEHLoad(const LoadInst *Load,
+ SmallVectorImpl<const StoreInst *> &Stores,
+ SmallVectorImpl<const Value *> &StoreAddrs) {
+ // This makes the assumption that a store we've previously seen dominates
+ // this load instruction. That might seem like a rather huge assumption,
+ // but given the way that landingpads are constructed its fairly safe.
+ // FIXME: Add debug/assert code that verifies this.
+ const Value *LoadAddr = Load->getPointerOperand();
+ for (auto *StoreAddr : StoreAddrs) {
+ if (LoadAddr == StoreAddr) {
+ // Handle the common debug scenario where this loaded value is stored
+ // to a different location.
+ for (auto *U : Load->users()) {
+ if (auto *Store = dyn_cast<StoreInst>(U)) {
+ Stores.push_back(Store);
+ StoreAddrs.push_back(Store->getPointerOperand());
+ }
+ }
+ return true;
+ }
}
+ return false;
+}
+
+CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
+ ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
+ // If this is one of the boilerplate landing pad instructions, skip it.
+ // The instruction will have already been remapped in VMap.
+ if (LPadMap.isLandingPadSpecificInst(Inst))
+ return CloningDirector::SkipInstruction;
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
// Look for loads of (previously suppressed) landingpad values.
- // The EHPtr load can be ignored (it should only be used as
- // an argument to llvm.eh.begincatch), but the selector value
- // needs to be mapped to a constant value of 1 to be used to
- // simplify the branching to always flow to the current handler.
- const Value *LoadAddr = Load->getPointerOperand();
- if (LoadAddr == EHPtrStoreAddr) {
- VMap[Inst] = UndefValue::get(Int8PtrType);
+ // The EHPtr load can be mapped to an undef value as it should only be used
+ // as an argument to llvm.eh.begincatch, but the selector value needs to be
+ // mapped to a constant value of 1. This value will be used to simplify the
+ // branching to always flow to the current handler.
+ if (LPadMap.mapIfSelectorLoad(Load)) {
+ VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
return CloningDirector::SkipInstruction;
}
- if (LoadAddr == SelectorStoreAddr) {
- VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
+ if (LPadMap.mapIfEHPtrLoad(Load)) {
+ VMap[Inst] = UndefValue::get(Int8PtrType);
return CloningDirector::SkipInstruction;
}
@@ -519,108 +910,576 @@ CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
return CloningDirector::CloneInstruction;
}
- if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) {
- // The argument to the call is some form of the first element of the
- // landingpad aggregate value, but that doesn't matter. It isn't used
- // here.
- // The return value of this instruction, however, is used to access the
- // EH object pointer. We have generated an instruction to get that value
- // from the EH alloc block, so we can just map to that here.
- VMap[Inst] = EHObj;
- return CloningDirector::SkipInstruction;
- }
- if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) {
- auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
- // It might be interesting to track whether or not we are inside a catch
- // function, but that might make the algorithm more brittle than it needs
- // to be.
-
- // The end catch call can occur in one of two places: either in a
- // landingpad
- // block that is part of the catch handlers exception mechanism, or at the
- // end of the catch block. If it occurs in a landing pad, we must skip it
- // and continue so that the landing pad gets cloned.
- // FIXME: This case isn't fully supported yet and shouldn't turn up in any
- // of the test cases until it is.
- if (IntrinCall->getParent()->isLandingPad())
- return CloningDirector::SkipInstruction;
-
- // If an end catch occurs anywhere else the next instruction should be an
- // unconditional branch instruction that we want to replace with a return
- // to the the address of the branch target.
- const BasicBlock *EndCatchBB = IntrinCall->getParent();
- const TerminatorInst *Terminator = EndCatchBB->getTerminator();
- const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
- assert(Branch && Branch->isUnconditional());
- assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
- BasicBlock::const_iterator(Branch));
-
- ReturnInst::Create(NewBB->getContext(),
- BlockAddress::get(Branch->getSuccessor(0)), NewBB);
-
- // We just added a terminator to the cloned block.
- // Tell the caller to stop processing the current basic block so that
- // the branch instruction will be skipped.
+ // Nested landing pads will be cloned as stubs, with just the
+ // landingpad instruction and an unreachable instruction. When
+ // all landingpads have been outlined, we'll replace this with the
+ // llvm.eh.actions call and indirect branch created when the
+ // landing pad was outlined.
+ if (auto *NestedLPad = dyn_cast<LandingPadInst>(Inst)) {
+ Instruction *NewInst = NestedLPad->clone();
+ if (NestedLPad->hasName())
+ NewInst->setName(NestedLPad->getName());
+ // FIXME: Store this mapping somewhere else also.
+ VMap[NestedLPad] = NewInst;
+ BasicBlock::InstListType &InstList = NewBB->getInstList();
+ InstList.push_back(NewInst);
+ InstList.push_back(new UnreachableInst(NewBB->getContext()));
return CloningDirector::StopCloningBB;
}
- if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) {
- auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
- Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
- // This causes a replacement that will collapse the landing pad CFG based
- // on the filter function we intend to match.
- if (Selector == CurrentSelector)
- VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
- else
- VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
- // Tell the caller not to clone this instruction.
- return CloningDirector::SkipInstruction;
- }
+
+ if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
+ return handleInvoke(VMap, Invoke, NewBB);
+
+ if (auto *Resume = dyn_cast<ResumeInst>(Inst))
+ return handleResume(VMap, Resume, NewBB);
+
+ if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
+ return handleBeginCatch(VMap, Inst, NewBB);
+ if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
+ return handleEndCatch(VMap, Inst, NewBB);
+ if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
+ return handleTypeIdFor(VMap, Inst, NewBB);
// Continue with the default cloning behavior.
return CloningDirector::CloneInstruction;
}
+CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
+ ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
+ // The argument to the call is some form of the first element of the
+ // landingpad aggregate value, but that doesn't matter. It isn't used
+ // here.
+ // The second argument is an outparameter where the exception object will be
+ // stored. Typically the exception object is a scalar, but it can be an
+ // aggregate when catching by value.
+ // FIXME: Leave something behind to indicate where the exception object lives
+ // for this handler. Should it be part of llvm.eh.actions?
+ assert(ExceptionObjectVar == nullptr && "Multiple calls to "
+ "llvm.eh.begincatch found while "
+ "outlining catch handler.");
+ ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
+ return CloningDirector::SkipInstruction;
+}
+
+CloningDirector::CloningAction
+WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
+ const Instruction *Inst, BasicBlock *NewBB) {
+ auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
+ // It might be interesting to track whether or not we are inside a catch
+ // function, but that might make the algorithm more brittle than it needs
+ // to be.
+
+ // The end catch call can occur in one of two places: either in a
+ // landingpad block that is part of the catch handlers exception mechanism,
+ // or at the end of the catch block. If it occurs in a landing pad, we must
+ // skip it and continue so that the landing pad gets cloned.
+ // FIXME: This case isn't fully supported yet and shouldn't turn up in any
+ // of the test cases until it is.
+ if (IntrinCall->getParent()->isLandingPad())
+ return CloningDirector::SkipInstruction;
+
+ // If an end catch occurs anywhere else the next instruction should be an
+ // unconditional branch instruction that we want to replace with a return
+ // to the the address of the branch target.
+ const BasicBlock *EndCatchBB = IntrinCall->getParent();
+ const TerminatorInst *Terminator = EndCatchBB->getTerminator();
+ const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
+ assert(Branch && Branch->isUnconditional());
+ assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
+ BasicBlock::const_iterator(Branch));
+
+ BasicBlock *ContinueLabel = Branch->getSuccessor(0);
+ ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueLabel),
+ NewBB);
+ ReturnTargets.push_back(ContinueLabel);
+
+ // We just added a terminator to the cloned block.
+ // Tell the caller to stop processing the current basic block so that
+ // the branch instruction will be skipped.
+ return CloningDirector::StopCloningBB;
+}
+
+CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
+ ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
+ auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
+ Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
+ // This causes a replacement that will collapse the landing pad CFG based
+ // on the filter function we intend to match.
+ if (Selector == CurrentSelector)
+ VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
+ else
+ VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
+ // Tell the caller not to clone this instruction.
+ return CloningDirector::SkipInstruction;
+}
+
+CloningDirector::CloningAction
+WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
+ const InvokeInst *Invoke, BasicBlock *NewBB) {
+ return CloningDirector::CloneInstruction;
+}
+
+CloningDirector::CloningAction
+WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
+ const ResumeInst *Resume, BasicBlock *NewBB) {
+ // Resume instructions shouldn't be reachable from catch handlers.
+ // We still need to handle it, but it will be pruned.
+ BasicBlock::InstListType &InstList = NewBB->getInstList();
+ InstList.push_back(new UnreachableInst(NewBB->getContext()));
+ return CloningDirector::StopCloningBB;
+}
+
+CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
+ ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
+ // Catch blocks within cleanup handlers will always be unreachable.
+ // We'll insert an unreachable instruction now, but it will be pruned
+ // before the cloning process is complete.
+ BasicBlock::InstListType &InstList = NewBB->getInstList();
+ InstList.push_back(new UnreachableInst(NewBB->getContext()));
+ return CloningDirector::StopCloningBB;
+}
+
+CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
+ ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
+ // Catch blocks within cleanup handlers will always be unreachable.
+ // We'll insert an unreachable instruction now, but it will be pruned
+ // before the cloning process is complete.
+ BasicBlock::InstListType &InstList = NewBB->getInstList();
+ InstList.push_back(new UnreachableInst(NewBB->getContext()));
+ return CloningDirector::StopCloningBB;
+}
+
+CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
+ ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
+ // If we encounter a selector comparison while cloning a cleanup handler,
+ // we want to stop cloning immediately. Anything after the dispatch
+ // will be outlined into a different handler.
+ BasicBlock *CatchHandler;
+ Constant *Selector;
+ BasicBlock *NextBB;
+ if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
+ CatchHandler, Selector, NextBB)) {
+ ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
+ return CloningDirector::StopCloningBB;
+ }
+ // If eg.typeid.for is called for any other reason, it can be ignored.
+ VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
+ return CloningDirector::SkipInstruction;
+}
+
+CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
+ ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
+ // All invokes in cleanup handlers can be replaced with calls.
+ SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
+ // Insert a normal call instruction...
+ CallInst *NewCall =
+ CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
+ Invoke->getName(), NewBB);
+ NewCall->setCallingConv(Invoke->getCallingConv());
+ NewCall->setAttributes(Invoke->getAttributes());
+ NewCall->setDebugLoc(Invoke->getDebugLoc());
+ VMap[Invoke] = NewCall;
+
+ // Insert an unconditional branch to the normal destination.
+ BranchInst::Create(Invoke->getNormalDest(), NewBB);
+
+ // The unwind destination won't be cloned into the new function, so
+ // we don't need to clean up its phi nodes.
+
+ // We just added a terminator to the cloned block.
+ // Tell the caller to stop processing the current basic block.
+ return CloningDirector::StopCloningBB;
+}
+
+CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
+ ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
+ ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
+
+ // We just added a terminator to the cloned block.
+ // Tell the caller to stop processing the current basic block so that
+ // the branch instruction will be skipped.
+ return CloningDirector::StopCloningBB;
+}
+
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
: FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
- // FIXME: Do something with the FrameVarMapped so that it is shared across the
- // function.
}
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
- // If we're asked to materialize an alloca variable, we temporarily
- // create a matching alloca in the outlined function. When all the
- // outlining is complete, we'll collect these into a structure and
- // replace these temporary allocas with GEPs referencing the frame
- // allocation block.
+ // If we're asked to materialize a value that is an instruction, we
+ // temporarily create an alloca in the outlined function and add this
+ // to the FrameVarInfo map. When all the outlining is complete, we'll
+ // collect these into a structure, spilling non-alloca values in the
+ // parent frame as necessary, and replace these temporary allocas with
+ // GEPs referencing the frame allocation block.
+
+ // If the value is an alloca, the mapping is direct.
if (auto *AV = dyn_cast<AllocaInst>(V)) {
- AllocaInst *NewAlloca = Builder.CreateAlloca(
- AV->getAllocatedType(), AV->getArraySize(), AV->getName());
- FrameVarInfo[AV].Allocas.push_back(NewAlloca);
+ AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
+ Builder.Insert(NewAlloca, AV->getName());
+ FrameVarInfo[AV].push_back(NewAlloca);
return NewAlloca;
}
-// FIXME: Do PHI nodes need special handling?
+ // For other types of instructions or arguments, we need an alloca based on
+ // the value's type and a load of the alloca. The alloca will be replaced
+ // by a GEP, but the load will stay. In the parent function, the value will
+ // be spilled to a location in the frame allocation block.
+ if (isa<Instruction>(V) || isa<Argument>(V)) {
+ AllocaInst *NewAlloca =
+ Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
+ FrameVarInfo[V].push_back(NewAlloca);
+ LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
+ return NewLoad;
+ }
-// FIXME: Are there other cases we can handle better? GEP, ExtractValue, etc.
+ // Don't materialize other values.
+ return nullptr;
+}
-// FIXME: This doesn't work during cloning because it finds an instruction
-// in the use list that isn't yet part of a basic block.
-#if 0
- // If we're asked to remap some other instruction, we'll need to
- // spill it to an alloca variable in the parent function and add a
- // temporary alloca in the outlined function to be processed as
- // described above.
- Instruction *Inst = dyn_cast<Instruction>(V);
- if (Inst) {
- AllocaInst *Spill = DemoteRegToStack(*Inst, true);
- AllocaInst *NewAlloca = Builder.CreateAlloca(Spill->getAllocatedType(),
- Spill->getArraySize());
- FrameVarMap[AV] = NewAlloca;
- return NewAlloca;
+// This function maps the catch and cleanup handlers that are reachable from the
+// specified landing pad. The landing pad sequence will have this basic shape:
+//
+// <cleanup handler>
+// <selector comparison>
+// <catch handler>
+// <cleanup handler>
+// <selector comparison>
+// <catch handler>
+// <cleanup handler>
+// ...
+//
+// Any of the cleanup slots may be absent. The cleanup slots may be occupied by
+// any arbitrary control flow, but all paths through the cleanup code must
+// eventually reach the next selector comparison and no path can skip to a
+// different selector comparisons, though some paths may terminate abnormally.
+// Therefore, we will use a depth first search from the start of any given
+// cleanup block and stop searching when we find the next selector comparison.
+//
+// If the landingpad instruction does not have a catch clause, we will assume
+// that any instructions other than selector comparisons and catch handlers can
+// be ignored. In practice, these will only be the boilerplate instructions.
+//
+// The catch handlers may also have any control structure, but we are only
+// interested in the start of the catch handlers, so we don't need to actually
+// follow the flow of the catch handlers. The start of the catch handlers can
+// be located from the compare instructions, but they can be skipped in the
+// flow by following the contrary branch.
+void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
+ LandingPadActions &Actions) {
+ unsigned int NumClauses = LPad->getNumClauses();
+ unsigned int HandlersFound = 0;
+ BasicBlock *BB = LPad->getParent();
+
+ DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
+
+ if (NumClauses == 0) {
+ // This landing pad contains only cleanup code.
+ CleanupHandler *Action = new CleanupHandler(BB);
+ CleanupHandlerMap[BB] = Action;
+ Actions.insertCleanupHandler(Action);
+ DEBUG(dbgs() << " Assuming cleanup code in block " << BB->getName()
+ << "\n");
+ assert(LPad->isCleanup());
+ return;
+ }
+
+ VisitedBlockSet VisitedBlocks;
+
+ while (HandlersFound != NumClauses) {
+ BasicBlock *NextBB = nullptr;
+
+ // See if the clause we're looking for is a catch-all.
+ // If so, the catch begins immediately.
+ if (isa<ConstantPointerNull>(LPad->getClause(HandlersFound))) {
+ // The catch all must occur last.
+ assert(HandlersFound == NumClauses - 1);
+
+ // For C++ EH, check if there is any interesting cleanup code before we
+ // begin the catch. This is important because cleanups cannot rethrow
+ // exceptions but code called from catches can. For SEH, it isn't
+ // important if some finally code before a catch-all is executed out of
+ // line or after recovering from the exception.
+ if (Personality == EHPersonality::MSVC_CXX) {
+ if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
+ // Add a cleanup entry to the list
+ Actions.insertCleanupHandler(CleanupAction);
+ DEBUG(dbgs() << " Found cleanup code in block "
+ << CleanupAction->getStartBlock()->getName() << "\n");
+ }
+ }
+
+ // Add the catch handler to the action list.
+ CatchHandler *Action =
+ new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr);
+ CatchHandlerMap[BB] = Action;
+ Actions.insertCatchHandler(Action);
+ DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n");
+ ++HandlersFound;
+
+ // Once we reach a catch-all, don't expect to hit a resume instruction.
+ BB = nullptr;
+ break;
+ }
+
+ CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
+ // See if there is any interesting code executed before the dispatch.
+ if (auto *CleanupAction =
+ findCleanupHandler(BB, CatchAction->getStartBlock())) {
+ // Add a cleanup entry to the list
+ Actions.insertCleanupHandler(CleanupAction);
+ DEBUG(dbgs() << " Found cleanup code in block "
+ << CleanupAction->getStartBlock()->getName() << "\n");
+ }
+
+ assert(CatchAction);
+ ++HandlersFound;
+
+ // Add the catch handler to the action list.
+ Actions.insertCatchHandler(CatchAction);
+ DEBUG(dbgs() << " Found catch dispatch in block "
+ << CatchAction->getStartBlock()->getName() << "\n");
+
+ // Move on to the block after the catch handler.
+ BB = NextBB;
+ }
+
+ // If we didn't wind up in a catch-all, see if there is any interesting code
+ // executed before the resume.
+ if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
+ // Add a cleanup entry to the list
+ Actions.insertCleanupHandler(CleanupAction);
+ DEBUG(dbgs() << " Found cleanup code in block "
+ << CleanupAction->getStartBlock()->getName() << "\n");
+ }
+
+ // It's possible that some optimization moved code into a landingpad that
+ // wasn't
+ // previously being used for cleanup. If that happens, we need to execute
+ // that
+ // extra code from a cleanup handler.
+ if (Actions.includesCleanup() && !LPad->isCleanup())
+ LPad->setCleanup(true);
+}
+
+// This function searches starting with the input block for the next
+// block that terminates with a branch whose condition is based on a selector
+// comparison. This may be the input block. See the mapLandingPadBlocks
+// comments for a discussion of control flow assumptions.
+//
+CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
+ BasicBlock *&NextBB,
+ VisitedBlockSet &VisitedBlocks) {
+ // See if we've already found a catch handler use it.
+ // Call count() first to avoid creating a null entry for blocks
+ // we haven't seen before.
+ if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
+ CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
+ NextBB = Action->getNextBB();
+ return Action;
}
-#endif
+ // VisitedBlocks applies only to the current search. We still
+ // need to consider blocks that we've visited while mapping other
+ // landing pads.
+ VisitedBlocks.insert(BB);
+
+ BasicBlock *CatchBlock = nullptr;
+ Constant *Selector = nullptr;
+
+ // If this is the first time we've visited this block from any landing pad
+ // look to see if it is a selector dispatch block.
+ if (!CatchHandlerMap.count(BB)) {
+ if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
+ CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
+ CatchHandlerMap[BB] = Action;
+ return Action;
+ }
+ }
+
+ // Visit each successor, looking for the dispatch.
+ // FIXME: We expect to find the dispatch quickly, so this will probably
+ // work better as a breadth first search.
+ for (BasicBlock *Succ : successors(BB)) {
+ if (VisitedBlocks.count(Succ))
+ continue;
+
+ CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
+ if (Action)
+ return Action;
+ }
+ return nullptr;
+}
+
+// These are helper functions to combine repeated code from findCleanupHandler.
+static CleanupHandler *createCleanupHandler(CleanupHandlerMapTy &CleanupHandlerMap,
+ BasicBlock *BB) {
+ CleanupHandler *Action = new CleanupHandler(BB);
+ CleanupHandlerMap[BB] = Action;
+ return Action;
+}
+
+// This function searches starting with the input block for the next block that
+// contains code that is not part of a catch handler and would not be eliminated
+// during handler outlining.
+//
+CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
+ BasicBlock *EndBB) {
+ // Here we will skip over the following:
+ //
+ // landing pad prolog:
+ //
+ // Unconditional branches
+ //
+ // Selector dispatch
+ //
+ // Resume pattern
+ //
+ // Anything else marks the start of an interesting block
+
+ BasicBlock *BB = StartBB;
+ // Anything other than an unconditional branch will kick us out of this loop
+ // one way or another.
+ while (BB) {
+ // If we've already scanned this block, don't scan it again. If it is
+ // a cleanup block, there will be an action in the CleanupHandlerMap.
+ // If we've scanned it and it is not a cleanup block, there will be a
+ // nullptr in the CleanupHandlerMap. If we have not scanned it, there will
+ // be no entry in the CleanupHandlerMap. We must call count() first to
+ // avoid creating a null entry for blocks we haven't scanned.
+ if (CleanupHandlerMap.count(BB)) {
+ if (auto *Action = CleanupHandlerMap[BB]) {
+ return cast<CleanupHandler>(Action);
+ } else {
+ // Here we handle the case where the cleanup handler map contains a
+ // value for this block but the value is a nullptr. This means that
+ // we have previously analyzed the block and determined that it did
+ // not contain any cleanup code. Based on the earlier analysis, we
+ // know the the block must end in either an unconditional branch, a
+ // resume or a conditional branch that is predicated on a comparison
+ // with a selector. Either the resume or the selector dispatch
+ // would terminate the search for cleanup code, so the unconditional
+ // branch is the only case for which we might need to continue
+ // searching.
+ if (BB == EndBB)
+ return nullptr;
+ BasicBlock *SuccBB;
+ if (!match(BB->getTerminator(), m_UnconditionalBr(SuccBB)))
+ return nullptr;
+ BB = SuccBB;
+ continue;
+ }
+ }
+
+ // Create an entry in the cleanup handler map for this block. Initially
+ // we create an entry that says this isn't a cleanup block. If we find
+ // cleanup code, the caller will replace this entry.
+ CleanupHandlerMap[BB] = nullptr;
+
+ TerminatorInst *Terminator = BB->getTerminator();
+
+ // Landing pad blocks have extra instructions we need to accept.
+ LandingPadMap *LPadMap = nullptr;
+ if (BB->isLandingPad()) {
+ LandingPadInst *LPad = BB->getLandingPadInst();
+ LPadMap = &LPadMaps[LPad];
+ if (!LPadMap->isInitialized())
+ LPadMap->mapLandingPad(LPad);
+ }
+
+ // Look for the bare resume pattern:
+ // %exn2 = load i8** %exn.slot
+ // %sel2 = load i32* %ehselector.slot
+ // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn2, 0
+ // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel2, 1
+ // resume { i8*, i32 } %lpad.val2
+ if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
+ InsertValueInst *Insert1 = nullptr;
+ InsertValueInst *Insert2 = nullptr;
+ Value *ResumeVal = Resume->getOperand(0);
+ // If there is only one landingpad, we may use the lpad directly with no
+ // insertions.
+ if (isa<LandingPadInst>(ResumeVal))
+ return nullptr;
+ if (!isa<PHINode>(ResumeVal)) {
+ Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
+ if (!Insert2)
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
+ if (!Insert1)
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ }
+ for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
+ II != IE; ++II) {
+ Instruction *Inst = II;
+ if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
+ continue;
+ if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
+ continue;
+ if (!Inst->hasOneUse() ||
+ (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ }
+ }
+ return nullptr;
+ }
+
+ BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
+ if (Branch) {
+ if (Branch->isConditional()) {
+ // Look for the selector dispatch.
+ // %sel = load i32* %ehselector.slot
+ // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
+ // %matches = icmp eq i32 %sel12, %2
+ // br i1 %matches, label %catch14, label %eh.resume
+ CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
+ if (!Compare || !Compare->isEquality())
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
+ IE = BB->end();
+ II != IE; ++II) {
+ Instruction *Inst = II;
+ if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
+ continue;
+ if (Inst == Compare || Inst == Branch)
+ continue;
+ if (!Inst->hasOneUse() || (Inst->user_back() != Compare))
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
+ continue;
+ if (!isa<LoadInst>(Inst))
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ }
+ // The selector dispatch block should always terminate our search.
+ assert(BB == EndBB);
+ return nullptr;
+ } else {
+ // Look for empty blocks with unconditional branches.
+ for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
+ IE = BB->end();
+ II != IE; ++II) {
+ Instruction *Inst = II;
+ if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
+ continue;
+ if (Inst == Branch)
+ continue;
+ if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
+ continue;
+ // Anything else makes this interesting cleanup code.
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ }
+ if (BB == EndBB)
+ return nullptr;
+ // The branch was unconditional.
+ BB = Branch->getSuccessor(0);
+ continue;
+ } // End else of if branch was conditional
+ } // End if Branch
+
+ // Anything else makes this interesting cleanup code.
+ return createCleanupHandler(CleanupHandlerMap, BB);
+ }
return nullptr;
}