aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen')
-rw-r--r--lib/CodeGen/AggressiveAntiDepBreaker.cpp4
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinter.cpp2
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp2
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfCompileUnit.h2
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.cpp38
-rw-r--r--lib/CodeGen/BranchFolding.cpp6
-rw-r--r--lib/CodeGen/CMakeLists.txt2
-rw-r--r--lib/CodeGen/CalcSpillWeights.cpp6
-rw-r--r--lib/CodeGen/CodeGen.cpp4
-rw-r--r--lib/CodeGen/CriticalAntiDepBreaker.cpp4
-rw-r--r--lib/CodeGen/DeadMachineInstructionElim.cpp11
-rw-r--r--lib/CodeGen/ExpandISelPseudos.cpp4
-rw-r--r--lib/CodeGen/IfConversion.cpp12
-rw-r--r--lib/CodeGen/InlineSpiller.cpp6
-rw-r--r--lib/CodeGen/MachineBasicBlock.cpp1
-rw-r--r--lib/CodeGen/MachineCSE.cpp6
-rw-r--r--lib/CodeGen/MachineFunction.cpp4
-rw-r--r--lib/CodeGen/MachineInstr.cpp137
-rw-r--r--lib/CodeGen/MachineLICM.cpp8
-rw-r--r--lib/CodeGen/MachineRegisterInfo.cpp14
-rw-r--r--lib/CodeGen/MachineVerifier.cpp41
-rw-r--r--lib/CodeGen/PeepholeOptimizer.cpp12
-rw-r--r--lib/CodeGen/PreAllocSplitting.cpp1430
-rw-r--r--lib/CodeGen/PrologEpilogInserter.cpp10
-rw-r--r--lib/CodeGen/RegAllocBasic.cpp4
-rw-r--r--lib/CodeGen/RegAllocFast.cpp27
-rw-r--r--lib/CodeGen/RegAllocGreedy.cpp398
-rw-r--r--lib/CodeGen/RegAllocLinearScan.cpp15
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp4
-rw-r--r--lib/CodeGen/RegisterClassInfo.h2
-rw-r--r--lib/CodeGen/RegisterCoalescer.cpp1650
-rw-r--r--lib/CodeGen/RegisterCoalescer.h (renamed from lib/CodeGen/SimpleRegisterCoalescing.h)167
-rw-r--r--lib/CodeGen/ScheduleDAG.cpp2
-rw-r--r--lib/CodeGen/ScheduleDAGInstrs.cpp33
-rw-r--r--lib/CodeGen/ScoreboardHazardRecognizer.cpp16
-rw-r--r--lib/CodeGen/SelectionDAG/DAGCombiner.cpp32
-rw-r--r--lib/CodeGen/SelectionDAG/FastISel.cpp33
-rw-r--r--lib/CodeGen/SelectionDAG/InstrEmitter.cpp47
-rw-r--r--lib/CodeGen/SelectionDAG/InstrEmitter.h8
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp25
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp55
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp24
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h2
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp104
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp12
-rw-r--r--lib/CodeGen/SelectionDAG/TargetLowering.cpp7
-rw-r--r--lib/CodeGen/SimpleRegisterCoalescing.cpp1539
-rw-r--r--lib/CodeGen/SplitKit.cpp35
-rw-r--r--lib/CodeGen/SplitKit.h10
-rw-r--r--lib/CodeGen/Splitter.cpp2
-rw-r--r--lib/CodeGen/StackSlotColoring.cpp8
-rw-r--r--lib/CodeGen/TailDuplication.cpp69
-rw-r--r--lib/CodeGen/TargetInstrInfoImpl.cpp24
-rw-r--r--lib/CodeGen/TwoAddressInstructionPass.cpp33
-rw-r--r--lib/CodeGen/VirtRegRewriter.cpp20
55 files changed, 2441 insertions, 3732 deletions
diff --git a/lib/CodeGen/AggressiveAntiDepBreaker.cpp b/lib/CodeGen/AggressiveAntiDepBreaker.cpp
index c23351b..6f45216 100644
--- a/lib/CodeGen/AggressiveAntiDepBreaker.cpp
+++ b/lib/CodeGen/AggressiveAntiDepBreaker.cpp
@@ -404,7 +404,7 @@ void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI,
// Note register reference...
const TargetRegisterClass *RC = NULL;
if (i < MI->getDesc().getNumOperands())
- RC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+ RC = TII->getRegClass(MI->getDesc(), i, TRI);
AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
RegRefs.insert(std::make_pair(Reg, RR));
}
@@ -479,7 +479,7 @@ void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
// Note register reference...
const TargetRegisterClass *RC = NULL;
if (i < MI->getDesc().getNumOperands())
- RC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+ RC = TII->getRegClass(MI->getDesc(), i, TRI);
AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
RegRefs.insert(std::make_pair(Reg, RR));
}
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index bfee679..2cdf272 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -584,6 +584,8 @@ static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
}
} else if (MI->getOperand(0).isImm()) {
OS << MI->getOperand(0).getImm();
+ } else if (MI->getOperand(0).isCImm()) {
+ MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
} else {
assert(MI->getOperand(0).isReg() && "Unknown operand type");
if (MI->getOperand(0).getReg() == 0) {
diff --git a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
index bff1a35..1fe035e 100644
--- a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
@@ -491,7 +491,7 @@ bool CompileUnit::addConstantFPValue(DIE *Die, const MachineOperand &MO) {
}
/// addConstantValue - Add constant value entry in variable DIE.
-bool CompileUnit::addConstantValue(DIE *Die, ConstantInt *CI,
+bool CompileUnit::addConstantValue(DIE *Die, const ConstantInt *CI,
bool Unsigned) {
unsigned CIBitWidth = CI->getBitWidth();
if (CIBitWidth <= 64) {
diff --git a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
index 60a9b28..213c7fc 100644
--- a/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
+++ b/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
@@ -181,7 +181,7 @@ public:
/// addConstantValue - Add constant value entry in variable DIE.
bool addConstantValue(DIE *Die, const MachineOperand &MO, DIType Ty);
- bool addConstantValue(DIE *Die, ConstantInt *CI, bool Unsigned);
+ bool addConstantValue(DIE *Die, const ConstantInt *CI, bool Unsigned);
/// addConstantFPValue - Add constant value entry in variable DIE.
bool addConstantFPValue(DIE *Die, const MachineOperand &MO);
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index 8845bfa..f85a82d 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -618,6 +618,21 @@ DIE *DwarfDebug::constructInlinedScopeDIE(DbgScope *Scope) {
return ScopeDIE;
}
+/// isUnsignedDIType - Return true if type encoding is unsigned.
+static bool isUnsignedDIType(DIType Ty) {
+ DIDerivedType DTy(Ty);
+ if (DTy.Verify())
+ return isUnsignedDIType(DTy.getTypeDerivedFrom());
+
+ DIBasicType BTy(Ty);
+ if (BTy.Verify()) {
+ unsigned Encoding = BTy.getEncoding();
+ if (Encoding == dwarf::DW_ATE_unsigned ||
+ Encoding == dwarf::DW_ATE_unsigned_char)
+ return true;
+ }
+ return false;
+}
/// constructVariableDIE - Construct a DIE for the given DbgVariable.
DIE *DwarfDebug::constructVariableDIE(DbgVariable *DV, DbgScope *Scope) {
@@ -718,6 +733,11 @@ DIE *DwarfDebug::constructVariableDIE(DbgVariable *DV, DbgScope *Scope) {
else if (DVInsn->getOperand(0).isFPImm())
updated =
VariableCU->addConstantFPValue(VariableDie, DVInsn->getOperand(0));
+ else if (DVInsn->getOperand(0).isCImm())
+ updated =
+ VariableCU->addConstantValue(VariableDie,
+ DVInsn->getOperand(0).getCImm(),
+ isUnsignedDIType(DV->getType()));
} else {
VariableCU->addVariableAddress(DV, VariableDie,
Asm->getDebugValueLocation(DVInsn));
@@ -913,22 +933,6 @@ CompileUnit *DwarfDebug::getCompileUnit(const MDNode *N) const {
return I->second;
}
-/// isUnsignedDIType - Return true if type encoding is unsigned.
-static bool isUnsignedDIType(DIType Ty) {
- DIDerivedType DTy(Ty);
- if (DTy.Verify())
- return isUnsignedDIType(DTy.getTypeDerivedFrom());
-
- DIBasicType BTy(Ty);
- if (BTy.Verify()) {
- unsigned Encoding = BTy.getEncoding();
- if (Encoding == dwarf::DW_ATE_unsigned ||
- Encoding == dwarf::DW_ATE_unsigned_char)
- return true;
- }
- return false;
-}
-
// Return const exprssion if value is a GEP to access merged global
// constant. e.g.
// i8* getelementptr ({ i8, i8, i8, i8 }* @_MergedGlobals, i32 0, i32 0)
@@ -1017,7 +1021,7 @@ void DwarfDebug::constructGlobalVariableDIE(const MDNode *N) {
} else {
TheCU->addBlock(VariableDIE, dwarf::DW_AT_location, 0, Block);
}
- } else if (ConstantInt *CI =
+ } else if (const ConstantInt *CI =
dyn_cast_or_null<ConstantInt>(GV.getConstant()))
TheCU->addConstantValue(VariableDIE, CI, isUnsignedDIType(GTy));
else if (const ConstantExpr *CE = getMergedGlobalExpr(N->getOperand(11))) {
diff --git a/lib/CodeGen/BranchFolding.cpp b/lib/CodeGen/BranchFolding.cpp
index d95f77e..4df7b46 100644
--- a/lib/CodeGen/BranchFolding.cpp
+++ b/lib/CodeGen/BranchFolding.cpp
@@ -421,10 +421,10 @@ static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
for (; I != E; ++I) {
if (I->isDebugValue())
continue;
- const TargetInstrDesc &TID = I->getDesc();
- if (TID.isCall())
+ const MCInstrDesc &MCID = I->getDesc();
+ if (MCID.isCall())
Time += 10;
- else if (TID.mayLoad() || TID.mayStore())
+ else if (MCID.mayLoad() || MCID.mayStore())
Time += 2;
else
++Time;
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index aef4ff2..92319c8 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -59,7 +59,6 @@ add_llvm_library(LLVMCodeGen
Passes.cpp
PeepholeOptimizer.cpp
PostRASchedulerList.cpp
- PreAllocSplitting.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
@@ -79,7 +78,6 @@ add_llvm_library(LLVMCodeGen
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
- SimpleRegisterCoalescing.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.cpp
diff --git a/lib/CodeGen/CalcSpillWeights.cpp b/lib/CodeGen/CalcSpillWeights.cpp
index 5d722ee..e6b3bbc 100644
--- a/lib/CodeGen/CalcSpillWeights.cpp
+++ b/lib/CodeGen/CalcSpillWeights.cpp
@@ -188,6 +188,7 @@ void VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) {
void VirtRegAuxInfo::CalculateRegClass(unsigned reg) {
MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
const TargetRegisterClass *OldRC = MRI.getRegClass(reg);
const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC);
@@ -202,8 +203,11 @@ void VirtRegAuxInfo::CalculateRegClass(unsigned reg) {
// TRI doesn't have accurate enough information to model this yet.
if (I.getOperand().getSubReg())
return;
+ // Inline asm instuctions don't remember their constraints.
+ if (I->isInlineAsm())
+ return;
const TargetRegisterClass *OpRC =
- I->getDesc().getRegClass(I.getOperandNo(), TRI);
+ TII->getRegClass(I->getDesc(), I.getOperandNo(), TRI);
if (OpRC)
NewRC = getCommonSubClass(NewRC, OpRC);
if (!NewRC || NewRC == OldRC)
diff --git a/lib/CodeGen/CodeGen.cpp b/lib/CodeGen/CodeGen.cpp
index 515e6f9..489746c 100644
--- a/lib/CodeGen/CodeGen.cpp
+++ b/lib/CodeGen/CodeGen.cpp
@@ -37,13 +37,11 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
initializeOptimizePHIsPass(Registry);
initializePHIEliminationPass(Registry);
initializePeepholeOptimizerPass(Registry);
- initializePreAllocSplittingPass(Registry);
initializeProcessImplicitDefsPass(Registry);
initializePEIPass(Registry);
initializeRALinScanPass(Registry);
- initializeRegisterCoalescerAnalysisGroup(Registry);
+ initializeRegisterCoalescerPass(Registry);
initializeRenderMachineFunctionPass(Registry);
- initializeSimpleRegisterCoalescingPass(Registry);
initializeSlotIndexesPass(Registry);
initializeLoopSplitterPass(Registry);
initializeStackProtectorPass(Registry);
diff --git a/lib/CodeGen/CriticalAntiDepBreaker.cpp b/lib/CodeGen/CriticalAntiDepBreaker.cpp
index 4cac453..84c4d59 100644
--- a/lib/CodeGen/CriticalAntiDepBreaker.cpp
+++ b/lib/CodeGen/CriticalAntiDepBreaker.cpp
@@ -207,7 +207,7 @@ void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
const TargetRegisterClass *NewRC = 0;
if (i < MI->getDesc().getNumOperands())
- NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+ NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
// For now, only allow the register to be changed if its register
// class is consistent across all uses.
@@ -295,7 +295,7 @@ void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
const TargetRegisterClass *NewRC = 0;
if (i < MI->getDesc().getNumOperands())
- NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+ NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
// For now, only allow the register to be changed if its register
// class is consistent across all uses.
diff --git a/lib/CodeGen/DeadMachineInstructionElim.cpp b/lib/CodeGen/DeadMachineInstructionElim.cpp
index fdc1d91..6de6c0c 100644
--- a/lib/CodeGen/DeadMachineInstructionElim.cpp
+++ b/lib/CodeGen/DeadMachineInstructionElim.cpp
@@ -110,9 +110,14 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
LivePhysRegs.set(Reg);
}
- // FIXME: Add live-ins from sucessors to LivePhysRegs. Normally, physregs
- // are not live across blocks, but some targets (x86) can have flags live
- // out of a block.
+ // Add live-ins from sucessors to LivePhysRegs. Normally, physregs are not
+ // live across blocks, but some targets (x86) can have flags live out of a
+ // block.
+ for (MachineBasicBlock::succ_iterator S = MBB->succ_begin(),
+ E = MBB->succ_end(); S != E; S++)
+ for (MachineBasicBlock::livein_iterator LI = (*S)->livein_begin();
+ LI != (*S)->livein_end(); LI++)
+ LivePhysRegs.set(*LI);
// Now scan the instructions and delete dead ones, tracking physreg
// liveness as we go.
diff --git a/lib/CodeGen/ExpandISelPseudos.cpp b/lib/CodeGen/ExpandISelPseudos.cpp
index ebc2fc9..a67140e 100644
--- a/lib/CodeGen/ExpandISelPseudos.cpp
+++ b/lib/CodeGen/ExpandISelPseudos.cpp
@@ -62,8 +62,8 @@ bool ExpandISelPseudos::runOnMachineFunction(MachineFunction &MF) {
MachineInstr *MI = MBBI++;
// If MI is a pseudo, expand it.
- const TargetInstrDesc &TID = MI->getDesc();
- if (TID.usesCustomInsertionHook()) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.usesCustomInsertionHook()) {
Changed = true;
MachineBasicBlock *NewMBB =
TLI->EmitInstrWithCustomInserter(MI, MBB);
diff --git a/lib/CodeGen/IfConversion.cpp b/lib/CodeGen/IfConversion.cpp
index 8b2c981..c918bf6 100644
--- a/lib/CodeGen/IfConversion.cpp
+++ b/lib/CodeGen/IfConversion.cpp
@@ -18,8 +18,8 @@
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetInstrItineraries.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -651,12 +651,12 @@ void IfConverter::ScanInstructions(BBInfo &BBI) {
if (I->isDebugValue())
continue;
- const TargetInstrDesc &TID = I->getDesc();
- if (TID.isNotDuplicable())
+ const MCInstrDesc &MCID = I->getDesc();
+ if (MCID.isNotDuplicable())
BBI.CannotBeCopied = true;
bool isPredicated = TII->isPredicated(I);
- bool isCondBr = BBI.IsBrAnalyzable && TID.isConditionalBranch();
+ bool isCondBr = BBI.IsBrAnalyzable && MCID.isConditionalBranch();
if (!isCondBr) {
if (!isPredicated) {
@@ -1414,9 +1414,9 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
for (MachineBasicBlock::iterator I = FromBBI.BB->begin(),
E = FromBBI.BB->end(); I != E; ++I) {
- const TargetInstrDesc &TID = I->getDesc();
+ const MCInstrDesc &MCID = I->getDesc();
// Do not copy the end of the block branches.
- if (IgnoreBr && TID.isBranch())
+ if (IgnoreBr && MCID.isBranch())
break;
MachineInstr *MI = MF.CloneMachineInstr(I);
diff --git a/lib/CodeGen/InlineSpiller.cpp b/lib/CodeGen/InlineSpiller.cpp
index 19ae333..0273891 100644
--- a/lib/CodeGen/InlineSpiller.cpp
+++ b/lib/CodeGen/InlineSpiller.cpp
@@ -180,11 +180,7 @@ Spiller *createInlineSpiller(MachineFunctionPass &pass,
/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
/// otherwise return 0.
static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
- if (!MI->isCopy())
- return 0;
- if (MI->getOperand(0).getSubReg() != 0)
- return 0;
- if (MI->getOperand(1).getSubReg() != 0)
+ if (!MI->isFullCopy())
return 0;
if (MI->getOperand(0).getReg() == Reg)
return MI->getOperand(1).getReg();
diff --git a/lib/CodeGen/MachineBasicBlock.cpp b/lib/CodeGen/MachineBasicBlock.cpp
index c0f71d2..8f0fb46 100644
--- a/lib/CodeGen/MachineBasicBlock.cpp
+++ b/lib/CodeGen/MachineBasicBlock.cpp
@@ -22,7 +22,6 @@
#include "llvm/MC/MCContext.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Assembly/Writer.h"
diff --git a/lib/CodeGen/MachineCSE.cpp b/lib/CodeGen/MachineCSE.cpp
index f97ccf6..3a60a37 100644
--- a/lib/CodeGen/MachineCSE.cpp
+++ b/lib/CodeGen/MachineCSE.cpp
@@ -260,12 +260,12 @@ bool MachineCSE::isCSECandidate(MachineInstr *MI) {
return false;
// Ignore stuff that we obviously can't move.
- const TargetInstrDesc &TID = MI->getDesc();
- if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.mayStore() || MCID.isCall() || MCID.isTerminator() ||
MI->hasUnmodeledSideEffects())
return false;
- if (TID.mayLoad()) {
+ if (MCID.mayLoad()) {
// Okay, this instruction does a load. As a refinement, we allow the target
// to decide whether the loaded value is actually a constant. If so, we can
// actually use it as a load.
diff --git a/lib/CodeGen/MachineFunction.cpp b/lib/CodeGen/MachineFunction.cpp
index 50750a5..cd25156 100644
--- a/lib/CodeGen/MachineFunction.cpp
+++ b/lib/CodeGen/MachineFunction.cpp
@@ -152,10 +152,10 @@ void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
/// of `new MachineInstr'.
///
MachineInstr *
-MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID,
+MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
DebugLoc DL, bool NoImp) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
- MachineInstr(TID, DL, NoImp);
+ MachineInstr(MCID, DL, NoImp);
}
/// CloneMachineInstr - Create a new MachineInstr which is a copy of the
diff --git a/lib/CodeGen/MachineInstr.cpp b/lib/CodeGen/MachineInstr.cpp
index 36b0b83..0995106 100644
--- a/lib/CodeGen/MachineInstr.cpp
+++ b/lib/CodeGen/MachineInstr.cpp
@@ -24,10 +24,10 @@
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DebugInfo.h"
@@ -267,6 +267,9 @@ void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
case MachineOperand::MO_Immediate:
OS << getImm();
break;
+ case MachineOperand::MO_CImmediate:
+ getCImm()->getValue().print(OS, false);
+ break;
case MachineOperand::MO_FPImmediate:
if (getFPImm()->getType()->isFloatTy())
OS << getFPImm()->getValueAPF().convertToFloat();
@@ -454,9 +457,9 @@ raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
//===----------------------------------------------------------------------===//
/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
-/// TID NULL and no operands.
+/// MCID NULL and no operands.
MachineInstr::MachineInstr()
- : TID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
+ : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
MemRefs(0), MemRefsEnd(0),
Parent(0) {
// Make sure that we get added to a machine basicblock
@@ -464,23 +467,23 @@ MachineInstr::MachineInstr()
}
void MachineInstr::addImplicitDefUseOperands() {
- if (TID->ImplicitDefs)
- for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
+ if (MCID->ImplicitDefs)
+ for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
- if (TID->ImplicitUses)
- for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
+ if (MCID->ImplicitUses)
+ for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
}
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
/// implicit operands. It reserves space for the number of operands specified by
-/// the TargetInstrDesc.
-MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
- : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
+/// the MCInstrDesc.
+MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
+ : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
MemRefs(0), MemRefsEnd(0), Parent(0) {
if (!NoImp)
- NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
- Operands.reserve(NumImplicitOps + TID->getNumOperands());
+ NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
if (!NoImp)
addImplicitDefUseOperands();
// Make sure that we get added to a machine basicblock
@@ -488,13 +491,13 @@ MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
}
/// MachineInstr ctor - As above, but with a DebugLoc.
-MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
+MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
bool NoImp)
- : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
+ : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
if (!NoImp)
- NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
- Operands.reserve(NumImplicitOps + TID->getNumOperands());
+ NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
if (!NoImp)
addImplicitDefUseOperands();
// Make sure that we get added to a machine basicblock
@@ -504,12 +507,12 @@ MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
/// MachineInstr ctor - Work exactly the same as the ctor two above, except
/// that the MachineInstr is created and added to the end of the specified
/// basic block.
-MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
- : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
+MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
+ : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
MemRefs(0), MemRefsEnd(0), Parent(0) {
assert(MBB && "Cannot use inserting ctor with null basic block!");
- NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
- Operands.reserve(NumImplicitOps + TID->getNumOperands());
+ NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
addImplicitDefUseOperands();
// Make sure that we get added to a machine basicblock
LeakDetector::addGarbageObject(this);
@@ -519,12 +522,12 @@ MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
/// MachineInstr ctor - As above, but with a DebugLoc.
///
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
- const TargetInstrDesc &tid)
- : TID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
+ const MCInstrDesc &tid)
+ : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
assert(MBB && "Cannot use inserting ctor with null basic block!");
- NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
- Operands.reserve(NumImplicitOps + TID->getNumOperands());
+ NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
addImplicitDefUseOperands();
// Make sure that we get added to a machine basicblock
LeakDetector::addGarbageObject(this);
@@ -534,7 +537,7 @@ MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
/// MachineInstr ctor - Copies MachineInstr arg exactly
///
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
- : TID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
+ : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
Parent(0), debugLoc(MI.getDebugLoc()) {
Operands.reserve(MI.getNumOperands());
@@ -621,7 +624,7 @@ void MachineInstr::addOperand(const MachineOperand &Op) {
Operands.back().AddRegOperandToRegInfo(RegInfo);
// If the register operand is flagged as early, mark the operand as such
unsigned OpNo = Operands.size() - 1;
- if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
+ if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
Operands[OpNo].setIsEarlyClobber(true);
}
return;
@@ -643,7 +646,7 @@ void MachineInstr::addOperand(const MachineOperand &Op) {
if (Operands[OpNo].isReg()) {
Operands[OpNo].AddRegOperandToRegInfo(0);
// If the register operand is flagged as early, mark the operand as such
- if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
+ if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
Operands[OpNo].setIsEarlyClobber(true);
}
@@ -668,7 +671,7 @@ void MachineInstr::addOperand(const MachineOperand &Op) {
if (Operands[OpNo].isReg()) {
Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
// If the register operand is flagged as early, mark the operand as such
- if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
+ if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
Operands[OpNo].setIsEarlyClobber(true);
}
@@ -691,7 +694,7 @@ void MachineInstr::addOperand(const MachineOperand &Op) {
// If the register operand is flagged as early, mark the operand as such
if (Operands[OpNo].isReg()
- && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
+ && MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
Operands[OpNo].setIsEarlyClobber(true);
}
}
@@ -817,8 +820,8 @@ void MachineInstr::eraseFromParent() {
/// OperandComplete - Return true if it's illegal to add a new operand
///
bool MachineInstr::OperandsComplete() const {
- unsigned short NumOperands = TID->getNumOperands();
- if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
+ unsigned short NumOperands = MCID->getNumOperands();
+ if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
return true; // Broken: we have all the operands of this instruction!
return false;
}
@@ -826,8 +829,8 @@ bool MachineInstr::OperandsComplete() const {
/// getNumExplicitOperands - Returns the number of non-implicit operands.
///
unsigned MachineInstr::getNumExplicitOperands() const {
- unsigned NumOperands = TID->getNumOperands();
- if (!TID->isVariadic())
+ unsigned NumOperands = MCID->getNumOperands();
+ if (!MCID->isVariadic())
return NumOperands;
for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
@@ -928,10 +931,10 @@ MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int MachineInstr::findFirstPredOperandIdx() const {
- const TargetInstrDesc &TID = getDesc();
- if (TID.isPredicable()) {
+ const MCInstrDesc &MCID = getDesc();
+ if (MCID.isPredicable()) {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (TID.OpInfo[i].isPredicate())
+ if (MCID.OpInfo[i].isPredicate())
return i;
}
@@ -987,11 +990,11 @@ isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
}
assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
- const TargetInstrDesc &TID = getDesc();
- for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
+ const MCInstrDesc &MCID = getDesc();
+ for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (MO.isReg() && MO.isUse() &&
- TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
+ MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
if (UseOpIdx)
*UseOpIdx = (unsigned)i;
return true;
@@ -1047,13 +1050,13 @@ isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
return false;
}
- const TargetInstrDesc &TID = getDesc();
- if (UseOpIdx >= TID.getNumOperands())
+ const MCInstrDesc &MCID = getDesc();
+ if (UseOpIdx >= MCID.getNumOperands())
return false;
const MachineOperand &MO = getOperand(UseOpIdx);
if (!MO.isReg() || !MO.isUse())
return false;
- int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
+ int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
if (DefIdx == -1)
return false;
if (DefOpIdx)
@@ -1093,11 +1096,11 @@ void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
/// copyPredicates - Copies predicate operand(s) from MI.
void MachineInstr::copyPredicates(const MachineInstr *MI) {
- const TargetInstrDesc &TID = MI->getDesc();
- if (!TID.isPredicable())
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isPredicable())
return;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- if (TID.OpInfo[i].isPredicate()) {
+ if (MCID.OpInfo[i].isPredicate()) {
// Predicated operands must be last operands.
addOperand(MI->getOperand(i));
}
@@ -1134,13 +1137,13 @@ bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
AliasAnalysis *AA,
bool &SawStore) const {
// Ignore stuff that we obviously can't move.
- if (TID->mayStore() || TID->isCall()) {
+ if (MCID->mayStore() || MCID->isCall()) {
SawStore = true;
return false;
}
if (isLabel() || isDebugValue() ||
- TID->isTerminator() || hasUnmodeledSideEffects())
+ MCID->isTerminator() || hasUnmodeledSideEffects())
return false;
// See if this instruction does a load. If so, we have to guarantee that the
@@ -1148,7 +1151,7 @@ bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
// destination. The check for isInvariantLoad gives the targe the chance to
// classify the load as always returning a constant, e.g. a constant pool
// load.
- if (TID->mayLoad() && !isInvariantLoad(AA))
+ if (MCID->mayLoad() && !isInvariantLoad(AA))
// Otherwise, this is a real load. If there is a store between the load and
// end of block, or if the load is volatile, we can't move it.
return !SawStore && !hasVolatileMemoryRef();
@@ -1188,9 +1191,9 @@ bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
/// have no volatile memory references.
bool MachineInstr::hasVolatileMemoryRef() const {
// An instruction known never to access memory won't have a volatile access.
- if (!TID->mayStore() &&
- !TID->mayLoad() &&
- !TID->isCall() &&
+ if (!MCID->mayStore() &&
+ !MCID->mayLoad() &&
+ !MCID->isCall() &&
!hasUnmodeledSideEffects())
return false;
@@ -1214,7 +1217,7 @@ bool MachineInstr::hasVolatileMemoryRef() const {
/// *all* loads the instruction does are invariant (if it does multiple loads).
bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
// If the instruction doesn't load at all, it isn't an invariant load.
- if (!TID->mayLoad())
+ if (!MCID->mayLoad())
return false;
// If the instruction has lost its memoperands, conservatively assume that
@@ -1364,6 +1367,8 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
// Print the rest of the operands.
bool OmittedAnyCallClobbers = false;
bool FirstOp = true;
+ unsigned AsmDescOp = ~0u;
+ unsigned AsmOpCount = 0;
if (isInlineAsm()) {
// Print asm string.
@@ -1377,7 +1382,7 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
OS << " [alignstack]";
- StartOp = InlineAsm::MIOp_FirstOperand;
+ StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
FirstOp = false;
}
@@ -1416,10 +1421,10 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
if (FirstOp) FirstOp = false; else OS << ",";
OS << " ";
if (i < getDesc().NumOperands) {
- const TargetOperandInfo &TOI = getDesc().OpInfo[i];
- if (TOI.isPredicate())
+ const MCOperandInfo &MCOI = getDesc().OpInfo[i];
+ if (MCOI.isPredicate())
OS << "pred:";
- if (TOI.isOptionalDef())
+ if (MCOI.isOptionalDef())
OS << "opt:";
}
if (isDebugValue() && MO.isMetadata()) {
@@ -1431,6 +1436,26 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
MO.print(OS, TM);
} else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
+ } else if (i == AsmDescOp && MO.isImm()) {
+ // Pretty print the inline asm operand descriptor.
+ OS << '$' << AsmOpCount++;
+ unsigned Flag = MO.getImm();
+ switch (InlineAsm::getKind(Flag)) {
+ case InlineAsm::Kind_RegUse: OS << ":[reguse]"; break;
+ case InlineAsm::Kind_RegDef: OS << ":[regdef]"; break;
+ case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break;
+ case InlineAsm::Kind_Clobber: OS << ":[clobber]"; break;
+ case InlineAsm::Kind_Imm: OS << ":[imm]"; break;
+ case InlineAsm::Kind_Mem: OS << ":[mem]"; break;
+ default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break;
+ }
+
+ unsigned TiedTo = 0;
+ if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
+ OS << " [tiedto:$" << TiedTo << ']';
+
+ // Compute the index of the next operand descriptor.
+ AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
} else
MO.print(OS, TM);
}
diff --git a/lib/CodeGen/MachineLICM.cpp b/lib/CodeGen/MachineLICM.cpp
index b315702..722ceb2 100644
--- a/lib/CodeGen/MachineLICM.cpp
+++ b/lib/CodeGen/MachineLICM.cpp
@@ -28,10 +28,10 @@
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetInstrItineraries.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/DenseMap.h"
@@ -1018,9 +1018,9 @@ MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
/*UnfoldStore=*/false,
&LoadRegIndex);
if (NewOpc == 0) return 0;
- const TargetInstrDesc &TID = TII->get(NewOpc);
- if (TID.getNumDefs() != 1) return 0;
- const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
+ const MCInstrDesc &MID = TII->get(NewOpc);
+ if (MID.getNumDefs() != 1) return 0;
+ const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
// Ok, we're unfolding. Create a temporary register and do the unfold.
unsigned Reg = MRI->createVirtualRegister(RC);
diff --git a/lib/CodeGen/MachineRegisterInfo.cpp b/lib/CodeGen/MachineRegisterInfo.cpp
index 08ff5bb..4b3e64c 100644
--- a/lib/CodeGen/MachineRegisterInfo.cpp
+++ b/lib/CodeGen/MachineRegisterInfo.cpp
@@ -20,7 +20,6 @@ using namespace llvm;
MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI) {
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
- RegClass2VRegMap = new std::vector<unsigned>[TRI.getNumRegClasses()];
UsedPhysRegs.resize(TRI.getNumRegs());
// Create the physreg use/def lists.
@@ -38,25 +37,13 @@ MachineRegisterInfo::~MachineRegisterInfo() {
"PhysRegUseDefLists has entries after all instructions are deleted");
#endif
delete [] PhysRegUseDefLists;
- delete [] RegClass2VRegMap;
}
/// setRegClass - Set the register class of the specified virtual register.
///
void
MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
- const TargetRegisterClass *OldRC = VRegInfo[Reg].first;
VRegInfo[Reg].first = RC;
-
- // Remove from old register class's vregs list. This may be slow but
- // fortunately this operation is rarely needed.
- std::vector<unsigned> &VRegs = RegClass2VRegMap[OldRC->getID()];
- std::vector<unsigned>::iterator I =
- std::find(VRegs.begin(), VRegs.end(), Reg);
- VRegs.erase(I);
-
- // Add to new register class's vregs list.
- RegClass2VRegMap[RC->getID()].push_back(Reg);
}
const TargetRegisterClass *
@@ -95,7 +82,6 @@ MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
if (ArrayBase && &VRegInfo[FirstVirtReg] != ArrayBase)
// The vector reallocated, handle this now.
HandleVRegListReallocation();
- RegClass2VRegMap[RegClass->getID()].push_back(Reg);
return Reg;
}
diff --git a/lib/CodeGen/MachineVerifier.cpp b/lib/CodeGen/MachineVerifier.cpp
index 471463b..7a55852 100644
--- a/lib/CodeGen/MachineVerifier.cpp
+++ b/lib/CodeGen/MachineVerifier.cpp
@@ -62,6 +62,7 @@ namespace {
raw_ostream *OS;
const MachineFunction *MF;
const TargetMachine *TM;
+ const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
@@ -255,6 +256,7 @@ bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
TM = &MF.getTarget();
+ TII = TM->getInstrInfo();
TRI = TM->getRegisterInfo();
MRI = &MF.getRegInfo();
@@ -387,8 +389,6 @@ static bool matchPair(MachineBasicBlock::const_succ_iterator i,
void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
-
// Count the number of landing pad successors.
SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
@@ -541,19 +541,19 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
}
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
- const TargetInstrDesc &TI = MI->getDesc();
- if (MI->getNumOperands() < TI.getNumOperands()) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MI->getNumOperands() < MCID.getNumOperands()) {
report("Too few operands", MI);
- *OS << TI.getNumOperands() << " operands expected, but "
+ *OS << MCID.getNumOperands() << " operands expected, but "
<< MI->getNumExplicitOperands() << " given.\n";
}
// Check the MachineMemOperands for basic consistency.
for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
E = MI->memoperands_end(); I != E; ++I) {
- if ((*I)->isLoad() && !TI.mayLoad())
+ if ((*I)->isLoad() && !MCID.mayLoad())
report("Missing mayLoad flag", MI);
- if ((*I)->isStore() && !TI.mayStore())
+ if ((*I)->isStore() && !MCID.mayStore())
report("Missing mayStore flag", MI);
}
@@ -575,29 +575,30 @@ void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
const MachineInstr *MI = MO->getParent();
- const TargetInstrDesc &TI = MI->getDesc();
- const TargetOperandInfo &TOI = TI.OpInfo[MONum];
+ const MCInstrDesc &MCID = MI->getDesc();
+ const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
- // The first TI.NumDefs operands must be explicit register defines
- if (MONum < TI.getNumDefs()) {
+ // The first MCID.NumDefs operands must be explicit register defines
+ if (MONum < MCID.getNumDefs()) {
if (!MO->isReg())
report("Explicit definition must be a register", MO, MONum);
else if (!MO->isDef())
report("Explicit definition marked as use", MO, MONum);
else if (MO->isImplicit())
report("Explicit definition marked as implicit", MO, MONum);
- } else if (MONum < TI.getNumOperands()) {
+ } else if (MONum < MCID.getNumOperands()) {
// Don't check if it's the last operand in a variadic instruction. See,
// e.g., LDM_RET in the arm back end.
- if (MO->isReg() && !(TI.isVariadic() && MONum == TI.getNumOperands()-1)) {
- if (MO->isDef() && !TOI.isOptionalDef())
+ if (MO->isReg() &&
+ !(MCID.isVariadic() && MONum == MCID.getNumOperands()-1)) {
+ if (MO->isDef() && !MCOI.isOptionalDef())
report("Explicit operand marked as def", MO, MONum);
if (MO->isImplicit())
report("Explicit operand marked as implicit", MO, MONum);
}
} else {
// ARM adds %reg0 operands to indicate predicates. We'll allow that.
- if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
+ if (MO->isReg() && !MO->isImplicit() && !MCID.isVariadic() && MO->getReg())
report("Extra explicit operand on non-variadic instruction", MO, MONum);
}
@@ -709,7 +710,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
}
// Check register classes.
- if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
+ if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
unsigned SubIdx = MO->getSubReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
@@ -723,7 +724,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
}
sr = s;
}
- if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
+ if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
if (!DRC->contains(sr)) {
report("Illegal physical register for instruction", MO, MONum);
*OS << TRI->getName(sr) << " is not a "
@@ -743,7 +744,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
}
RC = SRC;
}
- if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
+ if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
if (!RC->hasSuperClassEq(DRC)) {
report("Illegal virtual register for instruction", MO, MONum);
*OS << "Expected a " << DRC->getName() << " register, but got a "
@@ -765,11 +766,11 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
LiveInts && !LiveInts->isNotInMIMap(MI)) {
LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
SlotIndex Idx = LiveInts->getInstructionIndex(MI);
- if (TI.mayLoad() && !LI.liveAt(Idx.getUseIndex())) {
+ if (MCID.mayLoad() && !LI.liveAt(Idx.getUseIndex())) {
report("Instruction loads from dead spill slot", MO, MONum);
*OS << "Live stack: " << LI << '\n';
}
- if (TI.mayStore() && !LI.liveAt(Idx.getDefIndex())) {
+ if (MCID.mayStore() && !LI.liveAt(Idx.getDefIndex())) {
report("Instruction stores to dead spill slot", MO, MONum);
*OS << "Live stack: " << LI << '\n';
}
diff --git a/lib/CodeGen/PeepholeOptimizer.cpp b/lib/CodeGen/PeepholeOptimizer.cpp
index c105bb0..c523e39 100644
--- a/lib/CodeGen/PeepholeOptimizer.cpp
+++ b/lib/CodeGen/PeepholeOptimizer.cpp
@@ -353,10 +353,10 @@ bool PeepholeOptimizer::OptimizeCmpInstr(MachineInstr *MI,
bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
- const TargetInstrDesc &TID = MI->getDesc();
- if (!TID.isMoveImmediate())
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isMoveImmediate())
return false;
- if (TID.getNumDefs() != 1)
+ if (MCID.getNumDefs() != 1)
return false;
unsigned Reg = MI->getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
@@ -429,16 +429,16 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
continue;
}
- const TargetInstrDesc &TID = MI->getDesc();
+ const MCInstrDesc &MCID = MI->getDesc();
- if (TID.isBitcast()) {
+ if (MCID.isBitcast()) {
if (OptimizeBitcastInstr(MI, MBB)) {
// MI is deleted.
Changed = true;
MII = First ? I->begin() : llvm::next(PMII);
continue;
}
- } else if (TID.isCompare()) {
+ } else if (MCID.isCompare()) {
if (OptimizeCmpInstr(MI, MBB)) {
// MI is deleted.
Changed = true;
diff --git a/lib/CodeGen/PreAllocSplitting.cpp b/lib/CodeGen/PreAllocSplitting.cpp
deleted file mode 100644
index d6e31da..0000000
--- a/lib/CodeGen/PreAllocSplitting.cpp
+++ /dev/null
@@ -1,1430 +0,0 @@
-//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the machine instruction level pre-register allocation
-// live interval splitting pass. It finds live interval barriers, i.e.
-// instructions which will kill all physical registers in certain register
-// classes, and split all live intervals which cross the barrier.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "pre-alloc-split"
-#include "VirtRegMap.h"
-#include "llvm/CodeGen/CalcSpillWeights.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/LiveStackAnalysis.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-using namespace llvm;
-
-static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
-static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
- cl::Hidden);
-static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
- cl::Hidden);
-
-STATISTIC(NumSplits, "Number of intervals split");
-STATISTIC(NumRemats, "Number of intervals split by rematerialization");
-STATISTIC(NumFolds, "Number of intervals split with spill folding");
-STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
-STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
-STATISTIC(NumDeadSpills, "Number of dead spills removed");
-
-namespace {
- class PreAllocSplitting : public MachineFunctionPass {
- MachineFunction *CurrMF;
- const TargetMachine *TM;
- const TargetInstrInfo *TII;
- const TargetRegisterInfo* TRI;
- MachineFrameInfo *MFI;
- MachineRegisterInfo *MRI;
- SlotIndexes *SIs;
- LiveIntervals *LIs;
- LiveStacks *LSs;
- VirtRegMap *VRM;
-
- // Barrier - Current barrier being processed.
- MachineInstr *Barrier;
-
- // BarrierMBB - Basic block where the barrier resides in.
- MachineBasicBlock *BarrierMBB;
-
- // Barrier - Current barrier index.
- SlotIndex BarrierIdx;
-
- // CurrLI - Current live interval being split.
- LiveInterval *CurrLI;
-
- // CurrSLI - Current stack slot live interval.
- LiveInterval *CurrSLI;
-
- // CurrSValNo - Current val# for the stack slot live interval.
- VNInfo *CurrSValNo;
-
- // IntervalSSMap - A map from live interval to spill slots.
- DenseMap<unsigned, int> IntervalSSMap;
-
- // Def2SpillMap - A map from a def instruction index to spill index.
- DenseMap<SlotIndex, SlotIndex> Def2SpillMap;
-
- public:
- static char ID;
- PreAllocSplitting() : MachineFunctionPass(ID) {
- initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
- }
-
- virtual bool runOnMachineFunction(MachineFunction &MF);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<SlotIndexes>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addRequired<LiveStacks>();
- AU.addPreserved<LiveStacks>();
- AU.addPreserved<RegisterCoalescer>();
- AU.addPreserved<CalculateSpillWeights>();
- AU.addPreservedID(StrongPHIEliminationID);
- AU.addPreservedID(PHIEliminationID);
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addRequired<VirtRegMap>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addPreserved<MachineLoopInfo>();
- AU.addPreserved<VirtRegMap>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- virtual void releaseMemory() {
- IntervalSSMap.clear();
- Def2SpillMap.clear();
- }
-
- virtual const char *getPassName() const {
- return "Pre-Register Allocaton Live Interval Splitting";
- }
-
- /// print - Implement the dump method.
- virtual void print(raw_ostream &O, const Module* M = 0) const {
- LIs->print(O, M);
- }
-
-
- private:
-
- MachineBasicBlock::iterator
- findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
- SmallPtrSet<MachineInstr*, 4>&);
-
- MachineBasicBlock::iterator
- findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
- SmallPtrSet<MachineInstr*, 4>&);
-
- int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
-
- bool IsAvailableInStack(MachineBasicBlock*, unsigned,
- SlotIndex, SlotIndex,
- SlotIndex&, int&) const;
-
- void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
-
- bool SplitRegLiveInterval(LiveInterval*);
-
- bool SplitRegLiveIntervals(const TargetRegisterClass **,
- SmallPtrSet<LiveInterval*, 8>&);
-
- bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
- MachineBasicBlock* BarrierMBB);
- bool Rematerialize(unsigned vreg, VNInfo* ValNo,
- MachineInstr* DefMI,
- MachineBasicBlock::iterator RestorePt,
- SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
- MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
- MachineInstr* DefMI,
- MachineInstr* Barrier,
- MachineBasicBlock* MBB,
- int& SS,
- SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
- MachineInstr* FoldRestore(unsigned vreg,
- const TargetRegisterClass* RC,
- MachineInstr* Barrier,
- MachineBasicBlock* MBB,
- int SS,
- SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
- void RenumberValno(VNInfo* VN);
- void ReconstructLiveInterval(LiveInterval* LI);
- bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
- unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
- unsigned Reg, int FrameIndex, bool& TwoAddr);
- VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
- MachineBasicBlock* MBB, LiveInterval* LI,
- SmallPtrSet<MachineInstr*, 4>& Visited,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
- DenseMap<MachineInstr*, VNInfo*>& NewVNs,
- DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
- DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
- bool IsTopLevel, bool IsIntraBlock);
- VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
- MachineBasicBlock* MBB, LiveInterval* LI,
- SmallPtrSet<MachineInstr*, 4>& Visited,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
- DenseMap<MachineInstr*, VNInfo*>& NewVNs,
- DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
- DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
- bool IsTopLevel, bool IsIntraBlock);
-};
-} // end anonymous namespace
-
-char PreAllocSplitting::ID = 0;
-
-INITIALIZE_PASS_BEGIN(PreAllocSplitting, "pre-alloc-splitting",
- "Pre-Register Allocation Live Interval Splitting",
- false, false)
-INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_DEPENDENCY(LiveStacks)
-INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
-INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
-INITIALIZE_PASS_END(PreAllocSplitting, "pre-alloc-splitting",
- "Pre-Register Allocation Live Interval Splitting",
- false, false)
-
-char &llvm::PreAllocSplittingID = PreAllocSplitting::ID;
-
-/// findSpillPoint - Find a gap as far away from the given MI that's suitable
-/// for spilling the current live interval. The index must be before any
-/// defs and uses of the live interval register in the mbb. Return begin() if
-/// none is found.
-MachineBasicBlock::iterator
-PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
- MachineInstr *DefMI,
- SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
- MachineBasicBlock::iterator Pt = MBB->begin();
-
- MachineBasicBlock::iterator MII = MI;
- MachineBasicBlock::iterator EndPt = DefMI
- ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
-
- while (MII != EndPt && !RefsInMBB.count(MII) &&
- MII->getOpcode() != TRI->getCallFrameSetupOpcode())
- --MII;
- if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
-
- while (MII != EndPt && !RefsInMBB.count(MII)) {
- // We can't insert the spill between the barrier (a call), and its
- // corresponding call frame setup.
- if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
- while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
- --MII;
- if (MII == EndPt) {
- return Pt;
- }
- }
- continue;
- } else {
- Pt = MII;
- }
-
- if (RefsInMBB.count(MII))
- return Pt;
-
-
- --MII;
- }
-
- return Pt;
-}
-
-/// findRestorePoint - Find a gap in the instruction index map that's suitable
-/// for restoring the current live interval value. The index must be before any
-/// uses of the live interval register in the mbb. Return end() if none is
-/// found.
-MachineBasicBlock::iterator
-PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
- SlotIndex LastIdx,
- SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
- // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
- // begin index accordingly.
- MachineBasicBlock::iterator Pt = MBB->end();
- MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
-
- // We start at the call, so walk forward until we find the call frame teardown
- // since we can't insert restores before that. Bail if we encounter a use
- // during this time.
- MachineBasicBlock::iterator MII = MI;
- if (MII == EndPt) return Pt;
-
- while (MII != EndPt && !RefsInMBB.count(MII) &&
- MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
- ++MII;
- if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
- ++MII;
-
- // FIXME: Limit the number of instructions to examine to reduce
- // compile time?
- while (MII != EndPt) {
- SlotIndex Index = LIs->getInstructionIndex(MII);
- if (Index > LastIdx)
- break;
-
- // We can't insert a restore between the barrier (a call) and its
- // corresponding call frame teardown.
- if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
- do {
- if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
- ++MII;
- } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
- } else {
- Pt = MII;
- }
-
- if (RefsInMBB.count(MII))
- return Pt;
-
- ++MII;
- }
-
- return Pt;
-}
-
-/// CreateSpillStackSlot - Create a stack slot for the live interval being
-/// split. If the live interval was previously split, just reuse the same
-/// slot.
-int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
- const TargetRegisterClass *RC) {
- int SS;
- DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
- if (I != IntervalSSMap.end()) {
- SS = I->second;
- } else {
- SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
- IntervalSSMap[Reg] = SS;
- }
-
- // Create live interval for stack slot.
- CurrSLI = &LSs->getOrCreateInterval(SS, RC);
- if (CurrSLI->hasAtLeastOneValue())
- CurrSValNo = CurrSLI->getValNumInfo(0);
- else
- CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
- LSs->getVNInfoAllocator());
- return SS;
-}
-
-/// IsAvailableInStack - Return true if register is available in a split stack
-/// slot at the specified index.
-bool
-PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
- unsigned Reg, SlotIndex DefIndex,
- SlotIndex RestoreIndex,
- SlotIndex &SpillIndex,
- int& SS) const {
- if (!DefMBB)
- return false;
-
- DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
- if (I == IntervalSSMap.end())
- return false;
- DenseMap<SlotIndex, SlotIndex>::const_iterator
- II = Def2SpillMap.find(DefIndex);
- if (II == Def2SpillMap.end())
- return false;
-
- // If last spill of def is in the same mbb as barrier mbb (where restore will
- // be), make sure it's not below the intended restore index.
- // FIXME: Undo the previous spill?
- assert(LIs->getMBBFromIndex(II->second) == DefMBB);
- if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
- return false;
-
- SS = I->second;
- SpillIndex = II->second;
- return true;
-}
-
-/// UpdateSpillSlotInterval - Given the specified val# of the register live
-/// interval being split, and the spill and restore indicies, update the live
-/// interval of the spill stack slot.
-void
-PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
- SlotIndex RestoreIndex) {
- assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
- "Expect restore in the barrier mbb");
-
- MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
- if (MBB == BarrierMBB) {
- // Intra-block spill + restore. We are done.
- LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
- CurrSLI->addRange(SLR);
- return;
- }
-
- SmallPtrSet<MachineBasicBlock*, 4> Processed;
- SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
- LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
- CurrSLI->addRange(SLR);
- Processed.insert(MBB);
-
- // Start from the spill mbb, figure out the extend of the spill slot's
- // live interval.
- SmallVector<MachineBasicBlock*, 4> WorkList;
- const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
- if (LR->end > EndIdx)
- // If live range extend beyond end of mbb, add successors to work list.
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI)
- WorkList.push_back(*SI);
-
- while (!WorkList.empty()) {
- MachineBasicBlock *MBB = WorkList.back();
- WorkList.pop_back();
- if (Processed.count(MBB))
- continue;
- SlotIndex Idx = LIs->getMBBStartIdx(MBB);
- LR = CurrLI->getLiveRangeContaining(Idx);
- if (LR && LR->valno == ValNo) {
- EndIdx = LIs->getMBBEndIdx(MBB);
- if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
- // Spill slot live interval stops at the restore.
- LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
- CurrSLI->addRange(SLR);
- } else if (LR->end > EndIdx) {
- // Live range extends beyond end of mbb, process successors.
- LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
- CurrSLI->addRange(SLR);
- for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI)
- WorkList.push_back(*SI);
- } else {
- LiveRange SLR(Idx, LR->end, CurrSValNo);
- CurrSLI->addRange(SLR);
- }
- Processed.insert(MBB);
- }
- }
-}
-
-/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
-/// construction algorithm to compute the ranges and valnos for an interval.
-VNInfo*
-PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
- MachineBasicBlock* MBB, LiveInterval* LI,
- SmallPtrSet<MachineInstr*, 4>& Visited,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
- DenseMap<MachineInstr*, VNInfo*>& NewVNs,
- DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
- DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
- bool IsTopLevel, bool IsIntraBlock) {
- // Return memoized result if it's available.
- if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
- return NewVNs[UseI];
- else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
- return NewVNs[UseI];
- else if (!IsIntraBlock && LiveOut.count(MBB))
- return LiveOut[MBB];
-
- // Check if our block contains any uses or defs.
- bool ContainsDefs = Defs.count(MBB);
- bool ContainsUses = Uses.count(MBB);
-
- VNInfo* RetVNI = 0;
-
- // Enumerate the cases of use/def contaning blocks.
- if (!ContainsDefs && !ContainsUses) {
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
- NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
- } else if (ContainsDefs && !ContainsUses) {
- SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
-
- // Search for the def in this block. If we don't find it before the
- // instruction we care about, go to the fallback case. Note that that
- // should never happen: this cannot be intrablock, so use should
- // always be an end() iterator.
- assert(UseI == MBB->end() && "No use marked in intrablock");
-
- MachineBasicBlock::iterator Walker = UseI;
- --Walker;
- while (Walker != MBB->begin()) {
- if (BlockDefs.count(Walker))
- break;
- --Walker;
- }
-
- // Once we've found it, extend its VNInfo to our instruction.
- SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
- DefIndex = DefIndex.getDefIndex();
- SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
-
- RetVNI = NewVNs[Walker];
- LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
- } else if (!ContainsDefs && ContainsUses) {
- SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
-
- // Search for the use in this block that precedes the instruction we care
- // about, going to the fallback case if we don't find it.
- MachineBasicBlock::iterator Walker = UseI;
- bool found = false;
- while (Walker != MBB->begin()) {
- --Walker;
- if (BlockUses.count(Walker)) {
- found = true;
- break;
- }
- }
-
- if (!found)
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
- Uses, NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
-
- SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
- UseIndex = UseIndex.getUseIndex();
- SlotIndex EndIndex;
- if (IsIntraBlock) {
- EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
- } else
- EndIndex = LIs->getMBBEndIdx(MBB);
-
- // Now, recursively phi construct the VNInfo for the use we found,
- // and then extend it to include the instruction we care about
- RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
- NewVNs, LiveOut, Phis, false, true);
-
- LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
-
- // FIXME: Need to set kills properly for inter-block stuff.
- } else if (ContainsDefs && ContainsUses) {
- SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
- SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
-
- // This case is basically a merging of the two preceding case, with the
- // special note that checking for defs must take precedence over checking
- // for uses, because of two-address instructions.
- MachineBasicBlock::iterator Walker = UseI;
- bool foundDef = false;
- bool foundUse = false;
- while (Walker != MBB->begin()) {
- --Walker;
- if (BlockDefs.count(Walker)) {
- foundDef = true;
- break;
- } else if (BlockUses.count(Walker)) {
- foundUse = true;
- break;
- }
- }
-
- if (!foundDef && !foundUse)
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
- Uses, NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
-
- SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
- StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
- SlotIndex EndIndex;
- if (IsIntraBlock) {
- EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
- } else
- EndIndex = LIs->getMBBEndIdx(MBB);
-
- if (foundDef)
- RetVNI = NewVNs[Walker];
- else
- RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
- NewVNs, LiveOut, Phis, false, true);
-
- LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
- }
-
- // Memoize results so we don't have to recompute them.
- if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
- else {
- if (!NewVNs.count(UseI))
- NewVNs[UseI] = RetVNI;
- Visited.insert(UseI);
- }
-
- return RetVNI;
-}
-
-/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
-///
-VNInfo*
-PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
- MachineBasicBlock* MBB, LiveInterval* LI,
- SmallPtrSet<MachineInstr*, 4>& Visited,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
- DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
- DenseMap<MachineInstr*, VNInfo*>& NewVNs,
- DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
- DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
- bool IsTopLevel, bool IsIntraBlock) {
- // NOTE: Because this is the fallback case from other cases, we do NOT
- // assume that we are not intrablock here.
- if (Phis.count(MBB)) return Phis[MBB];
-
- SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
- VNInfo *RetVNI = Phis[MBB] =
- LI->getNextValue(SlotIndex(), /*FIXME*/ 0,
- LIs->getVNInfoAllocator());
-
- if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
-
- // If there are no uses or defs between our starting point and the
- // beginning of the block, then recursive perform phi construction
- // on our predecessors.
- DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
- for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
- Visited, Defs, Uses, NewVNs,
- LiveOut, Phis, false, false);
- if (Incoming != 0)
- IncomingVNs[*PI] = Incoming;
- }
-
- if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
- VNInfo* OldVN = RetVNI;
- VNInfo* NewVN = IncomingVNs.begin()->second;
- VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
- if (MergedVN == OldVN) std::swap(OldVN, NewVN);
-
- for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
- LOE = LiveOut.end(); LOI != LOE; ++LOI)
- if (LOI->second == OldVN)
- LOI->second = MergedVN;
- for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
- NVE = NewVNs.end(); NVI != NVE; ++NVI)
- if (NVI->second == OldVN)
- NVI->second = MergedVN;
- for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
- PE = Phis.end(); PI != PE; ++PI)
- if (PI->second == OldVN)
- PI->second = MergedVN;
- RetVNI = MergedVN;
- } else {
- // Otherwise, merge the incoming VNInfos with a phi join. Create a new
- // VNInfo to represent the joined value.
- for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
- IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
- I->second->setHasPHIKill(true);
- }
- }
-
- SlotIndex EndIndex;
- if (IsIntraBlock) {
- EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
- } else
- EndIndex = LIs->getMBBEndIdx(MBB);
- LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
-
- // Memoize results so we don't have to recompute them.
- if (!IsIntraBlock)
- LiveOut[MBB] = RetVNI;
- else {
- if (!NewVNs.count(UseI))
- NewVNs[UseI] = RetVNI;
- Visited.insert(UseI);
- }
-
- return RetVNI;
-}
-
-/// ReconstructLiveInterval - Recompute a live interval from scratch.
-void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
- VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
-
- // Clear the old ranges and valnos;
- LI->clear();
-
- // Cache the uses and defs of the register
- typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
- RegMap Defs, Uses;
-
- // Keep track of the new VNs we're creating.
- DenseMap<MachineInstr*, VNInfo*> NewVNs;
- SmallPtrSet<VNInfo*, 2> PhiVNs;
-
- // Cache defs, and create a new VNInfo for each def.
- for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
- DE = MRI->def_end(); DI != DE; ++DI) {
- Defs[(*DI).getParent()].insert(&*DI);
-
- SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
- DefIdx = DefIdx.getDefIndex();
-
- assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
- VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc);
-
- // If the def is a move, set the copy field.
- if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
- NewVN->setCopy(&*DI);
-
- NewVNs[&*DI] = NewVN;
- }
-
- // Cache uses as a separate pass from actually processing them.
- for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
- UE = MRI->use_end(); UI != UE; ++UI)
- Uses[(*UI).getParent()].insert(&*UI);
-
- // Now, actually process every use and use a phi construction algorithm
- // to walk from it to its reaching definitions, building VNInfos along
- // the way.
- DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
- DenseMap<MachineBasicBlock*, VNInfo*> Phis;
- SmallPtrSet<MachineInstr*, 4> Visited;
- for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
- UE = MRI->use_end(); UI != UE; ++UI) {
- PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
- Uses, NewVNs, LiveOut, Phis, true, true);
- }
-
- // Add ranges for dead defs
- for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
- DE = MRI->def_end(); DI != DE; ++DI) {
- SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
- DefIdx = DefIdx.getDefIndex();
-
- if (LI->liveAt(DefIdx)) continue;
-
- VNInfo* DeadVN = NewVNs[&*DI];
- LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
- }
-}
-
-/// RenumberValno - Split the given valno out into a new vreg, allowing it to
-/// be allocated to a different register. This function creates a new vreg,
-/// copies the valno and its live ranges over to the new vreg's interval,
-/// removes them from the old interval, and rewrites all uses and defs of
-/// the original reg to the new vreg within those ranges.
-void PreAllocSplitting::RenumberValno(VNInfo* VN) {
- SmallVector<VNInfo*, 4> Stack;
- SmallVector<VNInfo*, 4> VNsToCopy;
- Stack.push_back(VN);
-
- // Walk through and copy the valno we care about, and any other valnos
- // that are two-address redefinitions of the one we care about. These
- // will need to be rewritten as well. We also check for safety of the
- // renumbering here, by making sure that none of the valno involved has
- // phi kills.
- while (!Stack.empty()) {
- VNInfo* OldVN = Stack.back();
- Stack.pop_back();
-
- // Bail out if we ever encounter a valno that has a PHI kill. We can't
- // renumber these.
- if (OldVN->hasPHIKill()) return;
-
- VNsToCopy.push_back(OldVN);
-
- // Locate two-address redefinitions
- for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
- DE = MRI->def_end(); DI != DE; ++DI) {
- if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
- SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
- VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
- if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
- VNsToCopy.end())
- Stack.push_back(NextVN);
- }
- }
-
- // Create the new vreg
- unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
-
- // Create the new live interval
- LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
-
- for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
- VNsToCopy.end(); OI != OE; ++OI) {
- VNInfo* OldVN = *OI;
-
- // Copy the valno over
- VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
- NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
-
- // Remove the valno from the old interval
- CurrLI->removeValNo(OldVN);
- }
-
- // Rewrite defs and uses. This is done in two stages to avoid invalidating
- // the reg_iterator.
- SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
-
- for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
- E = MRI->reg_end(); I != E; ++I) {
- MachineOperand& MO = I.getOperand();
- SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
-
- if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
- (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
- OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
- }
-
- for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
- OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
- MachineInstr* Inst = I->first;
- unsigned OpIdx = I->second;
- MachineOperand& MO = Inst->getOperand(OpIdx);
- MO.setReg(NewVReg);
- }
-
- // Grow the VirtRegMap, since we've created a new vreg.
- VRM->grow();
-
- // The renumbered vreg shares a stack slot with the old register.
- if (IntervalSSMap.count(CurrLI->reg))
- IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
-
- ++NumRenumbers;
-}
-
-bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
- MachineInstr* DefMI,
- MachineBasicBlock::iterator RestorePt,
- SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
- MachineBasicBlock& MBB = *RestorePt->getParent();
-
- MachineBasicBlock::iterator KillPt = BarrierMBB->end();
- if (!DefMI || DefMI->getParent() == BarrierMBB)
- KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
- else
- KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
-
- if (KillPt == DefMI->getParent()->end())
- return false;
-
- TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
- SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
-
- ReconstructLiveInterval(CurrLI);
- RematIdx = RematIdx.getDefIndex();
- RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
-
- ++NumSplits;
- ++NumRemats;
- return true;
-}
-
-MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
- const TargetRegisterClass* RC,
- MachineInstr* DefMI,
- MachineInstr* Barrier,
- MachineBasicBlock* MBB,
- int& SS,
- SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
- // Go top down if RefsInMBB is empty.
- if (RefsInMBB.empty())
- return 0;
-
- MachineBasicBlock::iterator FoldPt = Barrier;
- while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
- !RefsInMBB.count(FoldPt))
- --FoldPt;
-
- int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
- if (OpIdx == -1)
- return 0;
-
- SmallVector<unsigned, 1> Ops;
- Ops.push_back(OpIdx);
-
- if (!TII->canFoldMemoryOperand(FoldPt, Ops))
- return 0;
-
- DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
- if (I != IntervalSSMap.end()) {
- SS = I->second;
- } else {
- SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
- }
-
- MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
-
- if (FMI) {
- LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
- FoldPt->eraseFromParent();
- ++NumFolds;
-
- IntervalSSMap[vreg] = SS;
- CurrSLI = &LSs->getOrCreateInterval(SS, RC);
- if (CurrSLI->hasAtLeastOneValue())
- CurrSValNo = CurrSLI->getValNumInfo(0);
- else
- CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
- LSs->getVNInfoAllocator());
- }
-
- return FMI;
-}
-
-MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
- const TargetRegisterClass* RC,
- MachineInstr* Barrier,
- MachineBasicBlock* MBB,
- int SS,
- SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
- if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
- return 0;
-
- // Go top down if RefsInMBB is empty.
- if (RefsInMBB.empty())
- return 0;
-
- // Can't fold a restore between a call stack setup and teardown.
- MachineBasicBlock::iterator FoldPt = Barrier;
-
- // Advance from barrier to call frame teardown.
- while (FoldPt != MBB->getFirstTerminator() &&
- FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
- if (RefsInMBB.count(FoldPt))
- return 0;
-
- ++FoldPt;
- }
-
- if (FoldPt == MBB->getFirstTerminator())
- return 0;
- else
- ++FoldPt;
-
- // Now find the restore point.
- while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
- if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
- while (FoldPt != MBB->getFirstTerminator() &&
- FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
- if (RefsInMBB.count(FoldPt))
- return 0;
-
- ++FoldPt;
- }
-
- if (FoldPt == MBB->getFirstTerminator())
- return 0;
- }
-
- ++FoldPt;
- }
-
- if (FoldPt == MBB->getFirstTerminator())
- return 0;
-
- int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
- if (OpIdx == -1)
- return 0;
-
- SmallVector<unsigned, 1> Ops;
- Ops.push_back(OpIdx);
-
- if (!TII->canFoldMemoryOperand(FoldPt, Ops))
- return 0;
-
- MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
-
- if (FMI) {
- LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
- FoldPt->eraseFromParent();
- ++NumRestoreFolds;
- }
-
- return FMI;
-}
-
-/// SplitRegLiveInterval - Split (spill and restore) the given live interval
-/// so it would not cross the barrier that's being processed. Shrink wrap
-/// (minimize) the live interval to the last uses.
-bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
- DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
- << " result: ");
-
- CurrLI = LI;
-
- // Find live range where current interval cross the barrier.
- LiveInterval::iterator LR =
- CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
- VNInfo *ValNo = LR->valno;
-
- assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
-
- MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
-
- // If this would create a new join point, do not split.
- if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
- DEBUG(dbgs() << "FAILED (would create a new join point).\n");
- return false;
- }
-
- // Find all references in the barrier mbb.
- SmallPtrSet<MachineInstr*, 4> RefsInMBB;
- for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
- E = MRI->reg_end(); I != E; ++I) {
- MachineInstr *RefMI = &*I;
- if (RefMI->getParent() == BarrierMBB)
- RefsInMBB.insert(RefMI);
- }
-
- // Find a point to restore the value after the barrier.
- MachineBasicBlock::iterator RestorePt =
- findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
- if (RestorePt == BarrierMBB->end()) {
- DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
- return false;
- }
-
- if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
- if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
- DEBUG(dbgs() << "success (remat).\n");
- return true;
- }
-
- // Add a spill either before the barrier or after the definition.
- MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
- const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
- SlotIndex SpillIndex;
- MachineInstr *SpillMI = NULL;
- int SS = -1;
- if (!DefMI) {
- // If we don't know where the def is we must split just before the barrier.
- if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
- BarrierMBB, SS, RefsInMBB))) {
- SpillIndex = LIs->getInstructionIndex(SpillMI);
- } else {
- MachineBasicBlock::iterator SpillPt =
- findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
- if (SpillPt == BarrierMBB->begin()) {
- DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
- return false; // No gap to insert spill.
- }
- // Add spill.
-
- SS = CreateSpillStackSlot(CurrLI->reg, RC);
- TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
- TRI);
- SpillMI = prior(SpillPt);
- SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
- }
- } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
- LIs->getZeroIndex(), SpillIndex, SS)) {
- // If it's already split, just restore the value. There is no need to spill
- // the def again.
- if (!DefMI) {
- DEBUG(dbgs() << "FAILED (def is dead).\n");
- return false; // Def is dead. Do nothing.
- }
-
- if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
- BarrierMBB, SS, RefsInMBB))) {
- SpillIndex = LIs->getInstructionIndex(SpillMI);
- } else {
- // Check if it's possible to insert a spill after the def MI.
- MachineBasicBlock::iterator SpillPt;
- if (DefMBB == BarrierMBB) {
- // Add spill after the def and the last use before the barrier.
- SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
- RefsInMBB);
- if (SpillPt == DefMBB->begin()) {
- DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
- return false; // No gap to insert spill.
- }
- } else {
- SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
- if (SpillPt == DefMBB->end()) {
- DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
- return false; // No gap to insert spill.
- }
- }
- // Add spill.
- SS = CreateSpillStackSlot(CurrLI->reg, RC);
- TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
- TRI);
- SpillMI = prior(SpillPt);
- SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
- }
- }
-
- // Remember def instruction index to spill index mapping.
- if (DefMI && SpillMI)
- Def2SpillMap[ValNo->def] = SpillIndex;
-
- // Add restore.
- bool FoldedRestore = false;
- SlotIndex RestoreIndex;
- if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
- BarrierMBB, SS, RefsInMBB)) {
- RestorePt = LMI;
- RestoreIndex = LIs->getInstructionIndex(RestorePt);
- FoldedRestore = true;
- } else {
- TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
- MachineInstr *LoadMI = prior(RestorePt);
- RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
- }
-
- // Update spill stack slot live interval.
- UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
- RestoreIndex.getDefIndex());
-
- ReconstructLiveInterval(CurrLI);
-
- if (!FoldedRestore) {
- SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
- RestoreIdx = RestoreIdx.getDefIndex();
- RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
- }
-
- ++NumSplits;
- DEBUG(dbgs() << "success.\n");
- return true;
-}
-
-/// SplitRegLiveIntervals - Split all register live intervals that cross the
-/// barrier that's being processed.
-bool
-PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
- SmallPtrSet<LiveInterval*, 8>& Split) {
- // First find all the virtual registers whose live intervals are intercepted
- // by the current barrier.
- SmallVector<LiveInterval*, 8> Intervals;
- for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
- // FIXME: If it's not safe to move any instruction that defines the barrier
- // register class, then it means there are some special dependencies which
- // codegen is not modelling. Ignore these barriers for now.
- if (!TII->isSafeToMoveRegClassDefs(*RC))
- continue;
- const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
- for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
- unsigned Reg = VRs[i];
- if (!LIs->hasInterval(Reg))
- continue;
- LiveInterval *LI = &LIs->getInterval(Reg);
- if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
- // Virtual register live interval is intercepted by the barrier. We
- // should split and shrink wrap its interval if possible.
- Intervals.push_back(LI);
- }
- }
-
- // Process the affected live intervals.
- bool Change = false;
- while (!Intervals.empty()) {
- if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
- break;
- LiveInterval *LI = Intervals.back();
- Intervals.pop_back();
- bool result = SplitRegLiveInterval(LI);
- if (result) Split.insert(LI);
- Change |= result;
- }
-
- return Change;
-}
-
-unsigned PreAllocSplitting::getNumberOfNonSpills(
- SmallPtrSet<MachineInstr*, 4>& MIs,
- unsigned Reg, int FrameIndex,
- bool& FeedsTwoAddr) {
- unsigned NonSpills = 0;
- for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
- UI != UE; ++UI) {
- int StoreFrameIndex;
- unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
- if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
- ++NonSpills;
-
- int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
- if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
- FeedsTwoAddr = true;
- }
-
- return NonSpills;
-}
-
-/// removeDeadSpills - After doing splitting, filter through all intervals we've
-/// split, and see if any of the spills are unnecessary. If so, remove them.
-bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
- bool changed = false;
-
- // Walk over all of the live intervals that were touched by the splitter,
- // and see if we can do any DCE and/or folding.
- for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
- LE = split.end(); LI != LE; ++LI) {
- DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
-
- // First, collect all the uses of the vreg, and sort them by their
- // reaching definition (VNInfo).
- for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
- UE = MRI->use_end(); UI != UE; ++UI) {
- SlotIndex index = LIs->getInstructionIndex(&*UI);
- index = index.getUseIndex();
-
- const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
- VNUseCount[LR->valno].insert(&*UI);
- }
-
- // Now, take the definitions (VNInfo's) one at a time and try to DCE
- // and/or fold them away.
- for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
- VE = (*LI)->vni_end(); VI != VE; ++VI) {
-
- if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
- return changed;
-
- VNInfo* CurrVN = *VI;
-
- // We don't currently try to handle definitions with PHI kills, because
- // it would involve processing more than one VNInfo at once.
- if (CurrVN->hasPHIKill()) continue;
-
- // We also don't try to handle the results of PHI joins, since there's
- // no defining instruction to analyze.
- MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
- if (!DefMI || CurrVN->isUnused()) continue;
-
- // We're only interested in eliminating cruft introduced by the splitter,
- // is of the form load-use or load-use-store. First, check that the
- // definition is a load, and remember what stack slot we loaded it from.
- int FrameIndex;
- if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
-
- // If the definition has no uses at all, just DCE it.
- if (VNUseCount[CurrVN].size() == 0) {
- LIs->RemoveMachineInstrFromMaps(DefMI);
- (*LI)->removeValNo(CurrVN);
- DefMI->eraseFromParent();
- VNUseCount.erase(CurrVN);
- ++NumDeadSpills;
- changed = true;
- continue;
- }
-
- // Second, get the number of non-store uses of the definition, as well as
- // a flag indicating whether it feeds into a later two-address definition.
- bool FeedsTwoAddr = false;
- unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
- (*LI)->reg, FrameIndex,
- FeedsTwoAddr);
-
- // If there's one non-store use and it doesn't feed a two-addr, then
- // this is a load-use-store case that we can try to fold.
- if (NonSpillCount == 1 && !FeedsTwoAddr) {
- // Start by finding the non-store use MachineInstr.
- SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
- int StoreFrameIndex;
- unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
- while (UI != VNUseCount[CurrVN].end() &&
- (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
- ++UI;
- if (UI != VNUseCount[CurrVN].end())
- StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
- }
- if (UI == VNUseCount[CurrVN].end()) continue;
-
- MachineInstr* use = *UI;
-
- // Attempt to fold it away!
- int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
- if (OpIdx == -1) continue;
- SmallVector<unsigned, 1> Ops;
- Ops.push_back(OpIdx);
- if (!TII->canFoldMemoryOperand(use, Ops)) continue;
-
- MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);
-
- if (!NewMI) continue;
-
- // Update relevant analyses.
- LIs->RemoveMachineInstrFromMaps(DefMI);
- LIs->ReplaceMachineInstrInMaps(use, NewMI);
- (*LI)->removeValNo(CurrVN);
-
- DefMI->eraseFromParent();
- use->eraseFromParent();
- VNUseCount[CurrVN].erase(use);
-
- // Remove deleted instructions. Note that we need to remove them from
- // the VNInfo->use map as well, just to be safe.
- for (SmallPtrSet<MachineInstr*, 4>::iterator II =
- VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
- II != IE; ++II) {
- for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
- VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
- ++VNI)
- if (VNI->first != CurrVN)
- VNI->second.erase(*II);
- LIs->RemoveMachineInstrFromMaps(*II);
- (*II)->eraseFromParent();
- }
-
- VNUseCount.erase(CurrVN);
-
- for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
- VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
- if (VI->second.erase(use))
- VI->second.insert(NewMI);
-
- ++NumDeadSpills;
- changed = true;
- continue;
- }
-
- // If there's more than one non-store instruction, we can't profitably
- // fold it, so bail.
- if (NonSpillCount) continue;
-
- // Otherwise, this is a load-store case, so DCE them.
- for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
- VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
- UI != UE; ++UI) {
- LIs->RemoveMachineInstrFromMaps(*UI);
- (*UI)->eraseFromParent();
- }
-
- VNUseCount.erase(CurrVN);
-
- LIs->RemoveMachineInstrFromMaps(DefMI);
- (*LI)->removeValNo(CurrVN);
- DefMI->eraseFromParent();
- ++NumDeadSpills;
- changed = true;
- }
- }
-
- return changed;
-}
-
-bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
- MachineBasicBlock* DefMBB,
- MachineBasicBlock* BarrierMBB) {
- if (DefMBB == BarrierMBB)
- return false;
-
- if (LR->valno->hasPHIKill())
- return false;
-
- SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
- if (LR->end < MBBEnd)
- return false;
-
- MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
- if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
- return true;
-
- MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
- SmallPtrSet<MachineBasicBlock*, 4> Visited;
- typedef std::pair<MachineBasicBlock*,
- MachineBasicBlock::succ_iterator> ItPair;
- SmallVector<ItPair, 4> Stack;
- Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
-
- while (!Stack.empty()) {
- ItPair P = Stack.back();
- Stack.pop_back();
-
- MachineBasicBlock* PredMBB = P.first;
- MachineBasicBlock::succ_iterator S = P.second;
-
- if (S == PredMBB->succ_end())
- continue;
- else if (Visited.count(*S)) {
- Stack.push_back(std::make_pair(PredMBB, ++S));
- continue;
- } else
- Stack.push_back(std::make_pair(PredMBB, S+1));
-
- MachineBasicBlock* MBB = *S;
- Visited.insert(MBB);
-
- if (MBB == BarrierMBB)
- return true;
-
- MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
- MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
- MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
- while (MDTN) {
- if (MDTN == DefMDTN)
- return true;
- else if (MDTN == BarrierMDTN)
- break;
- MDTN = MDTN->getIDom();
- }
-
- MBBEnd = LIs->getMBBEndIdx(MBB);
- if (LR->end > MBBEnd)
- Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
- }
-
- return false;
-}
-
-
-bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
- CurrMF = &MF;
- TM = &MF.getTarget();
- TRI = TM->getRegisterInfo();
- TII = TM->getInstrInfo();
- MFI = MF.getFrameInfo();
- MRI = &MF.getRegInfo();
- SIs = &getAnalysis<SlotIndexes>();
- LIs = &getAnalysis<LiveIntervals>();
- LSs = &getAnalysis<LiveStacks>();
- VRM = &getAnalysis<VirtRegMap>();
-
- bool MadeChange = false;
-
- // Make sure blocks are numbered in order.
- MF.RenumberBlocks();
-
- MachineBasicBlock *Entry = MF.begin();
- SmallPtrSet<MachineBasicBlock*,16> Visited;
-
- SmallPtrSet<LiveInterval*, 8> Split;
-
- for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
- DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
- DFI != E; ++DFI) {
- BarrierMBB = *DFI;
- for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
- E = BarrierMBB->end(); I != E; ++I) {
- Barrier = &*I;
- const TargetRegisterClass **BarrierRCs =
- Barrier->getDesc().getRegClassBarriers();
- if (!BarrierRCs)
- continue;
- BarrierIdx = LIs->getInstructionIndex(Barrier);
- MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
- }
- }
-
- MadeChange |= removeDeadSpills(Split);
-
- return MadeChange;
-}
diff --git a/lib/CodeGen/PrologEpilogInserter.cpp b/lib/CodeGen/PrologEpilogInserter.cpp
index f1f3c99..a901c5f 100644
--- a/lib/CodeGen/PrologEpilogInserter.cpp
+++ b/lib/CodeGen/PrologEpilogInserter.cpp
@@ -145,6 +145,7 @@ void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
/// pseudo instructions.
void PEI::calculateCallsInformation(MachineFunction &Fn) {
const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
+ const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
MachineFrameInfo *MFI = Fn.getFrameInfo();
@@ -152,8 +153,8 @@ void PEI::calculateCallsInformation(MachineFunction &Fn) {
bool AdjustsStack = MFI->adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
- int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode();
- int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode();
+ int FrameSetupOpcode = TII.getCallFrameSetupOpcode();
+ int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
@@ -705,12 +706,13 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!");
+ const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
const TargetFrameLowering *TFI = TM.getFrameLowering();
bool StackGrowsDown =
TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
- int FrameSetupOpcode = TRI.getCallFrameSetupOpcode();
- int FrameDestroyOpcode = TRI.getCallFrameDestroyOpcode();
+ int FrameSetupOpcode = TII.getCallFrameSetupOpcode();
+ int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
for (MachineFunction::iterator BB = Fn.begin(),
E = Fn.end(); BB != E; ++BB) {
diff --git a/lib/CodeGen/RegAllocBasic.cpp b/lib/CodeGen/RegAllocBasic.cpp
index 1d77b29..bcb38d7 100644
--- a/lib/CodeGen/RegAllocBasic.cpp
+++ b/lib/CodeGen/RegAllocBasic.cpp
@@ -20,6 +20,7 @@
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
+#include "RegisterCoalescer.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
@@ -34,7 +35,6 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -141,7 +141,7 @@ RABasic::RABasic(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
- initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
+ initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
diff --git a/lib/CodeGen/RegAllocFast.cpp b/lib/CodeGen/RegAllocFast.cpp
index 0f27dfc..ee23194 100644
--- a/lib/CodeGen/RegAllocFast.cpp
+++ b/lib/CodeGen/RegAllocFast.cpp
@@ -118,7 +118,7 @@ namespace {
// SkippedInstrs - Descriptors of instructions whose clobber list was
// ignored because all registers were spilled. It is still necessary to
// mark all the clobbered registers as used by the function.
- SmallPtrSet<const TargetInstrDesc*, 4> SkippedInstrs;
+ SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
// isBulkSpilling - This flag is set when LiveRegMap will be cleared
// completely after spilling all live registers. LiveRegMap entries should
@@ -423,7 +423,7 @@ void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
// Returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
if (UsedInInstr.test(PhysReg)) {
- DEBUG(dbgs() << "PhysReg: " << PhysReg << " is already used in instr.\n");
+ DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
return spillImpossible;
}
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
@@ -432,15 +432,15 @@ unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
case regFree:
return 0;
case regReserved:
- DEBUG(dbgs() << "VirtReg: " << VirtReg << " corresponding to PhysReg: "
- << PhysReg << " is reserved already.\n");
+ DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
+ << PrintReg(PhysReg, TRI) << " is reserved already.\n");
return spillImpossible;
default:
return LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
}
// This is a disabled register, add up cost of aliases.
- DEBUG(dbgs() << "\tRegister: " << PhysReg << " is disabled.\n");
+ DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
unsigned Cost = 0;
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
@@ -515,7 +515,7 @@ void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) {
unsigned BestReg = 0, BestCost = spillImpossible;
for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
unsigned Cost = calcSpillCost(*I);
- DEBUG(dbgs() << "\tRegister: " << *I << "\n");
+ DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
DEBUG(dbgs() << "\tCost: " << Cost << "\n");
DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
// Cost is 0 when all aliases are already disabled.
@@ -726,7 +726,8 @@ void RAFast::handleThroughOperands(MachineInstr *MI,
if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
unsigned Reg = MO.getReg();
if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
- DEBUG(dbgs() << "\tSetting reg " << Reg << " as used in instr\n");
+ DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
+ << " as used in instr\n");
UsedInInstr.set(Reg);
}
@@ -776,7 +777,7 @@ void RAFast::AllocateBasicBlock() {
// Otherwise, sequentially allocate each instruction in the MBB.
while (MII != MBB->end()) {
MachineInstr *MI = MII++;
- const TargetInstrDesc &TID = MI->getDesc();
+ const MCInstrDesc &MCID = MI->getDesc();
DEBUG({
dbgs() << "\n>> " << *MI << "Regs:";
for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
@@ -889,7 +890,7 @@ void RAFast::AllocateBasicBlock() {
VirtOpEnd = i+1;
if (MO.isUse()) {
hasTiedOps = hasTiedOps ||
- TID.getOperandConstraint(i, TOI::TIED_TO) != -1;
+ MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
} else {
if (MO.isEarlyClobber())
hasEarlyClobbers = true;
@@ -919,7 +920,7 @@ void RAFast::AllocateBasicBlock() {
// We didn't detect inline asm tied operands above, so just make this extra
// pass for all inline asm.
if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
- (hasTiedOps && (hasPhysDefs || TID.getNumDefs() > 1))) {
+ (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
handleThroughOperands(MI, VirtDead);
// Don't attempt coalescing when we have funny stuff going on.
CopyDst = 0;
@@ -964,7 +965,7 @@ void RAFast::AllocateBasicBlock() {
}
unsigned DefOpEnd = MI->getNumOperands();
- if (TID.isCall()) {
+ if (MCID.isCall()) {
// Spill all virtregs before a call. This serves two purposes: 1. If an
// exception is thrown, the landing pad is going to expect to find
// registers in their spill slots, and 2. we don't have to wade through
@@ -975,7 +976,7 @@ void RAFast::AllocateBasicBlock() {
// The imp-defs are skipped below, but we still need to mark those
// registers as used by the function.
- SkippedInstrs.insert(&TID);
+ SkippedInstrs.insert(&MCID);
}
// Third scan.
@@ -1061,7 +1062,7 @@ bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
MRI->closePhysRegsUsed(*TRI);
// Add the clobber lists for all the instructions we skipped earlier.
- for (SmallPtrSet<const TargetInstrDesc*, 4>::const_iterator
+ for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
if (const unsigned *Defs = (*I)->getImplicitDefs())
while (*Defs)
diff --git a/lib/CodeGen/RegAllocGreedy.cpp b/lib/CodeGen/RegAllocGreedy.cpp
index 8d06325..912d899 100644
--- a/lib/CodeGen/RegAllocGreedy.cpp
+++ b/lib/CodeGen/RegAllocGreedy.cpp
@@ -22,6 +22,7 @@
#include "SpillPlacement.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
+#include "RegisterCoalescer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
@@ -37,7 +38,6 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -234,7 +234,7 @@ RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
- initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
+ initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
@@ -763,32 +763,46 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
// Create the main cross-block interval.
const unsigned MainIntv = SE->openIntv();
- // First add all defs that are live out of a block.
+ // First handle all the blocks with uses.
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
- bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
+ bool RegIn = BI.LiveIn &&
+ LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
+ bool RegOut = BI.LiveOut &&
+ LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
// Create separate intervals for isolated blocks with multiple uses.
- if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
+ //
+ // |---o---o---| Enter and leave on the stack.
+ // ____-----____ Create local interval for uses.
+ //
+ // | o---o---| Defined in block, leave on stack.
+ // -----____ Create local interval for uses.
+ //
+ // |---o---x | Enter on stack, killed in block.
+ // ____----- Create local interval for uses.
+ //
+ if (!RegIn && !RegOut) {
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
- SE->splitSingleBlock(BI);
- SE->selectIntv(MainIntv);
+ if (!BI.isOneInstr()) {
+ SE->splitSingleBlock(BI);
+ SE->selectIntv(MainIntv);
+ }
continue;
}
- // Should the register be live out?
- if (!BI.LiveOut || !RegOut)
- continue;
-
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
Intf.moveToBlock(BI.MBB->getNumber());
- DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
- << Bundles->getBundle(BI.MBB->getNumber(), 1)
+ DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
+ << (RegIn ? " => " : " -- ")
+ << "BB#" << BI.MBB->getNumber()
+ << (RegOut ? " => " : " -- ")
+ << " EB#" << Bundles->getBundle(BI.MBB->getNumber(), 1)
<< " [" << Start << ';'
<< SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
+ << ") uses [" << BI.FirstUse << ';' << BI.LastUse
<< ") intf [" << Intf.first() << ';' << Intf.last() << ')');
// The interference interval should either be invalid or overlap MBB.
@@ -797,150 +811,266 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
assert((!Intf.hasInterference() || Intf.last() > Start)
&& "Bad interference");
- // Check interference leaving the block.
+ // We are now ready to decide where to split in the current block. There
+ // are many variables guiding the decision:
+ //
+ // - RegIn / RegOut: The global splitting algorithm's decisions for our
+ // ingoing and outgoing bundles.
+ //
+ // - BI.BlockIn / BI.BlockOut: Is the live range live-in and/or live-out
+ // from this block.
+ //
+ // - Intf.hasInterference(): Is there interference in this block.
+ //
+ // - Intf.first() / Inft.last(): The range of interference.
+ //
+ // The live range should be split such that MainIntv is live-in when RegIn
+ // is set, and live-out when RegOut is set. MainIntv should never overlap
+ // the interference, and the stack interval should never have more than one
+ // use per block.
+
+ // No splits can be inserted after LastSplitPoint, overlap instead.
+ SlotIndex LastSplitPoint = Stop;
+ if (BI.LiveOut)
+ LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
+
+ // At this point, we know that either RegIn or RegOut is set. We dealt with
+ // the all-stack case above.
+
+ // Blocks without interference are relatively easy.
if (!Intf.hasInterference()) {
- // Block is interference-free.
- DEBUG(dbgs() << ", no interference");
- if (!BI.LiveThrough) {
- DEBUG(dbgs() << ", not live-through.\n");
- SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
- continue;
- }
- if (!RegIn) {
- // Block is live-through, but entry bundle is on the stack.
- // Reload just before the first use.
- DEBUG(dbgs() << ", not live-in, enter before first use.\n");
- SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
- continue;
+ DEBUG(dbgs() << ", no interference.\n");
+ SE->selectIntv(MainIntv);
+ // The easiest case has MainIntv live through.
+ //
+ // |---o---o---| Live-in, live-out.
+ // ============= Use MainIntv everywhere.
+ //
+ SlotIndex From = Start, To = Stop;
+
+ // Block entry. Reload before the first use if MainIntv is not live-in.
+ //
+ // |---o-- Enter on stack.
+ // ____=== Reload before first use.
+ //
+ // | o-- Defined in block.
+ // === Use MainIntv from def.
+ //
+ if (!RegIn)
+ From = SE->enterIntvBefore(BI.FirstUse);
+
+ // Block exit. Handle cases where MainIntv is not live-out.
+ if (!BI.LiveOut)
+ //
+ // --x | Killed in block.
+ // === Use MainIntv up to kill.
+ //
+ To = SE->leaveIntvAfter(BI.LastUse);
+ else if (!RegOut) {
+ //
+ // --o---| Live-out on stack.
+ // ===____ Use MainIntv up to last use, switch to stack.
+ //
+ // -----o| Live-out on stack, last use after last split point.
+ // ====== Extend MainIntv to last use, overlapping.
+ // \____ Copy to stack interval before last split point.
+ //
+ if (BI.LastUse < LastSplitPoint)
+ To = SE->leaveIntvAfter(BI.LastUse);
+ else {
+ // The last use is after the last split point, it is probably an
+ // indirect branch.
+ To = SE->leaveIntvBefore(LastSplitPoint);
+ // Run a double interval from the split to the last use. This makes
+ // it possible to spill the complement without affecting the indirect
+ // branch.
+ SE->overlapIntv(To, BI.LastUse);
+ }
}
- DEBUG(dbgs() << ", live-through.\n");
- continue;
- }
-
- // Block has interference.
- DEBUG(dbgs() << ", interference to " << Intf.last());
- if (!BI.LiveThrough && Intf.last() <= BI.FirstUse) {
- // The interference doesn't reach the outgoing segment.
- DEBUG(dbgs() << " doesn't affect def from " << BI.FirstUse << '\n');
- SE->useIntv(BI.FirstUse, Stop);
+ // Paint in MainIntv liveness for this block.
+ SE->useIntv(From, To);
continue;
}
- SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
- if (Intf.last().getBoundaryIndex() < BI.LastUse) {
- // There are interference-free uses at the end of the block.
- // Find the first use that can get the live-out register.
- SmallVectorImpl<SlotIndex>::const_iterator UI =
- std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
- Intf.last().getBoundaryIndex());
- assert(UI != SA->UseSlots.end() && "Couldn't find last use");
- SlotIndex Use = *UI;
- assert(Use <= BI.LastUse && "Couldn't find last use");
- // Only attempt a split befroe the last split point.
- if (Use.getBaseIndex() <= LastSplitPoint) {
- DEBUG(dbgs() << ", free use at " << Use << ".\n");
- SlotIndex SegStart = SE->enterIntvBefore(Use);
- assert(SegStart >= Intf.last() && "Couldn't avoid interference");
- assert(SegStart < LastSplitPoint && "Impossible split point");
- SE->useIntv(SegStart, Stop);
- continue;
- }
- }
+ // We are now looking at a block with interference, and we know that either
+ // RegIn or RegOut is set.
+ assert(Intf.hasInterference() && (RegIn || RegOut) && "Bad invariant");
- // Interference is after the last use.
- DEBUG(dbgs() << " after last use.\n");
- SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
- assert(SegStart >= Intf.last() && "Couldn't avoid interference");
- }
+ // If the live range is not live through the block, it is possible that the
+ // interference doesn't even overlap. Deal with those cases first. Since
+ // no copy instructions are required, we can tolerate interference starting
+ // or ending at the same instruction that kills or defines our live range.
- // Now all defs leading to live bundles are handled, do everything else.
- for (unsigned i = 0; i != UseBlocks.size(); ++i) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
- bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
+ // Live-in, killed before interference.
+ //
+ // ~~~ Interference after kill.
+ // |---o---x | Killed in block.
+ // ========= Use MainIntv everywhere.
+ //
+ if (RegIn && !BI.LiveOut && BI.LastUse <= Intf.first()) {
+ DEBUG(dbgs() << ", live-in, killed before interference.\n");
+ SE->selectIntv(MainIntv);
+ SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
+ SE->useIntv(Start, To);
+ continue;
+ }
- // Is the register live-in?
- if (!BI.LiveIn || !RegIn)
+ // Live-out, defined after interference.
+ //
+ // ~~~ Interference before def.
+ // | o---o---| Defined in block.
+ // ========= Use MainIntv everywhere.
+ //
+ if (RegOut && !BI.LiveIn && BI.FirstUse >= Intf.last()) {
+ DEBUG(dbgs() << ", live-out, defined after interference.\n");
+ SE->selectIntv(MainIntv);
+ SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
+ SE->useIntv(From, Stop);
continue;
+ }
- // We have an incoming register. Check for interference.
- SlotIndex Start, Stop;
- tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
- Intf.moveToBlock(BI.MBB->getNumber());
- DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
- << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
- << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
- << ')');
+ // The interference is now known to overlap the live range, but it may
+ // still be easy to avoid if all the interference is on one side of the
+ // uses, and we enter or leave on the stack.
- // Check interference entering the block.
- if (!Intf.hasInterference()) {
- // Block is interference-free.
- DEBUG(dbgs() << ", no interference");
- if (!BI.LiveThrough) {
- DEBUG(dbgs() << ", killed in block.\n");
- SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
- continue;
- }
- if (!RegOut) {
- SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
- // Block is live-through, but exit bundle is on the stack.
- // Spill immediately after the last use.
- if (BI.LastUse < LastSplitPoint) {
- DEBUG(dbgs() << ", uses, stack-out.\n");
- SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
- continue;
- }
- // The last use is after the last split point, it is probably an
- // indirect jump.
- DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
- << LastSplitPoint << ", stack-out.\n");
- SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
- SE->useIntv(Start, SegEnd);
- // Run a double interval from the split to the last use.
- // This makes it possible to spill the complement without affecting the
- // indirect branch.
- SE->overlapIntv(SegEnd, BI.LastUse);
- continue;
+ // Live-out on stack, interference after last use.
+ //
+ // ~~~ Interference after last use.
+ // |---o---o---| Live-out on stack.
+ // =========____ Leave MainIntv after last use.
+ //
+ // ~ Interference after last use.
+ // |---o---o--o| Live-out on stack, late last use.
+ // =========____ Copy to stack after LSP, overlap MainIntv.
+ //
+ if (!RegOut && Intf.first() > BI.LastUse.getBoundaryIndex()) {
+ assert(RegIn && "Stack-in, stack-out should already be handled");
+ if (BI.LastUse < LastSplitPoint) {
+ DEBUG(dbgs() << ", live-in, stack-out, interference after last use.\n");
+ SE->selectIntv(MainIntv);
+ SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
+ assert(To <= Intf.first() && "Expected to avoid interference");
+ SE->useIntv(Start, To);
+ } else {
+ DEBUG(dbgs() << ", live-in, stack-out, avoid last split point\n");
+ SE->selectIntv(MainIntv);
+ SlotIndex To = SE->leaveIntvBefore(LastSplitPoint);
+ assert(To <= Intf.first() && "Expected to avoid interference");
+ SE->overlapIntv(To, BI.LastUse);
+ SE->useIntv(Start, To);
}
- // Register is live-through.
- DEBUG(dbgs() << ", uses, live-through.\n");
- SE->useIntv(Start, Stop);
continue;
}
- // Block has interference.
- DEBUG(dbgs() << ", interference from " << Intf.first());
-
- if (!BI.LiveThrough && Intf.first() >= BI.LastUse) {
- // The interference doesn't reach the outgoing segment.
- DEBUG(dbgs() << " doesn't affect kill at " << BI.LastUse << '\n');
- SE->useIntv(Start, BI.LastUse);
+ // Live-in on stack, interference before first use.
+ //
+ // ~~~ Interference before first use.
+ // |---o---o---| Live-in on stack.
+ // ____========= Enter MainIntv before first use.
+ //
+ if (!RegIn && Intf.last() < BI.FirstUse.getBaseIndex()) {
+ assert(RegOut && "Stack-in, stack-out should already be handled");
+ DEBUG(dbgs() << ", stack-in, interference before first use.\n");
+ SE->selectIntv(MainIntv);
+ SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
+ assert(From >= Intf.last() && "Expected to avoid interference");
+ SE->useIntv(From, Stop);
continue;
}
- if (Intf.first().getBaseIndex() > BI.FirstUse) {
- // There are interference-free uses at the beginning of the block.
- // Find the last use that can get the register.
- SmallVectorImpl<SlotIndex>::const_iterator UI =
- std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
- Intf.first().getBaseIndex());
- assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
- SlotIndex Use = (--UI)->getBoundaryIndex();
- DEBUG(dbgs() << ", free use at " << *UI << ".\n");
- SlotIndex SegEnd = SE->leaveIntvAfter(Use);
- assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
- SE->useIntv(Start, SegEnd);
- continue;
+ // The interference is overlapping somewhere we wanted to use MainIntv. That
+ // means we need to create a local interval that can be allocated a
+ // different register.
+ DEBUG(dbgs() << ", creating local interval.\n");
+ unsigned LocalIntv = SE->openIntv();
+
+ // We may be creating copies directly between MainIntv and LocalIntv,
+ // bypassing the stack interval. When we do that, we should never use the
+ // leaveIntv* methods as they define values in the stack interval. By
+ // starting from the end of the block and working our way backwards, we can
+ // get by with only enterIntv* methods.
+ //
+ // When selecting split points, we generally try to maximize the stack
+ // interval as long at it contains no uses, maximize the main interval as
+ // long as it doesn't overlap interference, and minimize the local interval
+ // that we don't know how to allocate yet.
+
+ // Handle the block exit, set Pos to the first handled slot.
+ SlotIndex Pos = BI.LastUse;
+ if (RegOut) {
+ assert(Intf.last() < LastSplitPoint && "Cannot be live-out in register");
+ // Create a snippet of MainIntv that is live-out.
+ //
+ // ~~~ Interference overlapping uses.
+ // --o---| Live-out in MainIntv.
+ // ----=== Switch from LocalIntv to MainIntv after interference.
+ //
+ SE->selectIntv(MainIntv);
+ Pos = SE->enterIntvAfter(Intf.last());
+ assert(Pos >= Intf.last() && "Expected to avoid interference");
+ SE->useIntv(Pos, Stop);
+ SE->selectIntv(LocalIntv);
+ } else if (BI.LiveOut) {
+ if (BI.LastUse < LastSplitPoint) {
+ // Live-out on the stack.
+ //
+ // ~~~ Interference overlapping uses.
+ // --o---| Live-out on stack.
+ // ---____ Switch from LocalIntv to stack after last use.
+ //
+ Pos = SE->leaveIntvAfter(BI.LastUse);
+ } else {
+ // Live-out on the stack, last use after last split point.
+ //
+ // ~~~ Interference overlapping uses.
+ // --o--o| Live-out on stack, late use.
+ // ------ Copy to stack before LSP, overlap LocalIntv.
+ // \__
+ //
+ Pos = SE->leaveIntvBefore(LastSplitPoint);
+ // We need to overlap LocalIntv so it can reach LastUse.
+ SE->overlapIntv(Pos, BI.LastUse);
+ }
}
- // Interference is before the first use.
- DEBUG(dbgs() << " before first use.\n");
- SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
- assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
+ // When not live-out, leave Pos at LastUse. We have handled everything from
+ // Pos to Stop. Find the starting point for LocalIntv.
+ assert(SE->currentIntv() == LocalIntv && "Expecting local interval");
+
+ if (RegIn) {
+ assert(Start < Intf.first() && "Cannot be live-in with interference");
+ // Live-in in MainIntv, only use LocalIntv for interference.
+ //
+ // ~~~ Interference overlapping uses.
+ // |---o-- Live-in in MainIntv.
+ // ====--- Switch to LocalIntv before interference.
+ //
+ SlotIndex Switch = SE->enterIntvBefore(Intf.first());
+ assert(Switch <= Intf.first() && "Expected to avoid interference");
+ SE->useIntv(Switch, Pos);
+ SE->selectIntv(MainIntv);
+ SE->useIntv(Start, Switch);
+ } else {
+ // Live-in on stack, enter LocalIntv before first use.
+ //
+ // ~~~ Interference overlapping uses.
+ // |---o-- Live-in in MainIntv.
+ // ____--- Reload to LocalIntv before interference.
+ //
+ // Defined in block.
+ //
+ // ~~~ Interference overlapping uses.
+ // | o-- Defined in block.
+ // --- Begin LocalIntv at first use.
+ //
+ SlotIndex Switch = SE->enterIntvBefore(BI.FirstUse);
+ SE->useIntv(Switch, Pos);
+ }
}
// Handle live-through blocks.
+ SE->selectIntv(MainIntv);
for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
unsigned Number = Cand.ActiveBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
diff --git a/lib/CodeGen/RegAllocLinearScan.cpp b/lib/CodeGen/RegAllocLinearScan.cpp
index 7a2ea6c..0dd3c59 100644
--- a/lib/CodeGen/RegAllocLinearScan.cpp
+++ b/lib/CodeGen/RegAllocLinearScan.cpp
@@ -18,6 +18,7 @@
#include "VirtRegRewriter.h"
#include "RegisterClassInfo.h"
#include "Spiller.h"
+#include "RegisterCoalescer.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
@@ -28,7 +29,6 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
@@ -58,11 +58,6 @@ NewHeuristic("new-spilling-heuristic",
cl::init(false), cl::Hidden);
static cl::opt<bool>
-PreSplitIntervals("pre-alloc-split",
- cl::desc("Pre-register allocation live interval splitting"),
- cl::init(false), cl::Hidden);
-
-static cl::opt<bool>
TrivCoalesceEnds("trivial-coalesce-ends",
cl::desc("Attempt trivial coalescing of interval ends"),
cl::init(false), cl::Hidden);
@@ -101,10 +96,9 @@ namespace {
initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
- initializeRegisterCoalescerAnalysisGroup(
+ initializeRegisterCoalescerPass(
*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
- initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
@@ -217,8 +211,6 @@ namespace {
// to coalescing and which analyses coalescing invalidates.
AU.addRequiredTransitive<RegisterCoalescer>();
AU.addRequired<CalculateSpillWeights>();
- if (PreSplitIntervals)
- AU.addRequiredID(PreAllocSplittingID);
AU.addRequiredID(LiveStacksID);
AU.addPreservedID(LiveStacksID);
AU.addRequired<MachineLoopInfo>();
@@ -401,11 +393,10 @@ INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
-INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
-INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
+INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
"Linear Scan Register Allocator", false, false)
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index 49f8fb4..72230d4 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -35,6 +35,7 @@
#include "Splitter.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
+#include "RegisterCoalescer.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
@@ -46,7 +47,6 @@
#include "llvm/CodeGen/PBQP/Graph.h"
#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
@@ -88,7 +88,7 @@ public:
: MachineFunctionPass(ID), builder(b), customPassID(cPassID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
- initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
+ initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
diff --git a/lib/CodeGen/RegisterClassInfo.h b/lib/CodeGen/RegisterClassInfo.h
index 6f7d9c9..d21fd67 100644
--- a/lib/CodeGen/RegisterClassInfo.h
+++ b/lib/CodeGen/RegisterClassInfo.h
@@ -112,7 +112,7 @@ public:
/// register, so a register allocator needs to track its liveness and
/// availability.
bool isAllocatable(unsigned PhysReg) const {
- return TRI->get(PhysReg).inAllocatableClass && !isReserved(PhysReg);
+ return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg);
}
};
} // end namespace llvm
diff --git a/lib/CodeGen/RegisterCoalescer.cpp b/lib/CodeGen/RegisterCoalescer.cpp
index 407559a..d5025b9 100644
--- a/lib/CodeGen/RegisterCoalescer.cpp
+++ b/lib/CodeGen/RegisterCoalescer.cpp
@@ -13,38 +13,92 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/CodeGen/RegisterCoalescer.h"
+#define DEBUG_TYPE "regcoalescing"
+#include "RegisterCoalescer.h"
+#include "VirtRegMap.h"
+#include "LiveDebugVariables.h"
+
+#include "llvm/Pass.h"
+#include "llvm/Value.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Pass.h"
-
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cmath>
using namespace llvm;
-// Register the RegisterCoalescer interface, providing a nice name to refer to.
-INITIALIZE_ANALYSIS_GROUP(RegisterCoalescer, "Register Coalescer",
- SimpleRegisterCoalescing)
-char RegisterCoalescer::ID = 0;
+STATISTIC(numJoins , "Number of interval joins performed");
+STATISTIC(numCrossRCs , "Number of cross class joins performed");
+STATISTIC(numCommutes , "Number of instruction commuting performed");
+STATISTIC(numExtends , "Number of copies extended");
+STATISTIC(NumReMats , "Number of instructions re-materialized");
+STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
+STATISTIC(numAborts , "Number of times interval joining aborted");
-// RegisterCoalescer destructor: DO NOT move this to the header file
-// for RegisterCoalescer or else clients of the RegisterCoalescer
-// class may not depend on the RegisterCoalescer.o file in the current
-// .a file, causing alias analysis support to not be included in the
-// tool correctly!
-//
-RegisterCoalescer::~RegisterCoalescer() {}
+static cl::opt<bool>
+EnableJoining("join-liveintervals",
+ cl::desc("Coalesce copies (default=true)"),
+ cl::init(true));
+
+static cl::opt<bool>
+DisableCrossClassJoin("disable-cross-class-join",
+ cl::desc("Avoid coalescing cross register class copies"),
+ cl::init(false), cl::Hidden);
-unsigned CoalescerPair::compose(unsigned a, unsigned b) const {
+static cl::opt<bool>
+EnablePhysicalJoin("join-physregs",
+ cl::desc("Join physical register copies"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+VerifyCoalescing("verify-coalescing",
+ cl::desc("Verify machine instrs before and after register coalescing"),
+ cl::Hidden);
+
+INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
+ "Simple Register Coalescing", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
+INITIALIZE_PASS_DEPENDENCY(PHIElimination)
+INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
+ "Simple Register Coalescing", false, false)
+
+char RegisterCoalescer::ID = 0;
+
+static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
if (!a) return b;
if (!b) return a;
- return tri_.composeSubRegIndices(a, b);
+ return tri.composeSubRegIndices(a, b);
}
-bool CoalescerPair::isMoveInstr(const MachineInstr *MI,
- unsigned &Src, unsigned &Dst,
- unsigned &SrcSub, unsigned &DstSub) const {
+static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
+ unsigned &Src, unsigned &Dst,
+ unsigned &SrcSub, unsigned &DstSub) {
if (MI->isCopy()) {
Dst = MI->getOperand(0).getReg();
DstSub = MI->getOperand(0).getSubReg();
@@ -52,7 +106,8 @@ bool CoalescerPair::isMoveInstr(const MachineInstr *MI,
SrcSub = MI->getOperand(1).getSubReg();
} else if (MI->isSubregToReg()) {
Dst = MI->getOperand(0).getReg();
- DstSub = compose(MI->getOperand(0).getSubReg(), MI->getOperand(3).getImm());
+ DstSub = compose(tri, MI->getOperand(0).getSubReg(),
+ MI->getOperand(3).getImm());
Src = MI->getOperand(2).getReg();
SrcSub = MI->getOperand(2).getSubReg();
} else
@@ -66,7 +121,7 @@ bool CoalescerPair::setRegisters(const MachineInstr *MI) {
flipped_ = crossClass_ = false;
unsigned Src, Dst, SrcSub, DstSub;
- if (!isMoveInstr(MI, Src, Dst, SrcSub, DstSub))
+ if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
return false;
partial_ = SrcSub || DstSub;
@@ -156,7 +211,7 @@ bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
if (!MI)
return false;
unsigned Src, Dst, SrcSub, DstSub;
- if (!isMoveInstr(MI, Src, Dst, SrcSub, DstSub))
+ if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
return false;
// Find the virtual register that is srcReg_.
@@ -185,13 +240,1550 @@ bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
if (dstReg_ != Dst)
return false;
// Registers match, do the subregisters line up?
- return compose(subIdx_, SrcSub) == DstSub;
+ return compose(tri_, subIdx_, SrcSub) == DstSub;
+ }
+}
+
+void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addRequired<LiveDebugVariables>();
+ AU.addPreserved<LiveDebugVariables>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addPreservedID(StrongPHIEliminationID);
+ AU.addPreservedID(PHIEliminationID);
+ AU.addPreservedID(TwoAddressInstructionPassID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
+ /// Joined copies are not deleted immediately, but kept in JoinedCopies.
+ JoinedCopies.insert(CopyMI);
+
+ /// Mark all register operands of CopyMI as <undef> so they won't affect dead
+ /// code elimination.
+ for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
+ E = CopyMI->operands_end(); I != E; ++I)
+ if (I->isReg())
+ I->setIsUndef(true);
+}
+
+/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
+/// being the source and IntB being the dest, thus this defines a value number
+/// in IntB. If the source value number (in IntA) is defined by a copy from B,
+/// see if we can merge these two pieces of B into a single value number,
+/// eliminating a copy. For example:
+///
+/// A3 = B0
+/// ...
+/// B1 = A3 <- this copy
+///
+/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
+/// value number to be replaced with B0 (which simplifies the B liveinterval).
+///
+/// This returns true if an interval was modified.
+///
+bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ // Bail if there is no dst interval - can happen when merging physical subreg
+ // operations.
+ if (!li_->hasInterval(CP.getDstReg()))
+ return false;
+
+ LiveInterval &IntA =
+ li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+ if (BLR == IntB.end()) return false;
+ VNInfo *BValNo = BLR->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (!BValNo->isDefByCopy()) return false;
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
+ LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
+ // The live range might not exist after fun with physreg coalescing.
+ if (ALR == IntA.end()) return false;
+ VNInfo *AValNo = ALR->valno;
+ // If it's re-defined by an early clobber somewhere in the live range, then
+ // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
+ // See PR3149:
+ // 172 %ECX<def> = MOV32rr %reg1039<kill>
+ // 180 INLINEASM <es:subl $5,$1
+ // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
+ // %EAX<kill>,
+ // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
+ // 188 %EAX<def> = MOV32rr %EAX<kill>
+ // 196 %ECX<def> = MOV32rr %ECX<kill>
+ // 204 %ECX<def> = MOV32rr %ECX<kill>
+ // 212 %EAX<def> = MOV32rr %EAX<kill>
+ // 220 %EAX<def> = MOV32rr %EAX
+ // 228 %reg1039<def> = MOV32rr %ECX<kill>
+ // The early clobber operand ties ECX input to the ECX def.
+ //
+ // The live interval of ECX is represented as this:
+ // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
+ // The coalescer has no idea there was a def in the middle of [174,230].
+ if (AValNo->hasRedefByEC())
+ return false;
+
+ // If AValNo is defined as a copy from IntB, we can potentially process this.
+ // Get the instruction that defines this value number.
+ if (!CP.isCoalescable(AValNo->getCopy()))
+ return false;
+
+ // Get the LiveRange in IntB that this value number starts with.
+ LiveInterval::iterator ValLR =
+ IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
+ if (ValLR == IntB.end())
+ return false;
+
+ // Make sure that the end of the live range is inside the same block as
+ // CopyMI.
+ MachineInstr *ValLREndInst =
+ li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
+ if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
+ return false;
+
+ // Okay, we now know that ValLR ends in the same block that the CopyMI
+ // live-range starts. If there are no intervening live ranges between them in
+ // IntB, we can merge them.
+ if (ValLR+1 != BLR) return false;
+
+ // If a live interval is a physical register, conservatively check if any
+ // of its aliases is overlapping the live interval of the virtual register.
+ // If so, do not coalesce.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
+ for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
+ if (li_->hasInterval(*AS) && IntA.overlaps(li_->getInterval(*AS))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with alias ";
+ li_->getInterval(*AS).print(dbgs(), tri_);
+ });
+ return false;
+ }
+ }
+
+ DEBUG({
+ dbgs() << "Extending: ";
+ IntB.print(dbgs(), tri_);
+ });
+
+ SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
+ // We are about to delete CopyMI, so need to remove it as the 'instruction
+ // that defines this value #'. Update the valnum with the new defining
+ // instruction #.
+ BValNo->def = FillerStart;
+ BValNo->setCopy(0);
+
+ // Okay, we can merge them. We need to insert a new liverange:
+ // [ValLR.end, BLR.begin) of either value number, then we merge the
+ // two value numbers.
+ IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
+
+ // If the IntB live range is assigned to a physical register, and if that
+ // physreg has sub-registers, update their live intervals as well.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &SRLI = li_->getInterval(*SR);
+ SRLI.addRange(LiveRange(FillerStart, FillerEnd,
+ SRLI.getNextValue(FillerStart, 0,
+ li_->getVNInfoAllocator())));
+ }
+ }
+
+ // Okay, merge "B1" into the same value number as "B0".
+ if (BValNo != ValLR->valno) {
+ // If B1 is killed by a PHI, then the merged live range must also be killed
+ // by the same PHI, as B0 and B1 can not overlap.
+ bool HasPHIKill = BValNo->hasPHIKill();
+ IntB.MergeValueNumberInto(BValNo, ValLR->valno);
+ if (HasPHIKill)
+ ValLR->valno->setHasPHIKill(true);
+ }
+ DEBUG({
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ // If the source instruction was killing the source register before the
+ // merge, unset the isKill marker given the live range has been extended.
+ int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
+ if (UIdx != -1) {
+ ValLREndInst->getOperand(UIdx).setIsKill(false);
+ }
+
+ // If the copy instruction was killing the destination register before the
+ // merge, find the last use and trim the live range. That will also add the
+ // isKill marker.
+ if (ALR->end == CopyIdx)
+ li_->shrinkToUses(&IntA);
+
+ ++numExtends;
+ return true;
+}
+
+/// HasOtherReachingDefs - Return true if there are definitions of IntB
+/// other than BValNo val# that can reach uses of AValno val# of IntA.
+bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
+ LiveInterval &IntB,
+ VNInfo *AValNo,
+ VNInfo *BValNo) {
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ LiveInterval::Ranges::iterator BI =
+ std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
+ if (BI != IntB.ranges.begin())
+ --BI;
+ for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
+ if (BI->valno == BValNo)
+ continue;
+ if (BI->start <= AI->start && BI->end > AI->start)
+ return true;
+ if (BI->start > AI->start && BI->start < AI->end)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
+/// IntA being the source and IntB being the dest, thus this defines a value
+/// number in IntB. If the source value number (in IntA) is defined by a
+/// commutable instruction and its other operand is coalesced to the copy dest
+/// register, see if we can transform the copy into a noop by commuting the
+/// definition. For example,
+///
+/// A3 = op A2 B0<kill>
+/// ...
+/// B1 = A3 <- this copy
+/// ...
+/// = op A3 <- more uses
+///
+/// ==>
+///
+/// B2 = op B0 A2<kill>
+/// ...
+/// B1 = B2 <- now an identify copy
+/// ...
+/// = op B2 <- more uses
+///
+/// This returns true if an interval was modified.
+///
+bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ // FIXME: For now, only eliminate the copy by commuting its def when the
+ // source register is a virtual register. We want to guard against cases
+ // where the copy is a back edge copy and commuting the def lengthen the
+ // live interval of the source register to the entire loop.
+ if (CP.isPhys() && CP.isFlipped())
+ return false;
+
+ // Bail if there is no dst interval.
+ if (!li_->hasInterval(CP.getDstReg()))
+ return false;
+
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
+
+ LiveInterval &IntA =
+ li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
+ if (!BValNo || !BValNo->isDefByCopy())
+ return false;
+
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
+ assert(AValNo && "COPY source not live");
+
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization.
+ if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
+ if (!DefMI)
+ return false;
+ const MCInstrDesc &MCID = DefMI->getDesc();
+ if (!MCID.isCommutable())
+ return false;
+ // If DefMI is a two-address instruction then commuting it will change the
+ // destination register.
+ int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+ assert(DefIdx != -1);
+ unsigned UseOpIdx;
+ if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+ return false;
+ unsigned Op1, Op2, NewDstIdx;
+ if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
+ return false;
+ if (Op1 == UseOpIdx)
+ NewDstIdx = Op2;
+ else if (Op2 == UseOpIdx)
+ NewDstIdx = Op1;
+ else
+ return false;
+
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (NewReg != IntB.reg || !NewDstMO.isKill())
+ return false;
+
+ // Make sure there are no other definitions of IntB that would reach the
+ // uses which the new definition can reach.
+ if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
+ return false;
+
+ // Abort if the aliases of IntB.reg have values that are not simply the
+ // clobbers from the superreg.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
+ for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
+ if (li_->hasInterval(*AS) &&
+ HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
+ return false;
+
+ // If some of the uses of IntA.reg is already coalesced away, return false.
+ // It's not possible to determine whether it's safe to perform the coalescing.
+ for (MachineRegisterInfo::use_nodbg_iterator UI =
+ mri_->use_nodbg_begin(IntA.reg),
+ UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end())
+ continue;
+ if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
+ return false;
+ }
+
+ DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
+ << *DefMI);
+
+ // At this point we have decided that it is legal to do this
+ // transformation. Start by commuting the instruction.
+ MachineBasicBlock *MBB = DefMI->getParent();
+ MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
+ if (!NewMI)
+ return false;
+ if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
+ TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
+ !mri_->constrainRegClass(IntB.reg, mri_->getRegClass(IntA.reg)))
+ return false;
+ if (NewMI != DefMI) {
+ li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
+ MBB->insert(DefMI, NewMI);
+ MBB->erase(DefMI);
+ }
+ unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
+ NewMI->getOperand(OpIdx).setIsKill();
+
+ // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
+ // A = or A, B
+ // ...
+ // B = A
+ // ...
+ // C = A<kill>
+ // ...
+ // = B
+
+ // Update uses of IntA of the specific Val# with IntB.
+ for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
+ UE = mri_->use_end(); UI != UE;) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = &*UI;
+ ++UI;
+ if (JoinedCopies.count(UseMI))
+ continue;
+ if (UseMI->isDebugValue()) {
+ // FIXME These don't have an instruction index. Not clear we have enough
+ // info to decide whether to do this replacement or not. For now do it.
+ UseMO.setReg(NewReg);
+ continue;
+ }
+ SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end() || ULR->valno != AValNo)
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(NewReg))
+ UseMO.substPhysReg(NewReg, *tri_);
+ else
+ UseMO.setReg(NewReg);
+ if (UseMI == CopyMI)
+ continue;
+ if (!UseMI->isCopy())
+ continue;
+ if (UseMI->getOperand(0).getReg() != IntB.reg ||
+ UseMI->getOperand(0).getSubReg())
+ continue;
+
+ // This copy will become a noop. If it's defining a new val#, merge it into
+ // BValNo.
+ SlotIndex DefIdx = UseIdx.getDefIndex();
+ VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
+ if (!DVNI)
+ continue;
+ DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
+ assert(DVNI->def == DefIdx);
+ BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
+ markAsJoined(UseMI);
+ }
+
+ // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
+ // is updated.
+ VNInfo *ValNo = BValNo;
+ ValNo->def = AValNo->def;
+ ValNo->setCopy(0);
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
+ }
+ DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
+
+ IntA.removeValNo(AValNo);
+ DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
+ ++numCommutes;
+ return true;
+}
+
+/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
+/// computation, replace the copy by rematerialize the definition.
+bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
+ bool preserveSrcInt,
+ unsigned DstReg,
+ unsigned DstSubIdx,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
+ LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
+ assert(SrcLR != SrcInt.end() && "Live range not found!");
+ VNInfo *ValNo = SrcLR->valno;
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization.
+ if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
+ if (!DefMI)
+ return false;
+ assert(DefMI && "Defining instruction disappeared");
+ const MCInstrDesc &MCID = DefMI->getDesc();
+ if (!MCID.isAsCheapAsAMove())
+ return false;
+ if (!tii_->isTriviallyReMaterializable(DefMI, AA))
+ return false;
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(tii_, AA, SawStore))
+ return false;
+ if (MCID.getNumDefs() != 1)
+ return false;
+ if (!DefMI->isImplicitDef()) {
+ // Make sure the copy destination register class fits the instruction
+ // definition register class. The mismatch can happen as a result of earlier
+ // extract_subreg, insert_subreg, subreg_to_reg coalescing.
+ const TargetRegisterClass *RC = tii_->getRegClass(MCID, 0, tri_);
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ if (mri_->getRegClass(DstReg) != RC)
+ return false;
+ } else if (!RC->contains(DstReg))
+ return false;
}
+
+ // If destination register has a sub-register index on it, make sure it
+ // matches the instruction register class.
+ if (DstSubIdx) {
+ const MCInstrDesc &MCID = DefMI->getDesc();
+ if (MCID.getNumDefs() != 1)
+ return false;
+ const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
+ const TargetRegisterClass *DstSubRC =
+ DstRC->getSubRegisterRegClass(DstSubIdx);
+ const TargetRegisterClass *DefRC = tii_->getRegClass(MCID, 0, tri_);
+ if (DefRC == DstRC)
+ DstSubIdx = 0;
+ else if (DefRC != DstSubRC)
+ return false;
+ }
+
+ RemoveCopyFlag(DstReg, CopyMI);
+
+ MachineBasicBlock *MBB = CopyMI->getParent();
+ MachineBasicBlock::iterator MII =
+ llvm::next(MachineBasicBlock::iterator(CopyMI));
+ tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
+ MachineInstr *NewMI = prior(MII);
+
+ // CopyMI may have implicit operands, transfer them over to the newly
+ // rematerialized instruction. And update implicit def interval valnos.
+ for (unsigned i = CopyMI->getDesc().getNumOperands(),
+ e = CopyMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = CopyMI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ NewMI->addOperand(MO);
+ if (MO.isDef())
+ RemoveCopyFlag(MO.getReg(), CopyMI);
+ }
+
+ NewMI->copyImplicitOps(CopyMI);
+ li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
+ CopyMI->eraseFromParent();
+ ReMatCopies.insert(CopyMI);
+ ReMatDefs.insert(DefMI);
+ DEBUG(dbgs() << "Remat: " << *NewMI);
+ ++NumReMats;
+
+ // The source interval can become smaller because we removed a use.
+ if (preserveSrcInt)
+ li_->shrinkToUses(&SrcInt);
+
+ return true;
}
-// Because of the way .a files work, we must force the SimpleRC
-// implementation to be pulled in if the RegisterCoalescer classes are
-// pulled in. Otherwise we run the risk of RegisterCoalescer being
-// used, but the default implementation not being linked into the tool
-// that uses it.
-DEFINING_FILE_FOR(RegisterCoalescer)
+/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+/// update the subregister number if it is not zero. If DstReg is a
+/// physical register and the existing subregister number of the def / use
+/// being updated is not zero, make sure to set it to the correct physical
+/// subregister.
+void
+RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
+ bool DstIsPhys = CP.isPhys();
+ unsigned SrcReg = CP.getSrcReg();
+ unsigned DstReg = CP.getDstReg();
+ unsigned SubIdx = CP.getSubIdx();
+
+ // Update LiveDebugVariables.
+ ldv_->renameRegister(SrcReg, DstReg, SubIdx);
+
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
+ MachineInstr *UseMI = I.skipInstruction();) {
+ // A PhysReg copy that won't be coalesced can perhaps be rematerialized
+ // instead.
+ if (DstIsPhys) {
+ if (UseMI->isCopy() &&
+ !UseMI->getOperand(1).getSubReg() &&
+ !UseMI->getOperand(0).getSubReg() &&
+ UseMI->getOperand(1).getReg() == SrcReg &&
+ UseMI->getOperand(0).getReg() != SrcReg &&
+ UseMI->getOperand(0).getReg() != DstReg &&
+ !JoinedCopies.count(UseMI) &&
+ ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
+ UseMI->getOperand(0).getReg(), 0, UseMI))
+ continue;
+ }
+
+ SmallVector<unsigned,8> Ops;
+ bool Reads, Writes;
+ tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
+ bool Kills = false, Deads = false;
+
+ // Replace SrcReg with DstReg in all UseMI operands.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ MachineOperand &MO = UseMI->getOperand(Ops[i]);
+ Kills |= MO.isKill();
+ Deads |= MO.isDead();
+
+ if (DstIsPhys)
+ MO.substPhysReg(DstReg, *tri_);
+ else
+ MO.substVirtReg(DstReg, SubIdx, *tri_);
+ }
+
+ // This instruction is a copy that will be removed.
+ if (JoinedCopies.count(UseMI))
+ continue;
+
+ if (SubIdx) {
+ // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
+ // read-modify-write of DstReg.
+ if (Deads)
+ UseMI->addRegisterDead(DstReg, tri_);
+ else if (!Reads && Writes)
+ UseMI->addRegisterDefined(DstReg, tri_);
+
+ // Kill flags apply to the whole physical register.
+ if (DstIsPhys && Kills)
+ UseMI->addRegisterKilled(DstReg, tri_);
+ }
+
+ DEBUG({
+ dbgs() << "\t\tupdated: ";
+ if (!UseMI->isDebugValue())
+ dbgs() << li_->getInstructionIndex(UseMI) << "\t";
+ dbgs() << *UseMI;
+ });
+ }
+}
+
+/// removeIntervalIfEmpty - Check if the live interval of a physical register
+/// is empty, if so remove it and also remove the empty intervals of its
+/// sub-registers. Return true if live interval is removed.
+static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
+ const TargetRegisterInfo *tri_) {
+ if (li.empty()) {
+ if (TargetRegisterInfo::isPhysicalRegister(li.reg))
+ for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &sli = li_->getInterval(*SR);
+ if (sli.empty())
+ li_->removeInterval(*SR);
+ }
+ li_->removeInterval(li.reg);
+ return true;
+ }
+ return false;
+}
+
+/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
+/// the val# it defines. If the live interval becomes empty, remove it as well.
+bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
+ MachineInstr *DefMI) {
+ SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
+ LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
+ if (DefIdx != MLR->valno->def)
+ return false;
+ li.removeValNo(MLR->valno);
+ return removeIntervalIfEmpty(li, li_, tri_);
+}
+
+void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
+ const MachineInstr *CopyMI) {
+ SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
+ if (li_->hasInterval(DstReg)) {
+ LiveInterval &LI = li_->getInterval(DstReg);
+ if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
+ if (LR->valno->def == DefIdx)
+ LR->valno->setCopy(0);
+ }
+ if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
+ return;
+ for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
+ if (!li_->hasInterval(*AS))
+ continue;
+ LiveInterval &LI = li_->getInterval(*AS);
+ if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
+ if (LR->valno->def == DefIdx)
+ LR->valno->setCopy(0);
+ }
+}
+
+/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
+/// We need to be careful about coalescing a source physical register with a
+/// virtual register. Once the coalescing is done, it cannot be broken and these
+/// are not spillable! If the destination interval uses are far away, think
+/// twice about coalescing them!
+bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
+ bool Allocatable = li_->isAllocatable(CP.getDstReg());
+ LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
+
+ /// Always join simple intervals that are defined by a single copy from a
+ /// reserved register. This doesn't increase register pressure, so it is
+ /// always beneficial.
+ if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
+ return true;
+
+ if (!EnablePhysicalJoin) {
+ DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
+ return false;
+ }
+
+ // Only coalesce to allocatable physreg, we don't want to risk modifying
+ // reserved registers.
+ if (!Allocatable) {
+ DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
+ return false; // Not coalescable.
+ }
+
+ // Don't join with physregs that have a ridiculous number of live
+ // ranges. The data structure performance is really bad when that
+ // happens.
+ if (li_->hasInterval(CP.getDstReg()) &&
+ li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
+ ++numAborts;
+ DEBUG(dbgs()
+ << "\tPhysical register live interval too complicated, abort!\n");
+ return false;
+ }
+
+ // FIXME: Why are we skipping this test for partial copies?
+ // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
+ if (!CP.isPartial()) {
+ const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
+ unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
+ unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
+ if (Length > Threshold) {
+ ++numAborts;
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
+ return false;
+ }
+ }
+ return true;
+}
+
+/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
+/// two virtual registers from different register classes.
+bool
+RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
+ unsigned DstReg,
+ const TargetRegisterClass *SrcRC,
+ const TargetRegisterClass *DstRC,
+ const TargetRegisterClass *NewRC) {
+ unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
+ // This heuristics is good enough in practice, but it's obviously not *right*.
+ // 4 is a magic number that works well enough for x86, ARM, etc. It filter
+ // out all but the most restrictive register classes.
+ if (NewRCCount > 4 ||
+ // Early exit if the function is fairly small, coalesce aggressively if
+ // that's the case. For really special register classes with 3 or
+ // fewer registers, be a bit more careful.
+ (li_->getFuncInstructionCount() / NewRCCount) < 8)
+ return true;
+ LiveInterval &SrcInt = li_->getInterval(SrcReg);
+ LiveInterval &DstInt = li_->getInterval(DstReg);
+ unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
+ unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
+
+ // Coalesce aggressively if the intervals are small compared to the number of
+ // registers in the new class. The number 4 is fairly arbitrary, chosen to be
+ // less aggressive than the 8 used for the whole function size.
+ const unsigned ThresSize = 4 * NewRCCount;
+ if (SrcSize <= ThresSize && DstSize <= ThresSize)
+ return true;
+
+ // Estimate *register use density*. If it doubles or more, abort.
+ unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
+ mri_->use_nodbg_end());
+ unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
+ mri_->use_nodbg_end());
+ unsigned NewUses = SrcUses + DstUses;
+ unsigned NewSize = SrcSize + DstSize;
+ if (SrcRC != NewRC && SrcSize > ThresSize) {
+ unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
+ if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
+ return false;
+ }
+ if (DstRC != NewRC && DstSize > ThresSize) {
+ unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
+ if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
+ return false;
+ }
+ return true;
+}
+
+
+/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+/// which are the src/dst of the copy instruction CopyMI. This returns true
+/// if the copy was successfully coalesced away. If it is not currently
+/// possible to coalesce this interval, but it may be possible if other
+/// things get coalesced, then it returns true by reference in 'Again'.
+bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
+
+ Again = false;
+ if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
+ return false; // Already done.
+
+ DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
+
+ CoalescerPair CP(*tii_, *tri_);
+ if (!CP.setRegisters(CopyMI)) {
+ DEBUG(dbgs() << "\tNot coalescable.\n");
+ return false;
+ }
+
+ // If they are already joined we continue.
+ if (CP.getSrcReg() == CP.getDstReg()) {
+ markAsJoined(CopyMI);
+ DEBUG(dbgs() << "\tCopy already coalesced.\n");
+ return false; // Not coalescable.
+ }
+
+ DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_)
+ << " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
+ << "\n");
+
+ // Enforce policies.
+ if (CP.isPhys()) {
+ if (!shouldJoinPhys(CP)) {
+ // Before giving up coalescing, if definition of source is defined by
+ // trivial computation, try rematerializing it.
+ if (!CP.isFlipped() &&
+ ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
+ CP.getDstReg(), 0, CopyMI))
+ return true;
+ return false;
+ }
+ } else {
+ // Avoid constraining virtual register regclass too much.
+ if (CP.isCrossClass()) {
+ DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
+ if (DisableCrossClassJoin) {
+ DEBUG(dbgs() << "\tCross-class joins disabled.\n");
+ return false;
+ }
+ if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
+ mri_->getRegClass(CP.getSrcReg()),
+ mri_->getRegClass(CP.getDstReg()),
+ CP.getNewRC())) {
+ DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+
+ // When possible, let DstReg be the larger interval.
+ if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
+ li_->getInterval(CP.getDstReg()).ranges.size())
+ CP.flip();
+ }
+
+ // Okay, attempt to join these two intervals. On failure, this returns false.
+ // Otherwise, if one of the intervals being joined is a physreg, this method
+ // always canonicalizes DstInt to be it. The output "SrcInt" will not have
+ // been modified, so we can use this information below to update aliases.
+ if (!JoinIntervals(CP)) {
+ // Coalescing failed.
+
+ // If definition of source is defined by trivial computation, try
+ // rematerializing it.
+ if (!CP.isFlipped() &&
+ ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
+ CP.getDstReg(), 0, CopyMI))
+ return true;
+
+ // If we can eliminate the copy without merging the live ranges, do so now.
+ if (!CP.isPartial()) {
+ if (AdjustCopiesBackFrom(CP, CopyMI) ||
+ RemoveCopyByCommutingDef(CP, CopyMI)) {
+ markAsJoined(CopyMI);
+ DEBUG(dbgs() << "\tTrivial!\n");
+ return true;
+ }
+ }
+
+ // Otherwise, we are unable to join the intervals.
+ DEBUG(dbgs() << "\tInterference!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+
+ // Coalescing to a virtual register that is of a sub-register class of the
+ // other. Make sure the resulting register is set to the right register class.
+ if (CP.isCrossClass()) {
+ ++numCrossRCs;
+ mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
+ }
+
+ // Remember to delete the copy instruction.
+ markAsJoined(CopyMI);
+
+ UpdateRegDefsUses(CP);
+
+ // If we have extended the live range of a physical register, make sure we
+ // update live-in lists as well.
+ if (CP.isPhys()) {
+ SmallVector<MachineBasicBlock*, 16> BlockSeq;
+ // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
+ // ranges for this, and they are preserved.
+ LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
+ for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
+ I != E; ++I ) {
+ li_->findLiveInMBBs(I->start, I->end, BlockSeq);
+ for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
+ MachineBasicBlock &block = *BlockSeq[idx];
+ if (!block.isLiveIn(CP.getDstReg()))
+ block.addLiveIn(CP.getDstReg());
+ }
+ BlockSeq.clear();
+ }
+ }
+
+ // SrcReg is guarateed to be the register whose live interval that is
+ // being merged.
+ li_->removeInterval(CP.getSrcReg());
+
+ // Update regalloc hint.
+ tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
+
+ DEBUG({
+ LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
+ dbgs() << "\tJoined. Result = ";
+ DstInt.print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ ++numJoins;
+ return true;
+}
+
+/// ComputeUltimateVN - Assuming we are going to join two live intervals,
+/// compute what the resultant value numbers for each value in the input two
+/// ranges will be. This is complicated by copies between the two which can
+/// and will commonly cause multiple value numbers to be merged into one.
+///
+/// VN is the value number that we're trying to resolve. InstDefiningValue
+/// keeps track of the new InstDefiningValue assignment for the result
+/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
+/// whether a value in this or other is a copy from the opposite set.
+/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
+/// already been assigned.
+///
+/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
+/// contains the value number the copy is from.
+///
+static unsigned ComputeUltimateVN(VNInfo *VNI,
+ SmallVector<VNInfo*, 16> &NewVNInfo,
+ DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
+ DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
+ SmallVector<int, 16> &ThisValNoAssignments,
+ SmallVector<int, 16> &OtherValNoAssignments) {
+ unsigned VN = VNI->id;
+
+ // If the VN has already been computed, just return it.
+ if (ThisValNoAssignments[VN] >= 0)
+ return ThisValNoAssignments[VN];
+ assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
+
+ // If this val is not a copy from the other val, then it must be a new value
+ // number in the destination.
+ DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
+ if (I == ThisFromOther.end()) {
+ NewVNInfo.push_back(VNI);
+ return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
+ }
+ VNInfo *OtherValNo = I->second;
+
+ // Otherwise, this *is* a copy from the RHS. If the other side has already
+ // been computed, return it.
+ if (OtherValNoAssignments[OtherValNo->id] >= 0)
+ return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
+
+ // Mark this value number as currently being computed, then ask what the
+ // ultimate value # of the other value is.
+ ThisValNoAssignments[VN] = -2;
+ unsigned UltimateVN =
+ ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
+ OtherValNoAssignments, ThisValNoAssignments);
+ return ThisValNoAssignments[VN] = UltimateVN;
+}
+
+
+// Find out if we have something like
+// A = X
+// B = X
+// if so, we can pretend this is actually
+// A = X
+// B = A
+// which allows us to coalesce A and B.
+// VNI is the definition of B. LR is the life range of A that includes
+// the slot just before B. If we return true, we add "B = X" to DupCopies.
+static bool RegistersDefinedFromSameValue(LiveIntervals &li,
+ const TargetRegisterInfo &tri,
+ CoalescerPair &CP,
+ VNInfo *VNI,
+ LiveRange *LR,
+ SmallVector<MachineInstr*, 8> &DupCopies) {
+ return false; // To see if this fixes the i386 dragonegg buildbot miscompile.
+ // FIXME: This is very conservative. For example, we don't handle
+ // physical registers.
+
+ MachineInstr *MI = VNI->getCopy();
+
+ if (!MI->isFullCopy() || CP.isPartial() || CP.isPhys())
+ return false;
+
+ unsigned Dst = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+
+ // FIXME: If "B = X" kills X, we have to move the kill back to its
+ // previous use. For now we just avoid the optimization in that case.
+ LiveInterval &SrcInt = li.getInterval(Src);
+ if (SrcInt.killedAt(VNI->def))
+ return false;
+
+ if (!TargetRegisterInfo::isVirtualRegister(Src) ||
+ !TargetRegisterInfo::isVirtualRegister(Dst))
+ return false;
+
+ unsigned A = CP.getDstReg();
+ unsigned B = CP.getSrcReg();
+
+ if (B == Dst)
+ std::swap(A, B);
+ assert(Dst == A);
+
+ VNInfo *Other = LR->valno;
+ if (!Other->isDefByCopy())
+ return false;
+ const MachineInstr *OtherMI = Other->getCopy();
+
+ if (!OtherMI->isFullCopy())
+ return false;
+
+ unsigned OtherDst = OtherMI->getOperand(0).getReg();
+ unsigned OtherSrc = OtherMI->getOperand(1).getReg();
+
+ if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
+ !TargetRegisterInfo::isVirtualRegister(OtherDst))
+ return false;
+
+ assert(OtherDst == B);
+
+ if (Src != OtherSrc)
+ return false;
+
+ DupCopies.push_back(MI);
+
+ return true;
+}
+
+/// JoinIntervals - Attempt to join these two intervals. On failure, this
+/// returns false.
+bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
+ LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
+ DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
+
+ // If a live interval is a physical register, check for interference with any
+ // aliases. The interference check implemented here is a bit more conservative
+ // than the full interfeence check below. We allow overlapping live ranges
+ // only when one is a copy of the other.
+ if (CP.isPhys()) {
+ for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
+ if (!li_->hasInterval(*AS))
+ continue;
+ const LiveInterval &LHS = li_->getInterval(*AS);
+ LiveInterval::const_iterator LI = LHS.begin();
+ for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
+ RI != RE; ++RI) {
+ LI = std::lower_bound(LI, LHS.end(), RI->start);
+ // Does LHS have an overlapping live range starting before RI?
+ if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
+ (RI->start != RI->valno->def ||
+ !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
+ DEBUG({
+ dbgs() << "\t\tInterference from alias: ";
+ LHS.print(dbgs(), tri_);
+ dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
+ });
+ return false;
+ }
+
+ // Check that LHS ranges beginning in this range are copies.
+ for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
+ if (LI->start != LI->valno->def ||
+ !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
+ DEBUG({
+ dbgs() << "\t\tInterference from alias: ";
+ LHS.print(dbgs(), tri_);
+ dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
+ });
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ // Compute the final value assignment, assuming that the live ranges can be
+ // coalesced.
+ SmallVector<int, 16> LHSValNoAssignments;
+ SmallVector<int, 16> RHSValNoAssignments;
+ DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
+ DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
+ SmallVector<VNInfo*, 16> NewVNInfo;
+
+ SmallVector<MachineInstr*, 8> DupCopies;
+
+ LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
+ DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
+
+ // Loop over the value numbers of the LHS, seeing if any are defined from
+ // the RHS.
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
+ continue;
+
+ // Never join with a register that has EarlyClobber redefs.
+ if (VNI->hasRedefByEC())
+ return false;
+
+ // Figure out the value # from the RHS.
+ LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ // The copy could be to an aliased physreg.
+ if (!lr) continue;
+
+ // DstReg is known to be a register in the LHS interval. If the src is
+ // from the RHS interval, we can use its value #.
+ MachineInstr *MI = VNI->getCopy();
+ if (!CP.isCoalescable(MI) &&
+ !RegistersDefinedFromSameValue(*li_, *tri_, CP, VNI, lr, DupCopies))
+ continue;
+
+ LHSValsDefinedFromRHS[VNI] = lr->valno;
+ }
+
+ // Loop over the value numbers of the RHS, seeing if any are defined from
+ // the LHS.
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
+ continue;
+
+ // Never join with a register that has EarlyClobber redefs.
+ if (VNI->hasRedefByEC())
+ return false;
+
+ // Figure out the value # from the LHS.
+ LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ // The copy could be to an aliased physreg.
+ if (!lr) continue;
+
+ // DstReg is known to be a register in the RHS interval. If the src is
+ // from the LHS interval, we can use its value #.
+ MachineInstr *MI = VNI->getCopy();
+ if (!CP.isCoalescable(MI) &&
+ !RegistersDefinedFromSameValue(*li_, *tri_, CP, VNI, lr, DupCopies))
+ continue;
+
+ RHSValsDefinedFromLHS[VNI] = lr->valno;
+ }
+
+ LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
+ RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
+ NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
+
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ ComputeUltimateVN(VNI, NewVNInfo,
+ LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
+ LHSValNoAssignments, RHSValNoAssignments);
+ }
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ // If this value number isn't a copy from the LHS, it's a new number.
+ if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
+ NewVNInfo.push_back(VNI);
+ RHSValNoAssignments[VN] = NewVNInfo.size()-1;
+ continue;
+ }
+
+ ComputeUltimateVN(VNI, NewVNInfo,
+ RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
+ RHSValNoAssignments, LHSValNoAssignments);
+ }
+
+ // Armed with the mappings of LHS/RHS values to ultimate values, walk the
+ // interval lists to see if these intervals are coalescable.
+ LiveInterval::const_iterator I = LHS.begin();
+ LiveInterval::const_iterator IE = LHS.end();
+ LiveInterval::const_iterator J = RHS.begin();
+ LiveInterval::const_iterator JE = RHS.end();
+
+ // Skip ahead until the first place of potential sharing.
+ if (I != IE && J != JE) {
+ if (I->start < J->start) {
+ I = std::upper_bound(I, IE, J->start);
+ if (I != LHS.begin()) --I;
+ } else if (J->start < I->start) {
+ J = std::upper_bound(J, JE, I->start);
+ if (J != RHS.begin()) --J;
+ }
+ }
+
+ while (I != IE && J != JE) {
+ // Determine if these two live ranges overlap.
+ bool Overlaps;
+ if (I->start < J->start) {
+ Overlaps = I->end > J->start;
+ } else {
+ Overlaps = J->end > I->start;
+ }
+
+ // If so, check value # info to determine if they are really different.
+ if (Overlaps) {
+ // If the live range overlap will map to the same value number in the
+ // result liverange, we can still coalesce them. If not, we can't.
+ if (LHSValNoAssignments[I->valno->id] !=
+ RHSValNoAssignments[J->valno->id])
+ return false;
+ // If it's re-defined by an early clobber somewhere in the live range,
+ // then conservatively abort coalescing.
+ if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
+ return false;
+ }
+
+ if (I->end < J->end)
+ ++I;
+ else
+ ++J;
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
+ E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned LHSValID = LHSValNoAssignments[VNI->id];
+ if (VNI->hasPHIKill())
+ NewVNInfo[LHSValID]->setHasPHIKill(true);
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
+ E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned RHSValID = RHSValNoAssignments[VNI->id];
+ if (VNI->hasPHIKill())
+ NewVNInfo[RHSValID]->setHasPHIKill(true);
+ }
+
+ if (LHSValNoAssignments.empty())
+ LHSValNoAssignments.push_back(-1);
+ if (RHSValNoAssignments.empty())
+ RHSValNoAssignments.push_back(-1);
+
+ for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
+ E = DupCopies.end(); I != E; ++I) {
+ MachineInstr *MI = *I;
+
+ // We have pretended that the assignment to B in
+ // A = X
+ // B = X
+ // was actually a copy from A. Now that we decided to coalesce A and B,
+ // transform the code into
+ // A = X
+ // X = X
+ // and mark the X as coalesced to keep the illusion.
+ unsigned Src = MI->getOperand(1).getReg();
+ MI->getOperand(0).substVirtReg(Src, 0, *tri_);
+
+ markAsJoined(MI);
+ }
+
+ // If we get here, we know that we can coalesce the live ranges. Ask the
+ // intervals to coalesce themselves now.
+ LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
+ mri_);
+ return true;
+}
+
+namespace {
+ // DepthMBBCompare - Comparison predicate that sort first based on the loop
+ // depth of the basic block (the unsigned), and then on the MBB number.
+ struct DepthMBBCompare {
+ typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
+ bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
+ // Deeper loops first
+ if (LHS.first != RHS.first)
+ return LHS.first > RHS.first;
+
+ // Prefer blocks that are more connected in the CFG. This takes care of
+ // the most difficult copies first while intervals are short.
+ unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
+ unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
+ if (cl != cr)
+ return cl > cr;
+
+ // As a last resort, sort by block number.
+ return LHS.second->getNumber() < RHS.second->getNumber();
+ }
+ };
+}
+
+void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
+ std::vector<MachineInstr*> &TryAgain) {
+ DEBUG(dbgs() << MBB->getName() << ":\n");
+
+ SmallVector<MachineInstr*, 8> VirtCopies;
+ SmallVector<MachineInstr*, 8> PhysCopies;
+ SmallVector<MachineInstr*, 8> ImpDefCopies;
+ for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+ MII != E;) {
+ MachineInstr *Inst = MII++;
+
+ // If this isn't a copy nor a extract_subreg, we can't join intervals.
+ unsigned SrcReg, DstReg;
+ if (Inst->isCopy()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(1).getReg();
+ } else if (Inst->isSubregToReg()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(2).getReg();
+ } else
+ continue;
+
+ bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
+ ImpDefCopies.push_back(Inst);
+ else if (SrcIsPhys || DstIsPhys)
+ PhysCopies.push_back(Inst);
+ else
+ VirtCopies.push_back(Inst);
+ }
+
+ // Try coalescing implicit copies and insert_subreg <undef> first,
+ // followed by copies to / from physical registers, then finally copies
+ // from virtual registers to virtual registers.
+ for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
+ MachineInstr *TheCopy = ImpDefCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
+ MachineInstr *TheCopy = PhysCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
+ MachineInstr *TheCopy = VirtCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+}
+
+void RegisterCoalescer::joinIntervals() {
+ DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
+
+ std::vector<MachineInstr*> TryAgainList;
+ if (loopInfo->empty()) {
+ // If there are no loops in the function, join intervals in function order.
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
+ I != E; ++I)
+ CopyCoalesceInMBB(I, TryAgainList);
+ } else {
+ // Otherwise, join intervals in inner loops before other intervals.
+ // Unfortunately we can't just iterate over loop hierarchy here because
+ // there may be more MBB's than BB's. Collect MBB's for sorting.
+
+ // Join intervals in the function prolog first. We want to join physical
+ // registers with virtual registers before the intervals got too long.
+ std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
+ MachineBasicBlock *MBB = I;
+ MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
+ }
+
+ // Sort by loop depth.
+ std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
+
+ // Finally, join intervals in loop nest order.
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
+ CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
+ }
+
+ // Joining intervals can allow other intervals to be joined. Iteratively join
+ // until we make no progress.
+ bool ProgressMade = true;
+ while (ProgressMade) {
+ ProgressMade = false;
+
+ for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
+ MachineInstr *&TheCopy = TryAgainList[i];
+ if (!TheCopy)
+ continue;
+
+ bool Again = false;
+ bool Success = JoinCopy(TheCopy, Again);
+ if (Success || !Again) {
+ TheCopy= 0; // Mark this one as done.
+ ProgressMade = true;
+ }
+ }
+ }
+}
+
+void RegisterCoalescer::releaseMemory() {
+ JoinedCopies.clear();
+ ReMatCopies.clear();
+ ReMatDefs.clear();
+}
+
+bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &fn.getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ li_ = &getAnalysis<LiveIntervals>();
+ ldv_ = &getAnalysis<LiveDebugVariables>();
+ AA = &getAnalysis<AliasAnalysis>();
+ loopInfo = &getAnalysis<MachineLoopInfo>();
+
+ DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
+
+ if (VerifyCoalescing)
+ mf_->verify(this, "Before register coalescing");
+
+ RegClassInfo.runOnMachineFunction(fn);
+
+ // Join (coalesce) intervals if requested.
+ if (EnableJoining) {
+ joinIntervals();
+ DEBUG({
+ dbgs() << "********** INTERVALS POST JOINING **********\n";
+ for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
+ I != E; ++I){
+ I->second->print(dbgs(), tri_);
+ dbgs() << "\n";
+ }
+ });
+ }
+
+ // Perform a final pass over the instructions and compute spill weights
+ // and remove identity moves.
+ SmallVector<unsigned, 4> DeadDefs;
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ MachineBasicBlock* mbb = mbbi;
+ for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
+ mii != mie; ) {
+ MachineInstr *MI = mii;
+ if (JoinedCopies.count(MI)) {
+ // Delete all coalesced copies.
+ bool DoDelete = true;
+ assert(MI->isCopyLike() && "Unrecognized copy instruction");
+ unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ MI->getNumOperands() > 2)
+ // Do not delete extract_subreg, insert_subreg of physical
+ // registers unless the definition is dead. e.g.
+ // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
+ // or else the scavenger may complain. LowerSubregs will
+ // delete them later.
+ DoDelete = false;
+
+ if (MI->allDefsAreDead()) {
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ li_->hasInterval(SrcReg))
+ li_->shrinkToUses(&li_->getInterval(SrcReg));
+ DoDelete = true;
+ }
+ if (!DoDelete) {
+ // We need the instruction to adjust liveness, so make it a KILL.
+ if (MI->isSubregToReg()) {
+ MI->RemoveOperand(3);
+ MI->RemoveOperand(1);
+ }
+ MI->setDesc(tii_->get(TargetOpcode::KILL));
+ mii = llvm::next(mii);
+ } else {
+ li_->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ }
+ continue;
+ }
+
+ // Now check if this is a remat'ed def instruction which is now dead.
+ if (ReMatDefs.count(MI)) {
+ bool isDead = true;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ DeadDefs.push_back(Reg);
+ if (MO.isDead())
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !mri_->use_nodbg_empty(Reg)) {
+ isDead = false;
+ break;
+ }
+ }
+ if (isDead) {
+ while (!DeadDefs.empty()) {
+ unsigned DeadDef = DeadDefs.back();
+ DeadDefs.pop_back();
+ RemoveDeadDef(li_->getInterval(DeadDef), MI);
+ }
+ li_->RemoveMachineInstrFromMaps(mii);
+ mii = mbbi->erase(mii);
+ continue;
+ } else
+ DeadDefs.clear();
+ }
+
+ ++mii;
+
+ // Check for now unnecessary kill flags.
+ if (li_->isNotInMIMap(MI)) continue;
+ SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isKill()) continue;
+ unsigned reg = MO.getReg();
+ if (!reg || !li_->hasInterval(reg)) continue;
+ if (!li_->getInterval(reg).killedAt(DefIdx)) {
+ MO.setIsKill(false);
+ continue;
+ }
+ // When leaving a kill flag on a physreg, check if any subregs should
+ // remain alive.
+ if (!TargetRegisterInfo::isPhysicalRegister(reg))
+ continue;
+ for (const unsigned *SR = tri_->getSubRegisters(reg);
+ unsigned S = *SR; ++SR)
+ if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
+ MI->addRegisterDefined(S, tri_);
+ }
+ }
+ }
+
+ DEBUG(dump());
+ DEBUG(ldv_->dump());
+ if (VerifyCoalescing)
+ mf_->verify(this, "After register coalescing");
+ return true;
+}
+
+/// print - Implement the dump method.
+void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
+ li_->print(O, m);
+}
+
+RegisterCoalescer *llvm::createRegisterCoalescer() {
+ return new RegisterCoalescer();
+}
diff --git a/lib/CodeGen/SimpleRegisterCoalescing.h b/lib/CodeGen/RegisterCoalescer.h
index 92f6c64..4131d91 100644
--- a/lib/CodeGen/SimpleRegisterCoalescing.h
+++ b/lib/CodeGen/RegisterCoalescer.h
@@ -1,4 +1,4 @@
-//===-- SimpleRegisterCoalescing.h - Register Coalescing --------*- C++ -*-===//
+//===-- RegisterCoalescer.h - Register Coalescing Interface ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,37 +7,38 @@
//
//===----------------------------------------------------------------------===//
//
-// This file implements a simple register copy coalescing phase.
+// This file contains the abstract interface for register coalescers,
+// allowing them to interact with and query register allocators.
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_SIMPLE_REGISTER_COALESCING_H
-#define LLVM_CODEGEN_SIMPLE_REGISTER_COALESCING_H
-
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
#include "RegisterClassInfo.h"
+#include "llvm/Support/IncludeFile.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/ADT/SmallPtrSet.h"
+
+#ifndef LLVM_CODEGEN_REGISTER_COALESCER_H
+#define LLVM_CODEGEN_REGISTER_COALESCER_H
namespace llvm {
- class SimpleRegisterCoalescing;
- class LiveDebugVariables;
+
+ class MachineFunction;
+ class RegallocQuery;
+ class AnalysisUsage;
+ class MachineInstr;
class TargetRegisterInfo;
+ class TargetRegisterClass;
class TargetInstrInfo;
+ class LiveDebugVariables;
class VirtRegMap;
class MachineLoopInfo;
- /// CopyRec - Representation for copy instructions in coalescer queue.
- ///
- struct CopyRec {
- MachineInstr *MI;
- unsigned LoopDepth;
- CopyRec(MachineInstr *mi, unsigned depth)
- : MI(mi), LoopDepth(depth) {}
- };
+ class CoalescerPair;
- class SimpleRegisterCoalescing : public MachineFunctionPass,
- public RegisterCoalescer {
+ /// An abstract interface for register coalescers. Coalescers must
+ /// implement this interface to be part of the coalescer analysis
+ /// group.
+ class RegisterCoalescer : public MachineFunctionPass {
MachineFunction* mf_;
MachineRegisterInfo* mri_;
const TargetMachine* tm_;
@@ -61,41 +62,20 @@ namespace llvm {
/// been remat'ed.
SmallPtrSet<MachineInstr*, 8> ReMatDefs;
- public:
- static char ID; // Pass identifcation, replacement for typeid
- SimpleRegisterCoalescing() : MachineFunctionPass(ID) {
- initializeSimpleRegisterCoalescingPass(*PassRegistry::getPassRegistry());
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual void releaseMemory();
-
- /// runOnMachineFunction - pass entry point
- virtual bool runOnMachineFunction(MachineFunction&);
-
- bool coalesceFunction(MachineFunction &mf, RegallocQuery &) {
- // This runs as an independent pass, so don't do anything.
- return false;
- }
-
- /// print - Implement the dump method.
- virtual void print(raw_ostream &O, const Module* = 0) const;
-
- private:
/// joinIntervals - join compatible live intervals
void joinIntervals();
/// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
/// copies that cannot yet be coalesced into the "TryAgain" list.
void CopyCoalesceInMBB(MachineBasicBlock *MBB,
- std::vector<CopyRec> &TryAgain);
+ std::vector<MachineInstr*> &TryAgain);
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI. This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
/// things get coalesced, then it returns true by reference in 'Again'.
- bool JoinCopy(CopyRec &TheCopy, bool &Again);
+ bool JoinCopy(MachineInstr *TheCopy, bool &Again);
/// JoinIntervals - Attempt to join these two intervals. On failure, this
/// returns false. The output "SrcInt" will not have been modified, so we can
@@ -155,8 +135,109 @@ namespace llvm {
/// markAsJoined - Remember that CopyMI has already been joined.
void markAsJoined(MachineInstr *CopyMI);
+
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+ RegisterCoalescer() : MachineFunctionPass(ID) {
+ initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// Register allocators must call this from their own
+ /// getAnalysisUsage to cover the case where the coalescer is not
+ /// a Pass in the proper sense and isn't managed by PassManager.
+ /// PassManager needs to know which analyses to make available and
+ /// which to invalidate when running the register allocator or any
+ /// pass that might call coalescing. The long-term solution is to
+ /// allow hierarchies of PassManagers.
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ virtual void releaseMemory();
+
+ /// runOnMachineFunction - pass entry point
+ virtual bool runOnMachineFunction(MachineFunction&);
+
+ /// print - Implement the dump method.
+ virtual void print(raw_ostream &O, const Module* = 0) const;
};
+ /// CoalescerPair - A helper class for register coalescers. When deciding if
+ /// two registers can be coalesced, CoalescerPair can determine if a copy
+ /// instruction would become an identity copy after coalescing.
+ class CoalescerPair {
+ const TargetInstrInfo &tii_;
+ const TargetRegisterInfo &tri_;
+
+ /// dstReg_ - The register that will be left after coalescing. It can be a
+ /// virtual or physical register.
+ unsigned dstReg_;
+
+ /// srcReg_ - the virtual register that will be coalesced into dstReg.
+ unsigned srcReg_;
+
+ /// subReg_ - The subregister index of srcReg in dstReg_. It is possible the
+ /// coalesce srcReg_ into a subreg of the larger dstReg_ when dstReg_ is a
+ /// virtual register.
+ unsigned subIdx_;
+
+ /// partial_ - True when the original copy was a partial subregister copy.
+ bool partial_;
+
+ /// crossClass_ - True when both regs are virtual, and newRC is constrained.
+ bool crossClass_;
+
+ /// flipped_ - True when DstReg and SrcReg are reversed from the oriignal copy
+ /// instruction.
+ bool flipped_;
+
+ /// newRC_ - The register class of the coalesced register, or NULL if dstReg_
+ /// is a physreg.
+ const TargetRegisterClass *newRC_;
+
+ public:
+ CoalescerPair(const TargetInstrInfo &tii, const TargetRegisterInfo &tri)
+ : tii_(tii), tri_(tri), dstReg_(0), srcReg_(0), subIdx_(0),
+ partial_(false), crossClass_(false), flipped_(false), newRC_(0) {}
+
+ /// setRegisters - set registers to match the copy instruction MI. Return
+ /// false if MI is not a coalescable copy instruction.
+ bool setRegisters(const MachineInstr*);
+
+ /// flip - Swap srcReg_ and dstReg_. Return false if swapping is impossible
+ /// because dstReg_ is a physical register, or subIdx_ is set.
+ bool flip();
+
+ /// isCoalescable - Return true if MI is a copy instruction that will become
+ /// an identity copy after coalescing.
+ bool isCoalescable(const MachineInstr*) const;
+
+ /// isPhys - Return true if DstReg is a physical register.
+ bool isPhys() const { return !newRC_; }
+
+ /// isPartial - Return true if the original copy instruction did not copy the
+ /// full register, but was a subreg operation.
+ bool isPartial() const { return partial_; }
+
+ /// isCrossClass - Return true if DstReg is virtual and NewRC is a smaller register class than DstReg's.
+ bool isCrossClass() const { return crossClass_; }
+
+ /// isFlipped - Return true when getSrcReg is the register being defined by
+ /// the original copy instruction.
+ bool isFlipped() const { return flipped_; }
+
+ /// getDstReg - Return the register (virtual or physical) that will remain
+ /// after coalescing.
+ unsigned getDstReg() const { return dstReg_; }
+
+ /// getSrcReg - Return the virtual register that will be coalesced away.
+ unsigned getSrcReg() const { return srcReg_; }
+
+ /// getSubIdx - Return the subregister index in DstReg that SrcReg will be
+ /// coalesced into, or 0.
+ unsigned getSubIdx() const { return subIdx_; }
+
+ /// getNewRC - Return the register class of the coalesced register.
+ const TargetRegisterClass *getNewRC() const { return newRC_; }
+ };
} // End llvm namespace
#endif
diff --git a/lib/CodeGen/ScheduleDAG.cpp b/lib/CodeGen/ScheduleDAG.cpp
index f328493..21375b2 100644
--- a/lib/CodeGen/ScheduleDAG.cpp
+++ b/lib/CodeGen/ScheduleDAG.cpp
@@ -45,7 +45,7 @@ ScheduleDAG::ScheduleDAG(MachineFunction &mf)
ScheduleDAG::~ScheduleDAG() {}
/// getInstrDesc helper to handle SDNodes.
-const TargetInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
+const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
if (!Node || !Node->isMachineOpcode()) return NULL;
return &TII->get(Node->getMachineOpcode());
}
diff --git a/lib/CodeGen/ScheduleDAGInstrs.cpp b/lib/CodeGen/ScheduleDAGInstrs.cpp
index 2363df4..9cceb4e 100644
--- a/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -21,6 +21,7 @@
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -236,13 +237,13 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
continue;
}
- const TargetInstrDesc &TID = MI->getDesc();
- assert(!TID.isTerminator() && !MI->isLabel() &&
+ const MCInstrDesc &MCID = MI->getDesc();
+ assert(!MCID.isTerminator() && !MI->isLabel() &&
"Cannot schedule terminators or labels!");
// Create the SUnit for this MI.
SUnit *SU = NewSUnit(MI);
- SU->isCall = TID.isCall();
- SU->isCommutable = TID.isCommutable();
+ SU->isCall = MCID.isCall();
+ SU->isCommutable = MCID.isCommutable();
// Assign the Latency field of SU using target-provided information.
if (UnitLatencies)
@@ -309,13 +310,13 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
if (SpecialAddressLatency != 0 && !UnitLatencies &&
UseSU != &ExitSU) {
MachineInstr *UseMI = UseSU->getInstr();
- const TargetInstrDesc &UseTID = UseMI->getDesc();
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
if (RegUseIndex >= 0 &&
- (UseTID.mayLoad() || UseTID.mayStore()) &&
- (unsigned)RegUseIndex < UseTID.getNumOperands() &&
- UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
+ (UseMCID.mayLoad() || UseMCID.mayStore()) &&
+ (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
+ UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
LDataLatency += SpecialAddressLatency;
}
// Adjust the dependence latency using operand def/use
@@ -352,17 +353,17 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
unsigned Count = I->second.second;
const MachineInstr *UseMI = UseMO->getParent();
unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
- const TargetInstrDesc &UseTID = UseMI->getDesc();
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
// TODO: If we knew the total depth of the region here, we could
// handle the case where the whole loop is inside the region but
// is large enough that the isScheduleHigh trick isn't needed.
- if (UseMOIdx < UseTID.getNumOperands()) {
+ if (UseMOIdx < UseMCID.getNumOperands()) {
// Currently, we only support scheduling regions consisting of
// single basic blocks. Check to see if the instruction is in
// the same region by checking to see if it has the same parent.
if (UseMI->getParent() != MI->getParent()) {
unsigned Latency = SU->Latency;
- if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
+ if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
Latency += SpecialAddressLatency;
// This is a wild guess as to the portion of the latency which
// will be overlapped by work done outside the current
@@ -374,7 +375,7 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
/*isMustAlias=*/false,
/*isArtificial=*/true));
} else if (SpecialAddressLatency > 0 &&
- UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
+ UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
// The entire loop body is within the current scheduling region
// and the latency of this operation is assumed to be greater
// than the latency of the loop.
@@ -417,9 +418,9 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
// produce more precise dependence information.
#define STORE_LOAD_LATENCY 1
unsigned TrueMemOrderLatency = 0;
- if (TID.isCall() || MI->hasUnmodeledSideEffects() ||
+ if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
(MI->hasVolatileMemoryRef() &&
- (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
+ (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
// Be conservative with these and add dependencies on all memory
// references, even those that are known to not alias.
for (std::map<const Value *, SUnit *>::iterator I =
@@ -458,7 +459,7 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
PendingLoads.clear();
AliasMemDefs.clear();
AliasMemUses.clear();
- } else if (TID.mayStore()) {
+ } else if (MCID.mayStore()) {
bool MayAlias = true;
TrueMemOrderLatency = STORE_LOAD_LATENCY;
if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
@@ -514,7 +515,7 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
- } else if (TID.mayLoad()) {
+ } else if (MCID.mayLoad()) {
bool MayAlias = true;
TrueMemOrderLatency = 0;
if (MI->isInvariantLoad(AA)) {
diff --git a/lib/CodeGen/ScoreboardHazardRecognizer.cpp b/lib/CodeGen/ScoreboardHazardRecognizer.cpp
index e6d7ded..0e005d3 100644
--- a/lib/CodeGen/ScoreboardHazardRecognizer.cpp
+++ b/lib/CodeGen/ScoreboardHazardRecognizer.cpp
@@ -16,11 +16,11 @@
#define DEBUG_TYPE ::llvm::ScoreboardHazardRecognizer::DebugType
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetInstrItineraries.h"
using namespace llvm;
@@ -115,12 +115,12 @@ ScoreboardHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
// Use the itinerary for the underlying instruction to check for
// free FU's in the scoreboard at the appropriate future cycles.
- const TargetInstrDesc *TID = DAG->getInstrDesc(SU);
- if (TID == NULL) {
+ const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
+ if (MCID == NULL) {
// Don't check hazards for non-machineinstr Nodes.
return NoHazard;
}
- unsigned idx = TID->getSchedClass();
+ unsigned idx = MCID->getSchedClass();
for (const InstrStage *IS = ItinData->beginStage(idx),
*E = ItinData->endStage(idx); IS != E; ++IS) {
// We must find one of the stage's units free for every cycle the
@@ -173,16 +173,16 @@ void ScoreboardHazardRecognizer::EmitInstruction(SUnit *SU) {
// Use the itinerary for the underlying instruction to reserve FU's
// in the scoreboard at the appropriate future cycles.
- const TargetInstrDesc *TID = DAG->getInstrDesc(SU);
- assert(TID && "The scheduler must filter non-machineinstrs");
- if (DAG->TII->isZeroCost(TID->Opcode))
+ const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
+ assert(MCID && "The scheduler must filter non-machineinstrs");
+ if (DAG->TII->isZeroCost(MCID->Opcode))
return;
++IssueCount;
unsigned cycle = 0;
- unsigned idx = TID->getSchedClass();
+ unsigned idx = MCID->getSchedClass();
for (const InstrStage *IS = ItinData->beginStage(idx),
*E = ItinData->endStage(idx); IS != E; ++IS) {
// We must reserve one of the stage's units for every cycle the
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index e3d3906..90e0cc7 100644
--- a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -1310,16 +1310,6 @@ SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
return SDValue();
}
-/// isCarryMaterialization - Returns true if V is an ADDE node that is known to
-/// return 0 or 1 depending on the carry flag.
-static bool isCarryMaterialization(SDValue V) {
- if (V.getOpcode() != ISD::ADDE)
- return false;
-
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(0));
- return C && C->isNullValue() && V.getOperand(0) == V.getOperand(1);
-}
-
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -1483,18 +1473,6 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
- // add (adde 0, 0, glue), X -> adde X, 0, glue
- if (N0->hasOneUse() && isCarryMaterialization(N0))
- return DAG.getNode(ISD::ADDE, N->getDebugLoc(),
- DAG.getVTList(VT, MVT::Glue), N1, N0.getOperand(0),
- N0.getOperand(2));
-
- // add X, (adde 0, 0, glue) -> adde X, 0, glue
- if (N1->hasOneUse() && isCarryMaterialization(N1))
- return DAG.getNode(ISD::ADDE, N->getDebugLoc(),
- DAG.getVTList(VT, MVT::Glue), N0, N1.getOperand(0),
- N1.getOperand(2));
-
return SDValue();
}
@@ -1538,16 +1516,6 @@ SDValue DAGCombiner::visitADDC(SDNode *N) {
N->getDebugLoc(), MVT::Glue));
}
- // addc (adde 0, 0, glue), X -> adde X, 0, glue
- if (N0->hasOneUse() && isCarryMaterialization(N0))
- return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(), N1,
- DAG.getConstant(0, VT), N0.getOperand(2));
-
- // addc X, (adde 0, 0, glue) -> adde X, 0, glue
- if (N1->hasOneUse() && isCarryMaterialization(N1))
- return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(), N0,
- DAG.getConstant(0, VT), N1.getOperand(2));
-
return SDValue();
}
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
index 797f174..ea7fead 100644
--- a/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -547,7 +547,7 @@ bool FastISel::SelectCall(const User *I) {
case Intrinsic::dbg_value: {
// This form of DBG_VALUE is target-independent.
const DbgValueInst *DI = cast<DbgValueInst>(Call);
- const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+ const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
const Value *V = DI->getValue();
if (!V) {
// Currently the optimizer can produce this; insert an undef to
@@ -556,9 +556,14 @@ bool FastISel::SelectCall(const User *I) {
.addReg(0U).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
- .addImm(CI->getZExtValue()).addImm(DI->getOffset())
- .addMetadata(DI->getVariable());
+ if (CI->getBitWidth() > 64)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
+ .addCImm(CI).addImm(DI->getOffset())
+ .addMetadata(DI->getVariable());
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
+ .addImm(CI->getZExtValue()).addImm(DI->getOffset())
+ .addMetadata(DI->getVariable());
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addFPImm(CF).addImm(DI->getOffset())
@@ -1085,7 +1090,7 @@ unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass* RC) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
return ResultReg;
@@ -1095,7 +1100,7 @@ unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1115,7 +1120,7 @@ unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1137,7 +1142,7 @@ unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1160,7 +1165,7 @@ unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1181,7 +1186,7 @@ unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm1, uint64_t Imm2) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1204,7 +1209,7 @@ unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1226,7 +1231,7 @@ unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
unsigned Op1, bool Op1IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
@@ -1248,7 +1253,7 @@ unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
@@ -1264,7 +1269,7 @@ unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm1, uint64_t Imm2) {
unsigned ResultReg = createResultReg(RC);
- const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+ const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
diff --git a/lib/CodeGen/SelectionDAG/InstrEmitter.cpp b/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
index 2a65d65..f0f4743 100644
--- a/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
+++ b/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
@@ -106,10 +106,10 @@ EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
continue;
Match = false;
if (User->isMachineOpcode()) {
- const TargetInstrDesc &II = TII->get(User->getMachineOpcode());
+ const MCInstrDesc &II = TII->get(User->getMachineOpcode());
const TargetRegisterClass *RC = 0;
if (i+II.getNumDefs() < II.getNumOperands())
- RC = II.OpInfo[i+II.getNumDefs()].getRegClass(TRI);
+ RC = TII->getRegClass(II, i+II.getNumDefs(), TRI);
if (!UseRC)
UseRC = RC;
else if (RC) {
@@ -178,7 +178,7 @@ unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
}
void InstrEmitter::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
- const TargetInstrDesc &II,
+ const MCInstrDesc &II,
bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap) {
assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
@@ -189,7 +189,7 @@ void InstrEmitter::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
// is a vreg in the same register class, use the CopyToReg'd destination
// register instead of creating a new vreg.
unsigned VRBase = 0;
- const TargetRegisterClass *RC = II.OpInfo[i].getRegClass(TRI);
+ const TargetRegisterClass *RC = TII->getRegClass(II, i, TRI);
if (II.OpInfo[i].isOptionalDef()) {
// Optional def must be a physical register.
unsigned NumResults = CountResults(Node);
@@ -242,7 +242,7 @@ unsigned InstrEmitter::getVR(SDValue Op,
Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
// Add an IMPLICIT_DEF instruction before every use.
unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
- // IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
+ // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
// does not include operand register class info.
if (!VReg) {
const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
@@ -265,7 +265,7 @@ unsigned InstrEmitter::getVR(SDValue Op,
void
InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
- const TargetInstrDesc *II,
+ const MCInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned) {
assert(Op.getValueType() != MVT::Other &&
@@ -275,9 +275,9 @@ InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
unsigned VReg = getVR(Op, VRBaseMap);
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
- const TargetInstrDesc &TID = MI->getDesc();
- bool isOptDef = IIOpNum < TID.getNumOperands() &&
- TID.OpInfo[IIOpNum].isOptionalDef();
+ const MCInstrDesc &MCID = MI->getDesc();
+ bool isOptDef = IIOpNum < MCID.getNumOperands() &&
+ MCID.OpInfo[IIOpNum].isOptionalDef();
// If the instruction requires a register in a different class, create
// a new virtual register and copy the value into it.
@@ -285,8 +285,8 @@ InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
const TargetRegisterClass *SrcRC = MRI->getRegClass(VReg);
const TargetRegisterClass *DstRC = 0;
if (IIOpNum < II->getNumOperands())
- DstRC = II->OpInfo[IIOpNum].getRegClass(TRI);
- assert((DstRC || (TID.isVariadic() && IIOpNum >= TID.getNumOperands())) &&
+ DstRC = TII->getRegClass(*II, IIOpNum, TRI);
+ assert((DstRC || (MCID.isVariadic() && IIOpNum >= MCID.getNumOperands())) &&
"Don't have operand info for this instruction!");
if (DstRC && !SrcRC->hasSuperClassEq(DstRC)) {
unsigned NewVReg = MRI->createVirtualRegister(DstRC);
@@ -312,7 +312,7 @@ InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
while (Idx > 0 &&
MI->getOperand(Idx-1).isReg() && MI->getOperand(Idx-1).isImplicit())
--Idx;
- bool isTied = MI->getDesc().getOperandConstraint(Idx, TOI::TIED_TO) != -1;
+ bool isTied = MI->getDesc().getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
if (isTied)
isKill = false;
}
@@ -330,7 +330,7 @@ InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
/// assertions only.
void InstrEmitter::AddOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
- const TargetInstrDesc *II,
+ const MCInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned) {
if (Op.isMachineOpcode()) {
@@ -556,7 +556,7 @@ void InstrEmitter::EmitRegSequence(SDNode *Node,
unsigned NumOps = Node->getNumOperands();
assert((NumOps & 1) == 1 &&
"REG_SEQUENCE must have an odd number of operands!");
- const TargetInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
+ const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
for (unsigned i = 1; i != NumOps; ++i) {
SDValue Op = Node->getOperand(i);
if ((i & 1) == 0) {
@@ -597,7 +597,7 @@ InstrEmitter::EmitDbgValue(SDDbgValue *SD,
return TII->emitFrameIndexDebugValue(*MF, FrameIx, Offset, MDPtr, DL);
}
// Otherwise, we're going to create an instruction here.
- const TargetInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
+ const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
if (SD->getKind() == SDDbgValue::SDNODE) {
SDNode *Node = SD->getSDNode();
@@ -616,12 +616,8 @@ InstrEmitter::EmitDbgValue(SDDbgValue *SD,
} else if (SD->getKind() == SDDbgValue::CONST) {
const Value *V = SD->getConst();
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- // FIXME: SDDbgValue constants aren't updated with legalization, so it's
- // possible to have i128 constants in them at this point. Dwarf writer
- // does not handle i128 constants at the moment so, as a crude workaround,
- // just drop the debug info if this happens.
- if (!CI->getValue().isSignedIntN(64))
- MIB.addReg(0U);
+ if (CI->getBitWidth() > 64)
+ MIB.addCImm(CI);
else
MIB.addImm(CI->getSExtValue());
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
@@ -672,7 +668,7 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
// We want a unique VR for each IMPLICIT_DEF use.
return;
- const TargetInstrDesc &II = TII->get(Opc);
+ const MCInstrDesc &II = TII->get(Opc);
unsigned NumResults = CountResults(Node);
unsigned NodeOperands = CountOperands(Node);
bool HasPhysRegOuts = NumResults > II.getNumDefs() && II.getImplicitDefs()!=0;
@@ -701,9 +697,9 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
else {
// Collect declared implicit uses.
- const TargetInstrDesc &TID = TII->get(F->getMachineOpcode());
- UsedRegs.append(TID.getImplicitUses(),
- TID.getImplicitUses() + TID.getNumImplicitUses());
+ const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
+ UsedRegs.append(MCID.getImplicitUses(),
+ MCID.getImplicitUses() + MCID.getNumImplicitUses());
// In addition to declared implicit uses, we must also check for
// direct RegisterSDNode operands.
for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
@@ -855,6 +851,7 @@ EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
}
break;
case InlineAsm::Kind_RegDefEarlyClobber:
+ case InlineAsm::Kind_Clobber:
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
MI->addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/ true,
diff --git a/lib/CodeGen/SelectionDAG/InstrEmitter.h b/lib/CodeGen/SelectionDAG/InstrEmitter.h
index 02c044c..19fc044 100644
--- a/lib/CodeGen/SelectionDAG/InstrEmitter.h
+++ b/lib/CodeGen/SelectionDAG/InstrEmitter.h
@@ -22,7 +22,7 @@
namespace llvm {
-class TargetInstrDesc;
+class MCInstrDesc;
class SDDbgValue;
class InstrEmitter {
@@ -49,7 +49,7 @@ class InstrEmitter {
unsigned ResNo) const;
void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
- const TargetInstrDesc &II,
+ const MCInstrDesc &II,
bool IsClone, bool IsCloned,
DenseMap<SDValue, unsigned> &VRBaseMap);
@@ -63,7 +63,7 @@ class InstrEmitter {
/// not in the required register class.
void AddRegisterOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
- const TargetInstrDesc *II,
+ const MCInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned);
@@ -73,7 +73,7 @@ class InstrEmitter {
/// assertions only.
void AddOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
- const TargetInstrDesc *II,
+ const MCInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap,
bool IsDebug, bool IsClone, bool IsCloned);
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
index 7b560d1..b275c63 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
@@ -249,14 +249,14 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
- const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
- for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
- if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
+ if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
- if (TID.isCommutable())
+ if (MCID.isCommutable())
NewSU->isCommutable = true;
// LoadNode may already exist. This can happen when there is another
@@ -422,10 +422,10 @@ void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
/// FIXME: Move to SelectionDAG?
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
- const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
- assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
- unsigned NumRes = TID.getNumDefs();
- for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
+ unsigned NumRes = MCID.getNumDefs();
+ for (const unsigned *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
@@ -490,7 +490,8 @@ bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
++i; // Skip the ID value.
if (InlineAsm::isRegDefKind(Flags) ||
- InlineAsm::isRegDefEarlyClobberKind(Flags)) {
+ InlineAsm::isRegDefEarlyClobberKind(Flags) ||
+ InlineAsm::isClobberKind(Flags)) {
// Check for def of register or earlyclobber register.
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
@@ -504,10 +505,10 @@ bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
}
if (!Node->isMachineOpcode())
continue;
- const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
- if (!TID.ImplicitDefs)
+ const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
+ if (!MCID.ImplicitDefs)
continue;
- for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
+ for (const unsigned *Reg = MCID.ImplicitDefs; *Reg; ++Reg) {
CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
}
}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
index a827187..12b1838 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -302,8 +302,8 @@ static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
}
unsigned Idx = RegDefPos.GetIdx();
- const TargetInstrDesc Desc = TII->get(Opcode);
- const TargetRegisterClass *RC = Desc.getRegClass(Idx, TRI);
+ const MCInstrDesc Desc = TII->get(Opcode);
+ const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI);
RegClass = RC->getID();
// FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
// better way to determine it.
@@ -837,14 +837,14 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
- const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
- for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
- if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
+ if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
- if (TID.isCommutable())
+ if (MCID.isCommutable())
NewSU->isCommutable = true;
InitNumRegDefsLeft(NewSU);
@@ -1024,10 +1024,10 @@ void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
/// FIXME: Move to SelectionDAG?
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
- const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
- assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
- unsigned NumRes = TID.getNumDefs();
- for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
+ unsigned NumRes = MCID.getNumDefs();
+ for (const unsigned *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
@@ -1092,7 +1092,8 @@ DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
++i; // Skip the ID value.
if (InlineAsm::isRegDefKind(Flags) ||
- InlineAsm::isRegDefEarlyClobberKind(Flags)) {
+ InlineAsm::isRegDefEarlyClobberKind(Flags) ||
+ InlineAsm::isClobberKind(Flags)) {
// Check for def of register or earlyclobber register.
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
@@ -1107,10 +1108,10 @@ DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
if (!Node->isMachineOpcode())
continue;
- const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
- if (!TID.ImplicitDefs)
+ const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
+ if (!MCID.ImplicitDefs)
continue;
- for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
+ for (const unsigned *Reg = MCID.ImplicitDefs; *Reg; ++Reg)
CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
}
@@ -2028,13 +2029,9 @@ void RegReductionPQBase::UnscheduledNode(SUnit *SU) {
unsigned POpc = PN->getMachineOpcode();
if (POpc == TargetOpcode::IMPLICIT_DEF)
continue;
- if (POpc == TargetOpcode::EXTRACT_SUBREG) {
- EVT VT = PN->getOperand(0).getValueType();
- unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
- RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
- continue;
- } else if (POpc == TargetOpcode::INSERT_SUBREG ||
- POpc == TargetOpcode::SUBREG_TO_REG) {
+ if (POpc == TargetOpcode::EXTRACT_SUBREG ||
+ POpc == TargetOpcode::INSERT_SUBREG ||
+ POpc == TargetOpcode::SUBREG_TO_REG) {
EVT VT = PN->getValueType(0);
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
@@ -2609,11 +2606,11 @@ void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
if (SU->isTwoAddress) {
unsigned Opc = SU->getNode()->getMachineOpcode();
- const TargetInstrDesc &TID = TII->get(Opc);
- unsigned NumRes = TID.getNumDefs();
- unsigned NumOps = TID.getNumOperands() - NumRes;
+ const MCInstrDesc &MCID = TII->get(Opc);
+ unsigned NumRes = MCID.getNumDefs();
+ unsigned NumOps = MCID.getNumOperands() - NumRes;
for (unsigned i = 0; i != NumOps; ++i) {
- if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
+ if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
SDNode *DU = SU->getNode()->getOperand(i).getNode();
if (DU->getNodeId() != -1 &&
Op->OrigNode == &(*SUnits)[DU->getNodeId()])
@@ -2793,11 +2790,11 @@ void RegReductionPQBase::AddPseudoTwoAddrDeps() {
bool isLiveOut = hasOnlyLiveOutUses(SU);
unsigned Opc = Node->getMachineOpcode();
- const TargetInstrDesc &TID = TII->get(Opc);
- unsigned NumRes = TID.getNumDefs();
- unsigned NumOps = TID.getNumOperands() - NumRes;
+ const MCInstrDesc &MCID = TII->get(Opc);
+ unsigned NumRes = MCID.getNumDefs();
+ unsigned NumOps = MCID.getNumOperands() - NumRes;
for (unsigned j = 0; j != NumOps; ++j) {
- if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
+ if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
continue;
SDNode *DU = SU->getNode()->getOperand(j).getNode();
if (DU->getNodeId() == -1)
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
index dbc623b..63ca326 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
@@ -17,6 +17,7 @@
#include "ScheduleDAGSDNodes.h"
#include "InstrEmitter.h"
#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
@@ -111,7 +112,7 @@ static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
unsigned ResNo = User->getOperand(2).getResNo();
if (Def->isMachineOpcode()) {
- const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
+ const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
if (ResNo >= II.getNumDefs() &&
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
PhysReg = Reg;
@@ -255,8 +256,8 @@ void ScheduleDAGSDNodes::ClusterNodes() {
continue;
unsigned Opc = Node->getMachineOpcode();
- const TargetInstrDesc &TID = TII->get(Opc);
- if (TID.mayLoad())
+ const MCInstrDesc &MCID = TII->get(Opc);
+ if (MCID.mayLoad())
// Cluster loads from "near" addresses into combined SUnits.
ClusterNeighboringLoads(Node);
}
@@ -390,14 +391,14 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
if (MainNode->isMachineOpcode()) {
unsigned Opc = MainNode->getMachineOpcode();
- const TargetInstrDesc &TID = TII->get(Opc);
- for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
- if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
+ const MCInstrDesc &MCID = TII->get(Opc);
+ for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
+ if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
SU->isTwoAddress = true;
break;
}
}
- if (TID.isCommutable())
+ if (MCID.isCommutable())
SU->isCommutable = true;
}
@@ -520,14 +521,7 @@ void ScheduleDAGSDNodes::RegDefIter::Advance() {
for (;DefIdx < NodeNumDefs; ++DefIdx) {
if (!Node->hasAnyUseOfValue(DefIdx))
continue;
- if (Node->isMachineOpcode() &&
- Node->getMachineOpcode() == TargetOpcode::EXTRACT_SUBREG) {
- // Propagate the incoming (full-register) type. I doubt it's needed.
- ValueType = Node->getOperand(0).getValueType();
- }
- else {
- ValueType = Node->getValueType(DefIdx);
- }
+ ValueType = Node->getValueType(DefIdx);
++DefIdx;
return; // Found a normal regdef.
}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
index 3ad2bd6..9c27b2e 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
@@ -140,7 +140,7 @@ namespace llvm {
}
unsigned GetIdx() const {
- return DefIdx;
+ return DefIdx-1;
}
void Advance();
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index 19bfa33..ea59ca1 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -5428,55 +5428,6 @@ typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
} // end anonymous namespace
-/// isAllocatableRegister - If the specified register is safe to allocate,
-/// i.e. it isn't a stack pointer or some other special register, return the
-/// register class for the register. Otherwise, return null.
-static const TargetRegisterClass *
-isAllocatableRegister(unsigned Reg, MachineFunction &MF,
- const TargetLowering &TLI,
- const TargetRegisterInfo *TRI) {
- EVT FoundVT = MVT::Other;
- const TargetRegisterClass *FoundRC = 0;
- for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
- E = TRI->regclass_end(); RCI != E; ++RCI) {
- EVT ThisVT = MVT::Other;
-
- const TargetRegisterClass *RC = *RCI;
- if (!RC->isAllocatable())
- continue;
- // If none of the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (TLI.isTypeLegal(*I)) {
- // If we have already found this register in a different register class,
- // choose the one with the largest VT specified. For example, on
- // PowerPC, we favor f64 register classes over f32.
- if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
- ThisVT = *I;
- break;
- }
- }
- }
-
- if (ThisVT == MVT::Other) continue;
-
- // NOTE: This isn't ideal. In particular, this might allocate the
- // frame pointer in functions that need it (due to them not being taken
- // out of allocation, because a variable sized allocation hasn't been seen
- // yet). This is a slight code pessimization, but should still work.
- ArrayRef<unsigned> RawOrder = RC->getRawAllocationOrder(MF);
- if (std::find(RawOrder.begin(), RawOrder.end(), Reg) != RawOrder.end()) {
- // We found a matching register class. Keep looking at others in case
- // we find one with larger registers that this physreg is also in.
- FoundRC = RC;
- FoundVT = ThisVT;
- break;
- }
- }
- return FoundRC;
-}
-
/// GetRegistersForValue - Assign registers (virtual or physical) for the
/// specified operand. We prefer to assign virtual registers, to allow the
/// register allocator to handle the assignment process. However, if the asm
@@ -5611,58 +5562,6 @@ static void GetRegistersForValue(SelectionDAG &DAG,
return;
}
- // This is a reference to a register class that doesn't directly correspond
- // to an LLVM register class. Allocate NumRegs consecutive, available,
- // registers from the class.
- std::vector<unsigned> RegClassRegs
- = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
-
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
- BitVector Reserved = TRI->getReservedRegs(MF);
- unsigned NumAllocated = 0;
- for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
- unsigned Reg = RegClassRegs[i];
- // Filter out the reserved registers, but note that reserved registers are
- // not fully determined at this point. We may still decide we need a frame
- // pointer.
- if (Reserved.test(Reg))
- continue;
- // See if this register is available.
- if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
- (isInReg && InputRegs.count(Reg))) { // Already used.
- // Make sure we find consecutive registers.
- NumAllocated = 0;
- continue;
- }
-
- // Check to see if this register is allocatable (i.e. don't give out the
- // stack pointer).
- const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
- if (!RC) { // Couldn't allocate this register.
- // Reset NumAllocated to make sure we return consecutive registers.
- NumAllocated = 0;
- continue;
- }
-
- // Okay, this register is good, we can use it.
- ++NumAllocated;
-
- // If we allocated enough consecutive registers, succeed.
- if (NumAllocated == NumRegs) {
- unsigned RegStart = (i-NumAllocated)+1;
- unsigned RegEnd = i+1;
- // Mark all of the allocated registers used.
- for (unsigned i = RegStart; i != RegEnd; ++i)
- Regs.push_back(RegClassRegs[i]);
-
- OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
- OpInfo.ConstraintVT);
- OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
- return;
- }
- }
-
// Otherwise, we couldn't allocate enough registers for this.
}
@@ -6051,8 +5950,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// Add the clobbered value to the operand list, so that the register
// allocator is aware that the physreg got clobbered.
if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(
- InlineAsm::Kind_RegDefEarlyClobber,
+ OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
false, 0, DAG,
AsmNodeOperands);
break;
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index dc8044b..87bb296 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -354,9 +354,9 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
const MachineBasicBlock *MBB = I;
for (MachineBasicBlock::const_iterator
II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
- const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
+ const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
- if ((TID.isCall() && !TID.isReturn()) ||
+ if ((MCID.isCall() && !MCID.isReturn()) ||
II->isStackAligningInlineAsm()) {
MFI->setHasCalls(true);
goto done;
@@ -681,7 +681,7 @@ void SelectionDAGISel::PrepareEHLandingPad() {
// landing pad can thus be detected via the MachineModuleInfo.
MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
- const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
+ const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
.addSym(Label);
@@ -2611,9 +2611,9 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
if (EmitNodeInfo & OPFL_MemRefs) {
// Only attach load or store memory operands if the generated
// instruction may load or store.
- const TargetInstrDesc &TID = TM.getInstrInfo()->get(TargetOpc);
- bool mayLoad = TID.mayLoad();
- bool mayStore = TID.mayStore();
+ const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
+ bool mayLoad = MCID.mayLoad();
+ bool mayStore = MCID.mayStore();
unsigned NumMemRefs = 0;
for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 474dd7a..758296e 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -2737,13 +2737,6 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
}
}
-std::vector<unsigned> TargetLowering::
-getRegClassForInlineAsmConstraint(const std::string &Constraint,
- EVT VT) const {
- return std::vector<unsigned>();
-}
-
-
std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
diff --git a/lib/CodeGen/SimpleRegisterCoalescing.cpp b/lib/CodeGen/SimpleRegisterCoalescing.cpp
deleted file mode 100644
index 221bec5..0000000
--- a/lib/CodeGen/SimpleRegisterCoalescing.cpp
+++ /dev/null
@@ -1,1539 +0,0 @@
-//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a simple register coalescing pass that attempts to
-// aggressively coalesce every register copy that it can.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "regcoalescing"
-#include "SimpleRegisterCoalescing.h"
-#include "VirtRegMap.h"
-#include "LiveDebugVariables.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/Value.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/RegisterCoalescer.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/OwningPtr.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include <algorithm>
-#include <cmath>
-using namespace llvm;
-
-STATISTIC(numJoins , "Number of interval joins performed");
-STATISTIC(numCrossRCs , "Number of cross class joins performed");
-STATISTIC(numCommutes , "Number of instruction commuting performed");
-STATISTIC(numExtends , "Number of copies extended");
-STATISTIC(NumReMats , "Number of instructions re-materialized");
-STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
-STATISTIC(numAborts , "Number of times interval joining aborted");
-
-char SimpleRegisterCoalescing::ID = 0;
-static cl::opt<bool>
-EnableJoining("join-liveintervals",
- cl::desc("Coalesce copies (default=true)"),
- cl::init(true));
-
-static cl::opt<bool>
-DisableCrossClassJoin("disable-cross-class-join",
- cl::desc("Avoid coalescing cross register class copies"),
- cl::init(false), cl::Hidden);
-
-static cl::opt<bool>
-EnablePhysicalJoin("join-physregs",
- cl::desc("Join physical register copies"),
- cl::init(false), cl::Hidden);
-
-static cl::opt<bool>
-VerifyCoalescing("verify-coalescing",
- cl::desc("Verify machine instrs before and after register coalescing"),
- cl::Hidden);
-
-INITIALIZE_AG_PASS_BEGIN(SimpleRegisterCoalescing, RegisterCoalescer,
- "simple-register-coalescing", "Simple Register Coalescing",
- false, false, true)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
-INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
-INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
-INITIALIZE_PASS_DEPENDENCY(PHIElimination)
-INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
-INITIALIZE_AG_PASS_END(SimpleRegisterCoalescing, RegisterCoalescer,
- "simple-register-coalescing", "Simple Register Coalescing",
- false, false, true)
-
-char &llvm::SimpleRegisterCoalescingID = SimpleRegisterCoalescing::ID;
-
-void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addRequired<LiveDebugVariables>();
- AU.addPreserved<LiveDebugVariables>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineLoopInfo>();
- AU.addPreservedID(MachineDominatorsID);
- AU.addPreservedID(StrongPHIEliminationID);
- AU.addPreservedID(PHIEliminationID);
- AU.addPreservedID(TwoAddressInstructionPassID);
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-void SimpleRegisterCoalescing::markAsJoined(MachineInstr *CopyMI) {
- /// Joined copies are not deleted immediately, but kept in JoinedCopies.
- JoinedCopies.insert(CopyMI);
-
- /// Mark all register operands of CopyMI as <undef> so they won't affect dead
- /// code elimination.
- for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
- E = CopyMI->operands_end(); I != E; ++I)
- if (I->isReg())
- I->setIsUndef(true);
-}
-
-/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
-/// being the source and IntB being the dest, thus this defines a value number
-/// in IntB. If the source value number (in IntA) is defined by a copy from B,
-/// see if we can merge these two pieces of B into a single value number,
-/// eliminating a copy. For example:
-///
-/// A3 = B0
-/// ...
-/// B1 = A3 <- this copy
-///
-/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
-/// value number to be replaced with B0 (which simplifies the B liveinterval).
-///
-/// This returns true if an interval was modified.
-///
-bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP,
- MachineInstr *CopyMI) {
- // Bail if there is no dst interval - can happen when merging physical subreg
- // operations.
- if (!li_->hasInterval(CP.getDstReg()))
- return false;
-
- LiveInterval &IntA =
- li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
- LiveInterval &IntB =
- li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
- SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
-
- // BValNo is a value number in B that is defined by a copy from A. 'B3' in
- // the example above.
- LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
- if (BLR == IntB.end()) return false;
- VNInfo *BValNo = BLR->valno;
-
- // Get the location that B is defined at. Two options: either this value has
- // an unknown definition point or it is defined at CopyIdx. If unknown, we
- // can't process it.
- if (!BValNo->isDefByCopy()) return false;
- assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
-
- // AValNo is the value number in A that defines the copy, A3 in the example.
- SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
- LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
- // The live range might not exist after fun with physreg coalescing.
- if (ALR == IntA.end()) return false;
- VNInfo *AValNo = ALR->valno;
- // If it's re-defined by an early clobber somewhere in the live range, then
- // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
- // See PR3149:
- // 172 %ECX<def> = MOV32rr %reg1039<kill>
- // 180 INLINEASM <es:subl $5,$1
- // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
- // %EAX<kill>,
- // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
- // 188 %EAX<def> = MOV32rr %EAX<kill>
- // 196 %ECX<def> = MOV32rr %ECX<kill>
- // 204 %ECX<def> = MOV32rr %ECX<kill>
- // 212 %EAX<def> = MOV32rr %EAX<kill>
- // 220 %EAX<def> = MOV32rr %EAX
- // 228 %reg1039<def> = MOV32rr %ECX<kill>
- // The early clobber operand ties ECX input to the ECX def.
- //
- // The live interval of ECX is represented as this:
- // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
- // The coalescer has no idea there was a def in the middle of [174,230].
- if (AValNo->hasRedefByEC())
- return false;
-
- // If AValNo is defined as a copy from IntB, we can potentially process this.
- // Get the instruction that defines this value number.
- if (!CP.isCoalescable(AValNo->getCopy()))
- return false;
-
- // Get the LiveRange in IntB that this value number starts with.
- LiveInterval::iterator ValLR =
- IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
- if (ValLR == IntB.end())
- return false;
-
- // Make sure that the end of the live range is inside the same block as
- // CopyMI.
- MachineInstr *ValLREndInst =
- li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
- if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
- return false;
-
- // Okay, we now know that ValLR ends in the same block that the CopyMI
- // live-range starts. If there are no intervening live ranges between them in
- // IntB, we can merge them.
- if (ValLR+1 != BLR) return false;
-
- // If a live interval is a physical register, conservatively check if any
- // of its aliases is overlapping the live interval of the virtual register.
- // If so, do not coalesce.
- if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
- for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
- if (li_->hasInterval(*AS) && IntA.overlaps(li_->getInterval(*AS))) {
- DEBUG({
- dbgs() << "\t\tInterfere with alias ";
- li_->getInterval(*AS).print(dbgs(), tri_);
- });
- return false;
- }
- }
-
- DEBUG({
- dbgs() << "Extending: ";
- IntB.print(dbgs(), tri_);
- });
-
- SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
- // We are about to delete CopyMI, so need to remove it as the 'instruction
- // that defines this value #'. Update the valnum with the new defining
- // instruction #.
- BValNo->def = FillerStart;
- BValNo->setCopy(0);
-
- // Okay, we can merge them. We need to insert a new liverange:
- // [ValLR.end, BLR.begin) of either value number, then we merge the
- // two value numbers.
- IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
-
- // If the IntB live range is assigned to a physical register, and if that
- // physreg has sub-registers, update their live intervals as well.
- if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
- for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
- if (!li_->hasInterval(*SR))
- continue;
- LiveInterval &SRLI = li_->getInterval(*SR);
- SRLI.addRange(LiveRange(FillerStart, FillerEnd,
- SRLI.getNextValue(FillerStart, 0,
- li_->getVNInfoAllocator())));
- }
- }
-
- // Okay, merge "B1" into the same value number as "B0".
- if (BValNo != ValLR->valno) {
- // If B1 is killed by a PHI, then the merged live range must also be killed
- // by the same PHI, as B0 and B1 can not overlap.
- bool HasPHIKill = BValNo->hasPHIKill();
- IntB.MergeValueNumberInto(BValNo, ValLR->valno);
- if (HasPHIKill)
- ValLR->valno->setHasPHIKill(true);
- }
- DEBUG({
- dbgs() << " result = ";
- IntB.print(dbgs(), tri_);
- dbgs() << "\n";
- });
-
- // If the source instruction was killing the source register before the
- // merge, unset the isKill marker given the live range has been extended.
- int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
- if (UIdx != -1) {
- ValLREndInst->getOperand(UIdx).setIsKill(false);
- }
-
- // If the copy instruction was killing the destination register before the
- // merge, find the last use and trim the live range. That will also add the
- // isKill marker.
- if (ALR->end == CopyIdx)
- li_->shrinkToUses(&IntA);
-
- ++numExtends;
- return true;
-}
-
-/// HasOtherReachingDefs - Return true if there are definitions of IntB
-/// other than BValNo val# that can reach uses of AValno val# of IntA.
-bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
- LiveInterval &IntB,
- VNInfo *AValNo,
- VNInfo *BValNo) {
- for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
- AI != AE; ++AI) {
- if (AI->valno != AValNo) continue;
- LiveInterval::Ranges::iterator BI =
- std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
- if (BI != IntB.ranges.begin())
- --BI;
- for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
- if (BI->valno == BValNo)
- continue;
- if (BI->start <= AI->start && BI->end > AI->start)
- return true;
- if (BI->start > AI->start && BI->start < AI->end)
- return true;
- }
- }
- return false;
-}
-
-/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
-/// IntA being the source and IntB being the dest, thus this defines a value
-/// number in IntB. If the source value number (in IntA) is defined by a
-/// commutable instruction and its other operand is coalesced to the copy dest
-/// register, see if we can transform the copy into a noop by commuting the
-/// definition. For example,
-///
-/// A3 = op A2 B0<kill>
-/// ...
-/// B1 = A3 <- this copy
-/// ...
-/// = op A3 <- more uses
-///
-/// ==>
-///
-/// B2 = op B0 A2<kill>
-/// ...
-/// B1 = B2 <- now an identify copy
-/// ...
-/// = op B2 <- more uses
-///
-/// This returns true if an interval was modified.
-///
-bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP,
- MachineInstr *CopyMI) {
- // FIXME: For now, only eliminate the copy by commuting its def when the
- // source register is a virtual register. We want to guard against cases
- // where the copy is a back edge copy and commuting the def lengthen the
- // live interval of the source register to the entire loop.
- if (CP.isPhys() && CP.isFlipped())
- return false;
-
- // Bail if there is no dst interval.
- if (!li_->hasInterval(CP.getDstReg()))
- return false;
-
- SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
-
- LiveInterval &IntA =
- li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
- LiveInterval &IntB =
- li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
-
- // BValNo is a value number in B that is defined by a copy from A. 'B3' in
- // the example above.
- VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
- if (!BValNo || !BValNo->isDefByCopy())
- return false;
-
- assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
-
- // AValNo is the value number in A that defines the copy, A3 in the example.
- VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
- assert(AValNo && "COPY source not live");
-
- // If other defs can reach uses of this def, then it's not safe to perform
- // the optimization.
- if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
- return false;
- MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
- if (!DefMI)
- return false;
- const TargetInstrDesc &TID = DefMI->getDesc();
- if (!TID.isCommutable())
- return false;
- // If DefMI is a two-address instruction then commuting it will change the
- // destination register.
- int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
- assert(DefIdx != -1);
- unsigned UseOpIdx;
- if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
- return false;
- unsigned Op1, Op2, NewDstIdx;
- if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
- return false;
- if (Op1 == UseOpIdx)
- NewDstIdx = Op2;
- else if (Op2 == UseOpIdx)
- NewDstIdx = Op1;
- else
- return false;
-
- MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
- unsigned NewReg = NewDstMO.getReg();
- if (NewReg != IntB.reg || !NewDstMO.isKill())
- return false;
-
- // Make sure there are no other definitions of IntB that would reach the
- // uses which the new definition can reach.
- if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
- return false;
-
- // Abort if the aliases of IntB.reg have values that are not simply the
- // clobbers from the superreg.
- if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
- for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
- if (li_->hasInterval(*AS) &&
- HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
- return false;
-
- // If some of the uses of IntA.reg is already coalesced away, return false.
- // It's not possible to determine whether it's safe to perform the coalescing.
- for (MachineRegisterInfo::use_nodbg_iterator UI =
- mri_->use_nodbg_begin(IntA.reg),
- UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
- MachineInstr *UseMI = &*UI;
- SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
- LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
- if (ULR == IntA.end())
- continue;
- if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
- return false;
- }
-
- DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
- << *DefMI);
-
- // At this point we have decided that it is legal to do this
- // transformation. Start by commuting the instruction.
- MachineBasicBlock *MBB = DefMI->getParent();
- MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
- if (!NewMI)
- return false;
- if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
- TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
- !mri_->constrainRegClass(IntB.reg, mri_->getRegClass(IntA.reg)))
- return false;
- if (NewMI != DefMI) {
- li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
- MBB->insert(DefMI, NewMI);
- MBB->erase(DefMI);
- }
- unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
- NewMI->getOperand(OpIdx).setIsKill();
-
- // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
- // A = or A, B
- // ...
- // B = A
- // ...
- // C = A<kill>
- // ...
- // = B
-
- // Update uses of IntA of the specific Val# with IntB.
- for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
- UE = mri_->use_end(); UI != UE;) {
- MachineOperand &UseMO = UI.getOperand();
- MachineInstr *UseMI = &*UI;
- ++UI;
- if (JoinedCopies.count(UseMI))
- continue;
- if (UseMI->isDebugValue()) {
- // FIXME These don't have an instruction index. Not clear we have enough
- // info to decide whether to do this replacement or not. For now do it.
- UseMO.setReg(NewReg);
- continue;
- }
- SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
- LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
- if (ULR == IntA.end() || ULR->valno != AValNo)
- continue;
- if (TargetRegisterInfo::isPhysicalRegister(NewReg))
- UseMO.substPhysReg(NewReg, *tri_);
- else
- UseMO.setReg(NewReg);
- if (UseMI == CopyMI)
- continue;
- if (!UseMI->isCopy())
- continue;
- if (UseMI->getOperand(0).getReg() != IntB.reg ||
- UseMI->getOperand(0).getSubReg())
- continue;
-
- // This copy will become a noop. If it's defining a new val#, merge it into
- // BValNo.
- SlotIndex DefIdx = UseIdx.getDefIndex();
- VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
- if (!DVNI)
- continue;
- DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
- assert(DVNI->def == DefIdx);
- BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
- markAsJoined(UseMI);
- }
-
- // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
- // is updated.
- VNInfo *ValNo = BValNo;
- ValNo->def = AValNo->def;
- ValNo->setCopy(0);
- for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
- AI != AE; ++AI) {
- if (AI->valno != AValNo) continue;
- IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
- }
- DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
-
- IntA.removeValNo(AValNo);
- DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
- ++numCommutes;
- return true;
-}
-
-/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
-/// computation, replace the copy by rematerialize the definition.
-bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
- bool preserveSrcInt,
- unsigned DstReg,
- unsigned DstSubIdx,
- MachineInstr *CopyMI) {
- SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
- LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
- assert(SrcLR != SrcInt.end() && "Live range not found!");
- VNInfo *ValNo = SrcLR->valno;
- // If other defs can reach uses of this def, then it's not safe to perform
- // the optimization.
- if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
- return false;
- MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
- if (!DefMI)
- return false;
- assert(DefMI && "Defining instruction disappeared");
- const TargetInstrDesc &TID = DefMI->getDesc();
- if (!TID.isAsCheapAsAMove())
- return false;
- if (!tii_->isTriviallyReMaterializable(DefMI, AA))
- return false;
- bool SawStore = false;
- if (!DefMI->isSafeToMove(tii_, AA, SawStore))
- return false;
- if (TID.getNumDefs() != 1)
- return false;
- if (!DefMI->isImplicitDef()) {
- // Make sure the copy destination register class fits the instruction
- // definition register class. The mismatch can happen as a result of earlier
- // extract_subreg, insert_subreg, subreg_to_reg coalescing.
- const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
- if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
- if (mri_->getRegClass(DstReg) != RC)
- return false;
- } else if (!RC->contains(DstReg))
- return false;
- }
-
- // If destination register has a sub-register index on it, make sure it
- // matches the instruction register class.
- if (DstSubIdx) {
- const TargetInstrDesc &TID = DefMI->getDesc();
- if (TID.getNumDefs() != 1)
- return false;
- const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
- const TargetRegisterClass *DstSubRC =
- DstRC->getSubRegisterRegClass(DstSubIdx);
- const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
- if (DefRC == DstRC)
- DstSubIdx = 0;
- else if (DefRC != DstSubRC)
- return false;
- }
-
- RemoveCopyFlag(DstReg, CopyMI);
-
- MachineBasicBlock *MBB = CopyMI->getParent();
- MachineBasicBlock::iterator MII =
- llvm::next(MachineBasicBlock::iterator(CopyMI));
- tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
- MachineInstr *NewMI = prior(MII);
-
- // CopyMI may have implicit operands, transfer them over to the newly
- // rematerialized instruction. And update implicit def interval valnos.
- for (unsigned i = CopyMI->getDesc().getNumOperands(),
- e = CopyMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = CopyMI->getOperand(i);
- if (MO.isReg() && MO.isImplicit())
- NewMI->addOperand(MO);
- if (MO.isDef())
- RemoveCopyFlag(MO.getReg(), CopyMI);
- }
-
- NewMI->copyImplicitOps(CopyMI);
- li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
- CopyMI->eraseFromParent();
- ReMatCopies.insert(CopyMI);
- ReMatDefs.insert(DefMI);
- DEBUG(dbgs() << "Remat: " << *NewMI);
- ++NumReMats;
-
- // The source interval can become smaller because we removed a use.
- if (preserveSrcInt)
- li_->shrinkToUses(&SrcInt);
-
- return true;
-}
-
-/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
-/// update the subregister number if it is not zero. If DstReg is a
-/// physical register and the existing subregister number of the def / use
-/// being updated is not zero, make sure to set it to the correct physical
-/// subregister.
-void
-SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) {
- bool DstIsPhys = CP.isPhys();
- unsigned SrcReg = CP.getSrcReg();
- unsigned DstReg = CP.getDstReg();
- unsigned SubIdx = CP.getSubIdx();
-
- // Update LiveDebugVariables.
- ldv_->renameRegister(SrcReg, DstReg, SubIdx);
-
- for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
- MachineInstr *UseMI = I.skipInstruction();) {
- // A PhysReg copy that won't be coalesced can perhaps be rematerialized
- // instead.
- if (DstIsPhys) {
- if (UseMI->isCopy() &&
- !UseMI->getOperand(1).getSubReg() &&
- !UseMI->getOperand(0).getSubReg() &&
- UseMI->getOperand(1).getReg() == SrcReg &&
- UseMI->getOperand(0).getReg() != SrcReg &&
- UseMI->getOperand(0).getReg() != DstReg &&
- !JoinedCopies.count(UseMI) &&
- ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
- UseMI->getOperand(0).getReg(), 0, UseMI))
- continue;
- }
-
- SmallVector<unsigned,8> Ops;
- bool Reads, Writes;
- tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
- bool Kills = false, Deads = false;
-
- // Replace SrcReg with DstReg in all UseMI operands.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- MachineOperand &MO = UseMI->getOperand(Ops[i]);
- Kills |= MO.isKill();
- Deads |= MO.isDead();
-
- if (DstIsPhys)
- MO.substPhysReg(DstReg, *tri_);
- else
- MO.substVirtReg(DstReg, SubIdx, *tri_);
- }
-
- // This instruction is a copy that will be removed.
- if (JoinedCopies.count(UseMI))
- continue;
-
- if (SubIdx) {
- // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
- // read-modify-write of DstReg.
- if (Deads)
- UseMI->addRegisterDead(DstReg, tri_);
- else if (!Reads && Writes)
- UseMI->addRegisterDefined(DstReg, tri_);
-
- // Kill flags apply to the whole physical register.
- if (DstIsPhys && Kills)
- UseMI->addRegisterKilled(DstReg, tri_);
- }
-
- DEBUG({
- dbgs() << "\t\tupdated: ";
- if (!UseMI->isDebugValue())
- dbgs() << li_->getInstructionIndex(UseMI) << "\t";
- dbgs() << *UseMI;
- });
- }
-}
-
-/// removeIntervalIfEmpty - Check if the live interval of a physical register
-/// is empty, if so remove it and also remove the empty intervals of its
-/// sub-registers. Return true if live interval is removed.
-static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
- const TargetRegisterInfo *tri_) {
- if (li.empty()) {
- if (TargetRegisterInfo::isPhysicalRegister(li.reg))
- for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
- if (!li_->hasInterval(*SR))
- continue;
- LiveInterval &sli = li_->getInterval(*SR);
- if (sli.empty())
- li_->removeInterval(*SR);
- }
- li_->removeInterval(li.reg);
- return true;
- }
- return false;
-}
-
-/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
-/// the val# it defines. If the live interval becomes empty, remove it as well.
-bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
- MachineInstr *DefMI) {
- SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
- LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
- if (DefIdx != MLR->valno->def)
- return false;
- li.removeValNo(MLR->valno);
- return removeIntervalIfEmpty(li, li_, tri_);
-}
-
-void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg,
- const MachineInstr *CopyMI) {
- SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
- if (li_->hasInterval(DstReg)) {
- LiveInterval &LI = li_->getInterval(DstReg);
- if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
- if (LR->valno->def == DefIdx)
- LR->valno->setCopy(0);
- }
- if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
- return;
- for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
- if (!li_->hasInterval(*AS))
- continue;
- LiveInterval &LI = li_->getInterval(*AS);
- if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
- if (LR->valno->def == DefIdx)
- LR->valno->setCopy(0);
- }
-}
-
-/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
-/// We need to be careful about coalescing a source physical register with a
-/// virtual register. Once the coalescing is done, it cannot be broken and these
-/// are not spillable! If the destination interval uses are far away, think
-/// twice about coalescing them!
-bool SimpleRegisterCoalescing::shouldJoinPhys(CoalescerPair &CP) {
- bool Allocatable = li_->isAllocatable(CP.getDstReg());
- LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
-
- /// Always join simple intervals that are defined by a single copy from a
- /// reserved register. This doesn't increase register pressure, so it is
- /// always beneficial.
- if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
- return true;
-
- if (!EnablePhysicalJoin) {
- DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
- return false;
- }
-
- // Only coalesce to allocatable physreg, we don't want to risk modifying
- // reserved registers.
- if (!Allocatable) {
- DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
- return false; // Not coalescable.
- }
-
- // Don't join with physregs that have a ridiculous number of live
- // ranges. The data structure performance is really bad when that
- // happens.
- if (li_->hasInterval(CP.getDstReg()) &&
- li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
- ++numAborts;
- DEBUG(dbgs()
- << "\tPhysical register live interval too complicated, abort!\n");
- return false;
- }
-
- // FIXME: Why are we skipping this test for partial copies?
- // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
- if (!CP.isPartial()) {
- const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
- unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
- unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
- if (Length > Threshold) {
- ++numAborts;
- DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
- return false;
- }
- }
- return true;
-}
-
-/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
-/// two virtual registers from different register classes.
-bool
-SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
- unsigned DstReg,
- const TargetRegisterClass *SrcRC,
- const TargetRegisterClass *DstRC,
- const TargetRegisterClass *NewRC) {
- unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
- // This heuristics is good enough in practice, but it's obviously not *right*.
- // 4 is a magic number that works well enough for x86, ARM, etc. It filter
- // out all but the most restrictive register classes.
- if (NewRCCount > 4 ||
- // Early exit if the function is fairly small, coalesce aggressively if
- // that's the case. For really special register classes with 3 or
- // fewer registers, be a bit more careful.
- (li_->getFuncInstructionCount() / NewRCCount) < 8)
- return true;
- LiveInterval &SrcInt = li_->getInterval(SrcReg);
- LiveInterval &DstInt = li_->getInterval(DstReg);
- unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
- unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
-
- // Coalesce aggressively if the intervals are small compared to the number of
- // registers in the new class. The number 4 is fairly arbitrary, chosen to be
- // less aggressive than the 8 used for the whole function size.
- const unsigned ThresSize = 4 * NewRCCount;
- if (SrcSize <= ThresSize && DstSize <= ThresSize)
- return true;
-
- // Estimate *register use density*. If it doubles or more, abort.
- unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
- mri_->use_nodbg_end());
- unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
- mri_->use_nodbg_end());
- unsigned NewUses = SrcUses + DstUses;
- unsigned NewSize = SrcSize + DstSize;
- if (SrcRC != NewRC && SrcSize > ThresSize) {
- unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
- if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
- return false;
- }
- if (DstRC != NewRC && DstSize > ThresSize) {
- unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
- if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
- return false;
- }
- return true;
-}
-
-
-/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
-/// which are the src/dst of the copy instruction CopyMI. This returns true
-/// if the copy was successfully coalesced away. If it is not currently
-/// possible to coalesce this interval, but it may be possible if other
-/// things get coalesced, then it returns true by reference in 'Again'.
-bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
- MachineInstr *CopyMI = TheCopy.MI;
-
- Again = false;
- if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
- return false; // Already done.
-
- DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
-
- CoalescerPair CP(*tii_, *tri_);
- if (!CP.setRegisters(CopyMI)) {
- DEBUG(dbgs() << "\tNot coalescable.\n");
- return false;
- }
-
- // If they are already joined we continue.
- if (CP.getSrcReg() == CP.getDstReg()) {
- markAsJoined(CopyMI);
- DEBUG(dbgs() << "\tCopy already coalesced.\n");
- return false; // Not coalescable.
- }
-
- DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_)
- << " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
- << "\n");
-
- // Enforce policies.
- if (CP.isPhys()) {
- if (!shouldJoinPhys(CP)) {
- // Before giving up coalescing, if definition of source is defined by
- // trivial computation, try rematerializing it.
- if (!CP.isFlipped() &&
- ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
- CP.getDstReg(), 0, CopyMI))
- return true;
- return false;
- }
- } else {
- // Avoid constraining virtual register regclass too much.
- if (CP.isCrossClass()) {
- DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
- if (DisableCrossClassJoin) {
- DEBUG(dbgs() << "\tCross-class joins disabled.\n");
- return false;
- }
- if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
- mri_->getRegClass(CP.getSrcReg()),
- mri_->getRegClass(CP.getDstReg()),
- CP.getNewRC())) {
- DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
- Again = true; // May be possible to coalesce later.
- return false;
- }
- }
-
- // When possible, let DstReg be the larger interval.
- if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
- li_->getInterval(CP.getDstReg()).ranges.size())
- CP.flip();
- }
-
- // Okay, attempt to join these two intervals. On failure, this returns false.
- // Otherwise, if one of the intervals being joined is a physreg, this method
- // always canonicalizes DstInt to be it. The output "SrcInt" will not have
- // been modified, so we can use this information below to update aliases.
- if (!JoinIntervals(CP)) {
- // Coalescing failed.
-
- // If definition of source is defined by trivial computation, try
- // rematerializing it.
- if (!CP.isFlipped() &&
- ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
- CP.getDstReg(), 0, CopyMI))
- return true;
-
- // If we can eliminate the copy without merging the live ranges, do so now.
- if (!CP.isPartial()) {
- if (AdjustCopiesBackFrom(CP, CopyMI) ||
- RemoveCopyByCommutingDef(CP, CopyMI)) {
- markAsJoined(CopyMI);
- DEBUG(dbgs() << "\tTrivial!\n");
- return true;
- }
- }
-
- // Otherwise, we are unable to join the intervals.
- DEBUG(dbgs() << "\tInterference!\n");
- Again = true; // May be possible to coalesce later.
- return false;
- }
-
- // Coalescing to a virtual register that is of a sub-register class of the
- // other. Make sure the resulting register is set to the right register class.
- if (CP.isCrossClass()) {
- ++numCrossRCs;
- mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
- }
-
- // Remember to delete the copy instruction.
- markAsJoined(CopyMI);
-
- UpdateRegDefsUses(CP);
-
- // If we have extended the live range of a physical register, make sure we
- // update live-in lists as well.
- if (CP.isPhys()) {
- SmallVector<MachineBasicBlock*, 16> BlockSeq;
- // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
- // ranges for this, and they are preserved.
- LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
- for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
- I != E; ++I ) {
- li_->findLiveInMBBs(I->start, I->end, BlockSeq);
- for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
- MachineBasicBlock &block = *BlockSeq[idx];
- if (!block.isLiveIn(CP.getDstReg()))
- block.addLiveIn(CP.getDstReg());
- }
- BlockSeq.clear();
- }
- }
-
- // SrcReg is guarateed to be the register whose live interval that is
- // being merged.
- li_->removeInterval(CP.getSrcReg());
-
- // Update regalloc hint.
- tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
-
- DEBUG({
- LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
- dbgs() << "\tJoined. Result = ";
- DstInt.print(dbgs(), tri_);
- dbgs() << "\n";
- });
-
- ++numJoins;
- return true;
-}
-
-/// ComputeUltimateVN - Assuming we are going to join two live intervals,
-/// compute what the resultant value numbers for each value in the input two
-/// ranges will be. This is complicated by copies between the two which can
-/// and will commonly cause multiple value numbers to be merged into one.
-///
-/// VN is the value number that we're trying to resolve. InstDefiningValue
-/// keeps track of the new InstDefiningValue assignment for the result
-/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
-/// whether a value in this or other is a copy from the opposite set.
-/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
-/// already been assigned.
-///
-/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
-/// contains the value number the copy is from.
-///
-static unsigned ComputeUltimateVN(VNInfo *VNI,
- SmallVector<VNInfo*, 16> &NewVNInfo,
- DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
- DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
- SmallVector<int, 16> &ThisValNoAssignments,
- SmallVector<int, 16> &OtherValNoAssignments) {
- unsigned VN = VNI->id;
-
- // If the VN has already been computed, just return it.
- if (ThisValNoAssignments[VN] >= 0)
- return ThisValNoAssignments[VN];
- assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
-
- // If this val is not a copy from the other val, then it must be a new value
- // number in the destination.
- DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
- if (I == ThisFromOther.end()) {
- NewVNInfo.push_back(VNI);
- return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
- }
- VNInfo *OtherValNo = I->second;
-
- // Otherwise, this *is* a copy from the RHS. If the other side has already
- // been computed, return it.
- if (OtherValNoAssignments[OtherValNo->id] >= 0)
- return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
-
- // Mark this value number as currently being computed, then ask what the
- // ultimate value # of the other value is.
- ThisValNoAssignments[VN] = -2;
- unsigned UltimateVN =
- ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
- OtherValNoAssignments, ThisValNoAssignments);
- return ThisValNoAssignments[VN] = UltimateVN;
-}
-
-/// JoinIntervals - Attempt to join these two intervals. On failure, this
-/// returns false.
-bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) {
- LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
- DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
-
- // If a live interval is a physical register, check for interference with any
- // aliases. The interference check implemented here is a bit more conservative
- // than the full interfeence check below. We allow overlapping live ranges
- // only when one is a copy of the other.
- if (CP.isPhys()) {
- for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
- if (!li_->hasInterval(*AS))
- continue;
- const LiveInterval &LHS = li_->getInterval(*AS);
- LiveInterval::const_iterator LI = LHS.begin();
- for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
- RI != RE; ++RI) {
- LI = std::lower_bound(LI, LHS.end(), RI->start);
- // Does LHS have an overlapping live range starting before RI?
- if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
- (RI->start != RI->valno->def ||
- !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
- DEBUG({
- dbgs() << "\t\tInterference from alias: ";
- LHS.print(dbgs(), tri_);
- dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
- });
- return false;
- }
-
- // Check that LHS ranges beginning in this range are copies.
- for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
- if (LI->start != LI->valno->def ||
- !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
- DEBUG({
- dbgs() << "\t\tInterference from alias: ";
- LHS.print(dbgs(), tri_);
- dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
- });
- return false;
- }
- }
- }
- }
- }
-
- // Compute the final value assignment, assuming that the live ranges can be
- // coalesced.
- SmallVector<int, 16> LHSValNoAssignments;
- SmallVector<int, 16> RHSValNoAssignments;
- DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
- DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
- SmallVector<VNInfo*, 16> NewVNInfo;
-
- LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
- DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
-
- // Loop over the value numbers of the LHS, seeing if any are defined from
- // the RHS.
- for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
- i != e; ++i) {
- VNInfo *VNI = *i;
- if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
- continue;
-
- // Never join with a register that has EarlyClobber redefs.
- if (VNI->hasRedefByEC())
- return false;
-
- // DstReg is known to be a register in the LHS interval. If the src is
- // from the RHS interval, we can use its value #.
- if (!CP.isCoalescable(VNI->getCopy()))
- continue;
-
- // Figure out the value # from the RHS.
- LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
- // The copy could be to an aliased physreg.
- if (!lr) continue;
- LHSValsDefinedFromRHS[VNI] = lr->valno;
- }
-
- // Loop over the value numbers of the RHS, seeing if any are defined from
- // the LHS.
- for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
- i != e; ++i) {
- VNInfo *VNI = *i;
- if (VNI->isUnused() || !VNI->isDefByCopy()) // Src not defined by a copy?
- continue;
-
- // Never join with a register that has EarlyClobber redefs.
- if (VNI->hasRedefByEC())
- return false;
-
- // DstReg is known to be a register in the RHS interval. If the src is
- // from the LHS interval, we can use its value #.
- if (!CP.isCoalescable(VNI->getCopy()))
- continue;
-
- // Figure out the value # from the LHS.
- LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
- // The copy could be to an aliased physreg.
- if (!lr) continue;
- RHSValsDefinedFromLHS[VNI] = lr->valno;
- }
-
- LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
- RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
- NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
-
- for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
- i != e; ++i) {
- VNInfo *VNI = *i;
- unsigned VN = VNI->id;
- if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
- continue;
- ComputeUltimateVN(VNI, NewVNInfo,
- LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
- LHSValNoAssignments, RHSValNoAssignments);
- }
- for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
- i != e; ++i) {
- VNInfo *VNI = *i;
- unsigned VN = VNI->id;
- if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
- continue;
- // If this value number isn't a copy from the LHS, it's a new number.
- if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
- NewVNInfo.push_back(VNI);
- RHSValNoAssignments[VN] = NewVNInfo.size()-1;
- continue;
- }
-
- ComputeUltimateVN(VNI, NewVNInfo,
- RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
- RHSValNoAssignments, LHSValNoAssignments);
- }
-
- // Armed with the mappings of LHS/RHS values to ultimate values, walk the
- // interval lists to see if these intervals are coalescable.
- LiveInterval::const_iterator I = LHS.begin();
- LiveInterval::const_iterator IE = LHS.end();
- LiveInterval::const_iterator J = RHS.begin();
- LiveInterval::const_iterator JE = RHS.end();
-
- // Skip ahead until the first place of potential sharing.
- if (I != IE && J != JE) {
- if (I->start < J->start) {
- I = std::upper_bound(I, IE, J->start);
- if (I != LHS.begin()) --I;
- } else if (J->start < I->start) {
- J = std::upper_bound(J, JE, I->start);
- if (J != RHS.begin()) --J;
- }
- }
-
- while (I != IE && J != JE) {
- // Determine if these two live ranges overlap.
- bool Overlaps;
- if (I->start < J->start) {
- Overlaps = I->end > J->start;
- } else {
- Overlaps = J->end > I->start;
- }
-
- // If so, check value # info to determine if they are really different.
- if (Overlaps) {
- // If the live range overlap will map to the same value number in the
- // result liverange, we can still coalesce them. If not, we can't.
- if (LHSValNoAssignments[I->valno->id] !=
- RHSValNoAssignments[J->valno->id])
- return false;
- // If it's re-defined by an early clobber somewhere in the live range,
- // then conservatively abort coalescing.
- if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
- return false;
- }
-
- if (I->end < J->end)
- ++I;
- else
- ++J;
- }
-
- // Update kill info. Some live ranges are extended due to copy coalescing.
- for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
- E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
- VNInfo *VNI = I->first;
- unsigned LHSValID = LHSValNoAssignments[VNI->id];
- if (VNI->hasPHIKill())
- NewVNInfo[LHSValID]->setHasPHIKill(true);
- }
-
- // Update kill info. Some live ranges are extended due to copy coalescing.
- for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
- E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
- VNInfo *VNI = I->first;
- unsigned RHSValID = RHSValNoAssignments[VNI->id];
- if (VNI->hasPHIKill())
- NewVNInfo[RHSValID]->setHasPHIKill(true);
- }
-
- if (LHSValNoAssignments.empty())
- LHSValNoAssignments.push_back(-1);
- if (RHSValNoAssignments.empty())
- RHSValNoAssignments.push_back(-1);
-
- // If we get here, we know that we can coalesce the live ranges. Ask the
- // intervals to coalesce themselves now.
- LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
- mri_);
- return true;
-}
-
-namespace {
- // DepthMBBCompare - Comparison predicate that sort first based on the loop
- // depth of the basic block (the unsigned), and then on the MBB number.
- struct DepthMBBCompare {
- typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
- bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
- // Deeper loops first
- if (LHS.first != RHS.first)
- return LHS.first > RHS.first;
-
- // Prefer blocks that are more connected in the CFG. This takes care of
- // the most difficult copies first while intervals are short.
- unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
- unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
- if (cl != cr)
- return cl > cr;
-
- // As a last resort, sort by block number.
- return LHS.second->getNumber() < RHS.second->getNumber();
- }
- };
-}
-
-void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
- std::vector<CopyRec> &TryAgain) {
- DEBUG(dbgs() << MBB->getName() << ":\n");
-
- SmallVector<CopyRec, 8> VirtCopies;
- SmallVector<CopyRec, 8> PhysCopies;
- SmallVector<CopyRec, 8> ImpDefCopies;
- for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
- MII != E;) {
- MachineInstr *Inst = MII++;
-
- // If this isn't a copy nor a extract_subreg, we can't join intervals.
- unsigned SrcReg, DstReg;
- if (Inst->isCopy()) {
- DstReg = Inst->getOperand(0).getReg();
- SrcReg = Inst->getOperand(1).getReg();
- } else if (Inst->isSubregToReg()) {
- DstReg = Inst->getOperand(0).getReg();
- SrcReg = Inst->getOperand(2).getReg();
- } else
- continue;
-
- bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
- bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
- if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
- ImpDefCopies.push_back(CopyRec(Inst, 0));
- else if (SrcIsPhys || DstIsPhys)
- PhysCopies.push_back(CopyRec(Inst, 0));
- else
- VirtCopies.push_back(CopyRec(Inst, 0));
- }
-
- // Try coalescing implicit copies and insert_subreg <undef> first,
- // followed by copies to / from physical registers, then finally copies
- // from virtual registers to virtual registers.
- for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
- CopyRec &TheCopy = ImpDefCopies[i];
- bool Again = false;
- if (!JoinCopy(TheCopy, Again))
- if (Again)
- TryAgain.push_back(TheCopy);
- }
- for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
- CopyRec &TheCopy = PhysCopies[i];
- bool Again = false;
- if (!JoinCopy(TheCopy, Again))
- if (Again)
- TryAgain.push_back(TheCopy);
- }
- for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
- CopyRec &TheCopy = VirtCopies[i];
- bool Again = false;
- if (!JoinCopy(TheCopy, Again))
- if (Again)
- TryAgain.push_back(TheCopy);
- }
-}
-
-void SimpleRegisterCoalescing::joinIntervals() {
- DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
-
- std::vector<CopyRec> TryAgainList;
- if (loopInfo->empty()) {
- // If there are no loops in the function, join intervals in function order.
- for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
- I != E; ++I)
- CopyCoalesceInMBB(I, TryAgainList);
- } else {
- // Otherwise, join intervals in inner loops before other intervals.
- // Unfortunately we can't just iterate over loop hierarchy here because
- // there may be more MBB's than BB's. Collect MBB's for sorting.
-
- // Join intervals in the function prolog first. We want to join physical
- // registers with virtual registers before the intervals got too long.
- std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
- for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
- MachineBasicBlock *MBB = I;
- MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
- }
-
- // Sort by loop depth.
- std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
-
- // Finally, join intervals in loop nest order.
- for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
- CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
- }
-
- // Joining intervals can allow other intervals to be joined. Iteratively join
- // until we make no progress.
- bool ProgressMade = true;
- while (ProgressMade) {
- ProgressMade = false;
-
- for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
- CopyRec &TheCopy = TryAgainList[i];
- if (!TheCopy.MI)
- continue;
-
- bool Again = false;
- bool Success = JoinCopy(TheCopy, Again);
- if (Success || !Again) {
- TheCopy.MI = 0; // Mark this one as done.
- ProgressMade = true;
- }
- }
- }
-}
-
-void SimpleRegisterCoalescing::releaseMemory() {
- JoinedCopies.clear();
- ReMatCopies.clear();
- ReMatDefs.clear();
-}
-
-bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
- mf_ = &fn;
- mri_ = &fn.getRegInfo();
- tm_ = &fn.getTarget();
- tri_ = tm_->getRegisterInfo();
- tii_ = tm_->getInstrInfo();
- li_ = &getAnalysis<LiveIntervals>();
- ldv_ = &getAnalysis<LiveDebugVariables>();
- AA = &getAnalysis<AliasAnalysis>();
- loopInfo = &getAnalysis<MachineLoopInfo>();
-
- DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
- << "********** Function: "
- << ((Value*)mf_->getFunction())->getName() << '\n');
-
- if (VerifyCoalescing)
- mf_->verify(this, "Before register coalescing");
-
- RegClassInfo.runOnMachineFunction(fn);
-
- // Join (coalesce) intervals if requested.
- if (EnableJoining) {
- joinIntervals();
- DEBUG({
- dbgs() << "********** INTERVALS POST JOINING **********\n";
- for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
- I != E; ++I){
- I->second->print(dbgs(), tri_);
- dbgs() << "\n";
- }
- });
- }
-
- // Perform a final pass over the instructions and compute spill weights
- // and remove identity moves.
- SmallVector<unsigned, 4> DeadDefs;
- for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
- mbbi != mbbe; ++mbbi) {
- MachineBasicBlock* mbb = mbbi;
- for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
- mii != mie; ) {
- MachineInstr *MI = mii;
- if (JoinedCopies.count(MI)) {
- // Delete all coalesced copies.
- bool DoDelete = true;
- assert(MI->isCopyLike() && "Unrecognized copy instruction");
- unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
- if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
- MI->getNumOperands() > 2)
- // Do not delete extract_subreg, insert_subreg of physical
- // registers unless the definition is dead. e.g.
- // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
- // or else the scavenger may complain. LowerSubregs will
- // delete them later.
- DoDelete = false;
-
- if (MI->allDefsAreDead()) {
- if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
- li_->hasInterval(SrcReg))
- li_->shrinkToUses(&li_->getInterval(SrcReg));
- DoDelete = true;
- }
- if (!DoDelete) {
- // We need the instruction to adjust liveness, so make it a KILL.
- if (MI->isSubregToReg()) {
- MI->RemoveOperand(3);
- MI->RemoveOperand(1);
- }
- MI->setDesc(tii_->get(TargetOpcode::KILL));
- mii = llvm::next(mii);
- } else {
- li_->RemoveMachineInstrFromMaps(MI);
- mii = mbbi->erase(mii);
- ++numPeep;
- }
- continue;
- }
-
- // Now check if this is a remat'ed def instruction which is now dead.
- if (ReMatDefs.count(MI)) {
- bool isDead = true;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
- continue;
- if (TargetRegisterInfo::isVirtualRegister(Reg))
- DeadDefs.push_back(Reg);
- if (MO.isDead())
- continue;
- if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
- !mri_->use_nodbg_empty(Reg)) {
- isDead = false;
- break;
- }
- }
- if (isDead) {
- while (!DeadDefs.empty()) {
- unsigned DeadDef = DeadDefs.back();
- DeadDefs.pop_back();
- RemoveDeadDef(li_->getInterval(DeadDef), MI);
- }
- li_->RemoveMachineInstrFromMaps(mii);
- mii = mbbi->erase(mii);
- continue;
- } else
- DeadDefs.clear();
- }
-
- ++mii;
-
- // Check for now unnecessary kill flags.
- if (li_->isNotInMIMap(MI)) continue;
- SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isKill()) continue;
- unsigned reg = MO.getReg();
- if (!reg || !li_->hasInterval(reg)) continue;
- if (!li_->getInterval(reg).killedAt(DefIdx)) {
- MO.setIsKill(false);
- continue;
- }
- // When leaving a kill flag on a physreg, check if any subregs should
- // remain alive.
- if (!TargetRegisterInfo::isPhysicalRegister(reg))
- continue;
- for (const unsigned *SR = tri_->getSubRegisters(reg);
- unsigned S = *SR; ++SR)
- if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
- MI->addRegisterDefined(S, tri_);
- }
- }
- }
-
- DEBUG(dump());
- DEBUG(ldv_->dump());
- if (VerifyCoalescing)
- mf_->verify(this, "After register coalescing");
- return true;
-}
-
-/// print - Implement the dump method.
-void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
- li_->print(O, m);
-}
-
-RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
- return new SimpleRegisterCoalescing();
-}
-
-// Make sure that anything that uses RegisterCoalescer pulls in this file...
-DEFINING_FILE_FOR(SimpleRegisterCoalescing)
diff --git a/lib/CodeGen/SplitKit.cpp b/lib/CodeGen/SplitKit.cpp
index bf27cc8..a0952a0 100644
--- a/lib/CodeGen/SplitKit.cpp
+++ b/lib/CodeGen/SplitKit.cpp
@@ -76,12 +76,14 @@ SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
return LSP.first;
// There may not be a call instruction (?) in which case we ignore LPad.
LSP.second = LSP.first;
- for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin();
- I != E; --I)
+ for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
+ I != E;) {
+ --I;
if (I->getDesc().isCall()) {
LSP.second = LIS.getInstructionIndex(I);
break;
}
+ }
}
// If CurLI is live into a landing pad successor, move the last split point
@@ -122,7 +124,7 @@ void SplitAnalysis::analyzeUses() {
// Compute per-live block info.
if (!calcLiveBlockInfo()) {
// FIXME: calcLiveBlockInfo found inconsistencies in the live range.
- // I am looking at you, SimpleRegisterCoalescing!
+ // I am looking at you, RegisterCoalescer!
DidRepairRange = true;
++NumRepairs;
DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
@@ -165,7 +167,7 @@ bool SplitAnalysis::calcLiveBlockInfo() {
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
// If the block contains no uses, the range must be live through. At one
- // point, SimpleRegisterCoalescing could create dangling ranges that ended
+ // point, RegisterCoalescer could create dangling ranges that ended
// mid-block.
if (UseI == UseE || *UseI >= Stop) {
++NumThroughBlocks;
@@ -634,6 +636,7 @@ unsigned SplitEditor::openIntv() {
void SplitEditor::selectIntv(unsigned Idx) {
assert(Idx != 0 && "Cannot select the complement interval");
assert(Idx < Edit->size() && "Can only select previously opened interval");
+ DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
OpenIdx = Idx;
}
@@ -654,6 +657,24 @@ SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
return VNI->def;
}
+SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvAfter");
+ DEBUG(dbgs() << " enterIntvAfter " << Idx);
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvAfter called with invalid index");
+
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
+ llvm::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
+}
+
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
SlotIndex End = LIS.getMBBEndIdx(&MBB);
@@ -1005,12 +1026,6 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
markComplexMapped(i, ParentVNI);
}
-#ifndef NDEBUG
- // Every new interval must have a def by now, otherwise the split is bogus.
- for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
- assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
-#endif
-
// Transfer the simply mapped values, check if any are skipped.
bool Skipped = transferValues();
if (Skipped)
diff --git a/lib/CodeGen/SplitKit.h b/lib/CodeGen/SplitKit.h
index 7174c0b..a9ccf40b 100644
--- a/lib/CodeGen/SplitKit.h
+++ b/lib/CodeGen/SplitKit.h
@@ -81,6 +81,12 @@ public:
bool LiveThrough; ///< Live in whole block (Templ 5. above).
bool LiveIn; ///< Current reg is live in.
bool LiveOut; ///< Current reg is live out.
+
+ /// isOneInstr - Returns true when this BlockInfo describes a single
+ /// instruction.
+ bool isOneInstr() const {
+ return SlotIndex::isSameInstr(FirstUse, LastUse);
+ }
};
private:
@@ -360,6 +366,10 @@ public:
/// Return the beginning of the new live range.
SlotIndex enterIntvBefore(SlotIndex Idx);
+ /// enterIntvAfter - Enter the open interval after the instruction at Idx.
+ /// Return the beginning of the new live range.
+ SlotIndex enterIntvAfter(SlotIndex Idx);
+
/// enterIntvAtEnd - Enter the open interval at the end of MBB.
/// Use the open interval from he inserted copy to the MBB end.
/// Return the beginning of the new live range.
diff --git a/lib/CodeGen/Splitter.cpp b/lib/CodeGen/Splitter.cpp
index 08aee82..ec75df4 100644
--- a/lib/CodeGen/Splitter.cpp
+++ b/lib/CodeGen/Splitter.cpp
@@ -11,7 +11,7 @@
#include "Splitter.h"
-#include "SimpleRegisterCoalescing.h"
+#include "RegisterCoalescer.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
diff --git a/lib/CodeGen/StackSlotColoring.cpp b/lib/CodeGen/StackSlotColoring.cpp
index 01f5b56..57cbe1b 100644
--- a/lib/CodeGen/StackSlotColoring.cpp
+++ b/lib/CodeGen/StackSlotColoring.cpp
@@ -504,7 +504,7 @@ bool StackSlotColoring::PropagateBackward(MachineBasicBlock::iterator MII,
bool FoundDef = false; // Not counting 2address def.
Uses.clear();
- const TargetInstrDesc &TID = MII->getDesc();
+ const MCInstrDesc &MCID = MII->getDesc();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (!MO.isReg())
@@ -521,7 +521,7 @@ bool StackSlotColoring::PropagateBackward(MachineBasicBlock::iterator MII,
if (MO.getSubReg() || MII->isSubregToReg())
return false;
- const TargetRegisterClass *RC = TID.OpInfo[i].getRegClass(TRI);
+ const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI);
if (RC && !RC->contains(NewReg))
return false;
@@ -566,7 +566,7 @@ bool StackSlotColoring::PropagateForward(MachineBasicBlock::iterator MII,
SmallVector<MachineOperand*, 4> Uses;
while (++MII != MBB->end()) {
bool FoundKill = false;
- const TargetInstrDesc &TID = MII->getDesc();
+ const MCInstrDesc &MCID = MII->getDesc();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (!MO.isReg())
@@ -583,7 +583,7 @@ bool StackSlotColoring::PropagateForward(MachineBasicBlock::iterator MII,
if (MO.getSubReg())
return false;
- const TargetRegisterClass *RC = TID.OpInfo[i].getRegClass(TRI);
+ const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI);
if (RC && !RC->contains(NewReg))
return false;
if (MO.isKill())
diff --git a/lib/CodeGen/TailDuplication.cpp b/lib/CodeGen/TailDuplication.cpp
index 3111d59..6fe4bd7 100644
--- a/lib/CodeGen/TailDuplication.cpp
+++ b/lib/CodeGen/TailDuplication.cpp
@@ -97,8 +97,8 @@ namespace {
bool shouldTailDuplicate(const MachineFunction &MF,
bool IsSimple, MachineBasicBlock &TailBB);
bool isSimpleBB(MachineBasicBlock *TailBB);
- bool canCompletelyDuplicateBB(MachineBasicBlock &BB, bool IsSimple);
- void duplicateSimpleBB(MachineBasicBlock *TailBB,
+ bool canCompletelyDuplicateBB(MachineBasicBlock &BB);
+ bool duplicateSimpleBB(MachineBasicBlock *TailBB,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
const DenseSet<unsigned> &RegsUsedByPhi,
SmallVector<MachineInstr*, 16> &Copies);
@@ -529,8 +529,8 @@ TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF,
bool hasIndirectBR = false;
if (PreRegAlloc && !TailBB.empty()) {
- const TargetInstrDesc &TID = TailBB.back().getDesc();
- if (TID.isIndirectBranch()) {
+ const MCInstrDesc &MCID = TailBB.back().getDesc();
+ if (MCID.isIndirectBranch()) {
MaxDuplicateCount = 20;
hasIndirectBR = true;
}
@@ -568,12 +568,12 @@ TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF,
return true;
if (IsSimple)
- return canCompletelyDuplicateBB(TailBB, IsSimple);
+ return true;
if (!PreRegAlloc)
return true;
- return canCompletelyDuplicateBB(TailBB, IsSimple);
+ return canCompletelyDuplicateBB(TailBB);
}
/// isSimpleBB - True if this BB has only one unconditional jump.
@@ -606,74 +606,59 @@ bothUsedInPHI(const MachineBasicBlock &A,
}
bool
-TailDuplicatePass::canCompletelyDuplicateBB(MachineBasicBlock &BB,
- bool isSimple) {
+TailDuplicatePass::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
SmallPtrSet<MachineBasicBlock*, 8> Succs(BB.succ_begin(), BB.succ_end());
for (MachineBasicBlock::pred_iterator PI = BB.pred_begin(),
PE = BB.pred_end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
- if (isSimple) {
- if (PredBB->getLandingPadSuccessor())
- return false;
- if (bothUsedInPHI(*PredBB, Succs))
- return false;
- } else {
- if (PredBB->succ_size() > 1)
- return false;
- }
+ if (PredBB->succ_size() > 1)
+ return false;
MachineBasicBlock *PredTBB = NULL, *PredFBB = NULL;
SmallVector<MachineOperand, 4> PredCond;
if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
return false;
- if (!isSimple && !PredCond.empty())
+ if (!PredCond.empty())
return false;
}
return true;
}
-void
+bool
TailDuplicatePass::duplicateSimpleBB(MachineBasicBlock *TailBB,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
const DenseSet<unsigned> &UsedByPhi,
SmallVector<MachineInstr*, 16> &Copies) {
+ SmallPtrSet<MachineBasicBlock*, 8> Succs(TailBB->succ_begin(),
+ TailBB->succ_end());
SmallVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
TailBB->pred_end());
+ bool Changed = false;
for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
PE = Preds.end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
+ if (PredBB->getLandingPadSuccessor())
+ continue;
+
+ if (bothUsedInPHI(*PredBB, Succs))
+ continue;
+
MachineBasicBlock *PredTBB = NULL, *PredFBB = NULL;
SmallVector<MachineOperand, 4> PredCond;
- bool NotAnalyzable =
- TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);
- (void)NotAnalyzable;
- assert(!NotAnalyzable && "Cannot duplicate this!");
+ if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
+ continue;
+ Changed = true;
DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
<< "From simple Succ: " << *TailBB);
MachineBasicBlock *NewTarget = *TailBB->succ_begin();
MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(PredBB));
- DenseMap<unsigned, unsigned> LocalVRMap;
- SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
- for (MachineBasicBlock::iterator I = TailBB->begin();
- I != TailBB->end() && I->isPHI();) {
- MachineInstr *MI = &*I;
- ++I;
- ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
- }
- MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
- for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
- Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
- TII->get(TargetOpcode::COPY),
- CopyInfos[i].first).addReg(CopyInfos[i].second));
- }
-
// Make PredFBB explicit.
if (PredCond.empty())
PredFBB = PredTBB;
@@ -715,6 +700,7 @@ TailDuplicatePass::duplicateSimpleBB(MachineBasicBlock *TailBB,
TDBBs.push_back(PredBB);
}
+ return Changed;
}
/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
@@ -733,11 +719,8 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
DenseSet<unsigned> UsedByPhi;
getRegsUsedByPHIs(*TailBB, &UsedByPhi);
- if (IsSimple) {
- duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
- return true;
- }
-
+ if (IsSimple)
+ return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
// Iterate through all the unique predecessors and tail-duplicate this
// block into them, if possible. Copying the list ahead of time also
diff --git a/lib/CodeGen/TargetInstrInfoImpl.cpp b/lib/CodeGen/TargetInstrInfoImpl.cpp
index 34e2b33..86e71d8 100644
--- a/lib/CodeGen/TargetInstrInfoImpl.cpp
+++ b/lib/CodeGen/TargetInstrInfoImpl.cpp
@@ -59,8 +59,8 @@ TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
// the two operands returned by findCommutedOpIndices.
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
- const TargetInstrDesc &TID = MI->getDesc();
- bool HasDef = TID.getNumDefs();
+ const MCInstrDesc &MCID = MI->getDesc();
+ bool HasDef = MCID.getNumDefs();
if (HasDef && !MI->getOperand(0).isReg())
// No idea how to commute this instruction. Target should implement its own.
return 0;
@@ -81,7 +81,7 @@ MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
bool ChangeReg0 = false;
if (HasDef && MI->getOperand(0).getReg() == Reg1) {
// Must be two address instruction!
- assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
+ assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
"Expecting a two-address instruction!");
Reg2IsKill = false;
ChangeReg0 = true;
@@ -119,12 +119,12 @@ MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
- const TargetInstrDesc &TID = MI->getDesc();
- if (!TID.isCommutable())
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isCommutable())
return false;
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
// is not true, then the target must implement this.
- SrcOpIdx1 = TID.getNumDefs();
+ SrcOpIdx1 = MCID.getNumDefs();
SrcOpIdx2 = SrcOpIdx1 + 1;
if (!MI->getOperand(SrcOpIdx1).isReg() ||
!MI->getOperand(SrcOpIdx2).isReg())
@@ -137,12 +137,12 @@ bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const {
bool MadeChange = false;
- const TargetInstrDesc &TID = MI->getDesc();
- if (!TID.isPredicable())
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isPredicable())
return false;
for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
- if (TID.OpInfo[i].isPredicate()) {
+ if (MCID.OpInfo[i].isPredicate()) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg()) {
MO.setReg(Pred[j].getReg());
@@ -332,10 +332,10 @@ isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
return true;
- const TargetInstrDesc &TID = MI->getDesc();
+ const MCInstrDesc &MCID = MI->getDesc();
// Avoid instructions obviously unsafe for remat.
- if (TID.isNotDuplicable() || TID.mayStore() ||
+ if (MCID.isNotDuplicable() || MCID.mayStore() ||
MI->hasUnmodeledSideEffects())
return false;
@@ -345,7 +345,7 @@ isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
return false;
// Avoid instructions which load from potentially varying memory.
- if (TID.mayLoad() && !MI->isInvariantLoad(AA))
+ if (MCID.mayLoad() && !MI->isInvariantLoad(AA))
return false;
// If any of the registers accessed are non-constant, conservatively assume
diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp
index 3860e0b..6d6244e 100644
--- a/lib/CodeGen/TwoAddressInstructionPass.cpp
+++ b/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -280,8 +280,8 @@ bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
/// isTwoAddrUse - Return true if the specified MI is using the specified
/// register as a two-address operand.
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
- const TargetInstrDesc &TID = UseMI->getDesc();
- for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
+ const MCInstrDesc &MCID = UseMI->getDesc();
+ for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg &&
(MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
@@ -443,8 +443,9 @@ static bool isKilled(MachineInstr &MI, unsigned Reg,
/// isTwoAddrUse - Return true if the specified MI uses the specified register
/// as a two-address use. If so, return the destination register by reference.
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
- const TargetInstrDesc &TID = MI.getDesc();
- unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned NumOps = MI.isInlineAsm()
+ ? MI.getNumOperands() : MCID.getNumOperands();
for (unsigned i = 0; i != NumOps; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
@@ -761,10 +762,10 @@ void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
static bool isSafeToDelete(MachineInstr *MI,
const TargetInstrInfo *TII,
SmallVector<unsigned, 4> &Kills) {
- const TargetInstrDesc &TID = MI->getDesc();
- if (TID.mayStore() || TID.isCall())
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.mayStore() || MCID.isCall())
return false;
- if (TID.isTerminator() || MI->hasUnmodeledSideEffects())
+ if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
return false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
@@ -854,7 +855,7 @@ TryInstructionTransform(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
SmallPtrSet<MachineInstr*, 8> &Processed) {
- const TargetInstrDesc &TID = mi->getDesc();
+ const MCInstrDesc &MCID = mi->getDesc();
unsigned regA = mi->getOperand(DstIdx).getReg();
unsigned regB = mi->getOperand(SrcIdx).getReg();
@@ -876,7 +877,7 @@ TryInstructionTransform(MachineBasicBlock::iterator &mi,
unsigned regCIdx = ~0U;
bool TryCommute = false;
bool AggressiveCommute = false;
- if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
+ if (MCID.isCommutable() && mi->getNumOperands() >= 3 &&
TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
if (SrcIdx == SrcOp1)
regCIdx = SrcOp2;
@@ -907,7 +908,7 @@ TryInstructionTransform(MachineBasicBlock::iterator &mi,
if (TargetRegisterInfo::isVirtualRegister(regA))
ScanUses(regA, &*mbbi, Processed);
- if (TID.isConvertibleTo3Addr()) {
+ if (MCID.isConvertibleTo3Addr()) {
// This instruction is potentially convertible to a true
// three-address instruction. Check if it is profitable.
if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
@@ -927,7 +928,7 @@ TryInstructionTransform(MachineBasicBlock::iterator &mi,
// movq (%rax), %rcx
// addq %rdx, %rcx
// because it's preferable to schedule a load than a register copy.
- if (TID.mayLoad() && !regBKilled) {
+ if (MCID.mayLoad() && !regBKilled) {
// Determine if a load can be unfolded.
unsigned LoadRegIndex;
unsigned NewOpc =
@@ -936,14 +937,14 @@ TryInstructionTransform(MachineBasicBlock::iterator &mi,
/*UnfoldStore=*/false,
&LoadRegIndex);
if (NewOpc != 0) {
- const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
- if (UnfoldTID.getNumDefs() == 1) {
+ const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
+ if (UnfoldMCID.getNumDefs() == 1) {
MachineFunction &MF = *mbbi->getParent();
// Unfold the load.
DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi);
const TargetRegisterClass *RC =
- UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
+ TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
unsigned Reg = MRI->createVirtualRegister(RC);
SmallVector<MachineInstr *, 2> NewMIs;
if (!TII->unfoldMemoryOperand(MF, mi, Reg,
@@ -1067,7 +1068,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
if (mi->isRegSequence())
RegSequences.push_back(&*mi);
- const TargetInstrDesc &TID = mi->getDesc();
+ const MCInstrDesc &MCID = mi->getDesc();
bool FirstTied = true;
DistanceMap.insert(std::make_pair(mi, ++Dist));
@@ -1077,7 +1078,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
// First scan through all the tied register uses in this instruction
// and record a list of pairs of tied operands for each register.
unsigned NumOps = mi->isInlineAsm()
- ? mi->getNumOperands() : TID.getNumOperands();
+ ? mi->getNumOperands() : MCID.getNumOperands();
for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
unsigned DstIdx = 0;
if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp
index 1850658..a5ec797 100644
--- a/lib/CodeGen/VirtRegRewriter.cpp
+++ b/lib/CodeGen/VirtRegRewriter.cpp
@@ -679,8 +679,8 @@ static void ReMaterialize(MachineBasicBlock &MBB,
VirtRegMap &VRM) {
MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
#ifndef NDEBUG
- const TargetInstrDesc &TID = ReMatDefMI->getDesc();
- assert(TID.getNumDefs() == 1 &&
+ const MCInstrDesc &MCID = ReMatDefMI->getDesc();
+ assert(MCID.getNumDefs() == 1 &&
"Don't know how to remat instructions that define > 1 values!");
#endif
TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
@@ -1483,11 +1483,11 @@ OptimizeByUnfold(MachineBasicBlock::iterator &MII,
/// where SrcReg is r1 and it is tied to r0. Return true if after
/// commuting this instruction it will be r0 = op r2, r1.
static bool CommuteChangesDestination(MachineInstr *DefMI,
- const TargetInstrDesc &TID,
+ const MCInstrDesc &MCID,
unsigned SrcReg,
const TargetInstrInfo *TII,
unsigned &DstIdx) {
- if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
+ if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3)
return false;
if (!DefMI->getOperand(1).isReg() ||
DefMI->getOperand(1).getReg() != SrcReg)
@@ -1527,11 +1527,11 @@ CommuteToFoldReload(MachineBasicBlock::iterator &MII,
MachineInstr &MI = *MII;
MachineBasicBlock::iterator DefMII = prior(MII);
MachineInstr *DefMI = DefMII;
- const TargetInstrDesc &TID = DefMI->getDesc();
+ const MCInstrDesc &MCID = DefMI->getDesc();
unsigned NewDstIdx;
if (DefMII != MBB->begin() &&
- TID.isCommutable() &&
- CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
+ MCID.isCommutable() &&
+ CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) {
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
unsigned NewReg = NewDstMO.getReg();
if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
@@ -1658,9 +1658,9 @@ SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
/// isSafeToDelete - Return true if this instruction doesn't produce any side
/// effect and all of its defs are dead.
static bool isSafeToDelete(MachineInstr &MI) {
- const TargetInstrDesc &TID = MI.getDesc();
- if (TID.mayLoad() || TID.mayStore() || TID.isTerminator() ||
- TID.isCall() || TID.isBarrier() || TID.isReturn() ||
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() ||
+ MCID.isCall() || MCID.isBarrier() || MCID.isReturn() ||
MI.isLabel() || MI.isDebugValue() ||
MI.hasUnmodeledSideEffects())
return false;