diff options
Diffstat (limited to 'lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp')
-rw-r--r-- | lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp | 757 |
1 files changed, 757 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp new file mode 100644 index 0000000..14dcdf9 --- /dev/null +++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp @@ -0,0 +1,757 @@ +//===-- ExternalFunctions.cpp - Implement External Functions --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains both code to deal with invoking "external" functions, but +// also contains code that implements "exported" external functions. +// +// External functions in the interpreter are implemented by +// using the system's dynamic loader to look up the address of the function +// we want to invoke. If a function is found, then one of the +// many lle_* wrapper functions in this file will translate its arguments from +// GenericValues to the types the function is actually expecting, before the +// function is called. +// +//===----------------------------------------------------------------------===// + +#include "Interpreter.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Support/Streams.h" +#include "llvm/System/DynamicLibrary.h" +#include "llvm/Target/TargetData.h" +#include <csignal> +#include <map> +#include <cmath> +using std::vector; + +using namespace llvm; + +typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &); +static std::map<const Function *, ExFunc> Functions; +static std::map<std::string, ExFunc> FuncNames; + +static Interpreter *TheInterpreter; + +static char getTypeID(const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: return 'V'; + case Type::IntegerTyID: + switch (cast<IntegerType>(Ty)->getBitWidth()) { + case 1: return 'o'; + case 8: return 'B'; + case 16: return 'S'; + case 32: return 'I'; + case 64: return 'L'; + default: return 'N'; + } + case Type::FloatTyID: return 'F'; + case Type::DoubleTyID: return 'D'; + case Type::PointerTyID: return 'P'; + case Type::FunctionTyID:return 'M'; + case Type::StructTyID: return 'T'; + case Type::ArrayTyID: return 'A'; + case Type::OpaqueTyID: return 'O'; + default: return 'U'; + } +} + +static ExFunc lookupFunction(const Function *F) { + // Function not found, look it up... start by figuring out what the + // composite function name should be. + std::string ExtName = "lle_"; + const FunctionType *FT = F->getFunctionType(); + for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) + ExtName += getTypeID(FT->getContainedType(i)); + ExtName += "_" + F->getName(); + + ExFunc FnPtr = FuncNames[ExtName]; + if (FnPtr == 0) + FnPtr = FuncNames["lle_X_"+F->getName()]; + if (FnPtr == 0) // Try calling a generic function... if it exists... + FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( + ("lle_X_"+F->getName()).c_str()); + if (FnPtr == 0) + FnPtr = (ExFunc)(intptr_t) + sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); + if (FnPtr != 0) + Functions.insert(std::make_pair(F, FnPtr)); // Cache for later + return FnPtr; +} + +GenericValue Interpreter::callExternalFunction(Function *F, + const std::vector<GenericValue> &ArgVals) { + TheInterpreter = this; + + // Do a lookup to see if the function is in our cache... this should just be a + // deferred annotation! + std::map<const Function *, ExFunc>::iterator FI = Functions.find(F); + ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second; + if (Fn == 0) { + cerr << "Tried to execute an unknown external function: " + << F->getType()->getDescription() << " " << F->getName() << "\n"; + if (F->getName() == "__main") + return GenericValue(); + abort(); + } + + // TODO: FIXME when types are not const! + GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()), + ArgVals); + return Result; +} + + +//===----------------------------------------------------------------------===// +// Functions "exported" to the running application... +// +extern "C" { // Don't add C++ manglings to llvm mangling :) + +// void putchar(ubyte) +GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){ + cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush; + return Args[0]; +} + +// void _IO_putc(int c, FILE* fp) +GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){ +#ifdef __linux__ + _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal); +#else + assert(0 && "Can't call _IO_putc on this platform"); +#endif + return Args[0]; +} + +// void atexit(Function*) +GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); + GenericValue GV; + GV.IntVal = 0; + return GV; +} + +// void exit(int) +GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) { + TheInterpreter->exitCalled(Args[0]); + return GenericValue(); +} + +// void abort(void) +GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) { + raise (SIGABRT); + return GenericValue(); +} + +// void *malloc(uint) +GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1 && "Malloc expects one argument!"); + assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer"); + return PTOGV(malloc(Args[0].IntVal.getZExtValue())); +} + +// void *calloc(uint, uint) +GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2 && "calloc expects two arguments!"); + assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer"); + return PTOGV(calloc(Args[0].IntVal.getZExtValue(), + Args[1].IntVal.getZExtValue())); +} + +// void *calloc(uint, uint) +GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2 && "calloc expects two arguments!"); + assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer"); + return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue())); +} + +// void free(void *) +GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + free(GVTOP(Args[0])); + return GenericValue(); +} + +// int atoi(char *) +GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0]))); + return GV; +} + +// double pow(double, double) +GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); + return GV; +} + +// double exp(double) +GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = exp(Args[0].DoubleVal); + return GV; +} + +// double sqrt(double) +GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = sqrt(Args[0].DoubleVal); + return GV; +} + +// double log(double) +GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = log(Args[0].DoubleVal); + return GV; +} + +// double floor(double) +GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = floor(Args[0].DoubleVal); + return GV; +} + +#ifdef HAVE_RAND48 + +// double drand48() +GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 0); + GenericValue GV; + GV.DoubleVal = drand48(); + return GV; +} + +// long lrand48() +GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 0); + GenericValue GV; + GV.Int32Val = lrand48(); + return GV; +} + +// void srand48(long) +GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + srand48(Args[0].Int32Val); + return GenericValue(); +} + +#endif + +// int rand() +GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 0); + GenericValue GV; + GV.IntVal = APInt(32, rand()); + return GV; +} + +// void srand(uint) +GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + srand(Args[0].IntVal.getZExtValue()); + return GenericValue(); +} + +// int puts(const char*) +GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0]))); + return GV; +} + +// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make +// output useful. +GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) { + char *OutputBuffer = (char *)GVTOP(Args[0]); + const char *FmtStr = (const char *)GVTOP(Args[1]); + unsigned ArgNo = 2; + + // printf should return # chars printed. This is completely incorrect, but + // close enough for now. + GenericValue GV; + GV.IntVal = APInt(32, strlen(FmtStr)); + while (1) { + switch (*FmtStr) { + case 0: return GV; // Null terminator... + default: // Normal nonspecial character + sprintf(OutputBuffer++, "%c", *FmtStr++); + break; + case '\\': { // Handle escape codes + sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); + FmtStr += 2; OutputBuffer += 2; + break; + } + case '%': { // Handle format specifiers + char FmtBuf[100] = "", Buffer[1000] = ""; + char *FB = FmtBuf; + *FB++ = *FmtStr++; + char Last = *FB++ = *FmtStr++; + unsigned HowLong = 0; + while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && + Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && + Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && + Last != 'p' && Last != 's' && Last != '%') { + if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's + Last = *FB++ = *FmtStr++; + } + *FB = 0; + + switch (Last) { + case '%': + sprintf(Buffer, FmtBuf); break; + case 'c': + sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); + break; + case 'd': case 'i': + case 'u': case 'o': + case 'x': case 'X': + if (HowLong >= 1) { + if (HowLong == 1 && + TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && + sizeof(long) < sizeof(int64_t)) { + // Make sure we use %lld with a 64 bit argument because we might be + // compiling LLI on a 32 bit compiler. + unsigned Size = strlen(FmtBuf); + FmtBuf[Size] = FmtBuf[Size-1]; + FmtBuf[Size+1] = 0; + FmtBuf[Size-1] = 'l'; + } + sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); + } else + sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); + break; + case 'e': case 'E': case 'g': case 'G': case 'f': + sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; + case 'p': + sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; + case 's': + sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; + default: cerr << "<unknown printf code '" << *FmtStr << "'!>"; + ArgNo++; break; + } + strcpy(OutputBuffer, Buffer); + OutputBuffer += strlen(Buffer); + } + break; + } + } + return GV; +} + +// int printf(sbyte *, ...) - a very rough implementation to make output useful. +GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) { + char Buffer[10000]; + vector<GenericValue> NewArgs; + NewArgs.push_back(PTOGV((void*)&Buffer[0])); + NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); + GenericValue GV = lle_X_sprintf(FT, NewArgs); + cout << Buffer; + return GV; +} + +static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, + void *Arg2, void *Arg3, void *Arg4, void *Arg5, + void *Arg6, void *Arg7, void *Arg8) { + void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; + + // Loop over the format string, munging read values as appropriate (performs + // byteswaps as necessary). + unsigned ArgNo = 0; + while (*Fmt) { + if (*Fmt++ == '%') { + // Read any flag characters that may be present... + bool Suppress = false; + bool Half = false; + bool Long = false; + bool LongLong = false; // long long or long double + + while (1) { + switch (*Fmt++) { + case '*': Suppress = true; break; + case 'a': /*Allocate = true;*/ break; // We don't need to track this + case 'h': Half = true; break; + case 'l': Long = true; break; + case 'q': + case 'L': LongLong = true; break; + default: + if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs + goto Out; + } + } + Out: + + // Read the conversion character + if (!Suppress && Fmt[-1] != '%') { // Nothing to do? + unsigned Size = 0; + const Type *Ty = 0; + + switch (Fmt[-1]) { + case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': + case 'd': + if (Long || LongLong) { + Size = 8; Ty = Type::Int64Ty; + } else if (Half) { + Size = 4; Ty = Type::Int16Ty; + } else { + Size = 4; Ty = Type::Int32Ty; + } + break; + + case 'e': case 'g': case 'E': + case 'f': + if (Long || LongLong) { + Size = 8; Ty = Type::DoubleTy; + } else { + Size = 4; Ty = Type::FloatTy; + } + break; + + case 's': case 'c': case '[': // No byteswap needed + Size = 1; + Ty = Type::Int8Ty; + break; + + default: break; + } + + if (Size) { + GenericValue GV; + void *Arg = Args[ArgNo++]; + memcpy(&GV, Arg, Size); + TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); + } + } + } + } +} + +// int sscanf(const char *format, ...); +GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) { + assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9])); + ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9], 0); + return GV; +} + +// int scanf(const char *format, ...); +GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) { + assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); + + char *Args[10]; + for (unsigned i = 0; i < args.size(); ++i) + Args[i] = (char*)GVTOP(args[i]); + + GenericValue GV; + GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9])); + ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], + Args[5], Args[6], Args[7], Args[8], Args[9]); + return GV; +} + + +// int clock(void) - Profiling implementation +GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) { + extern unsigned int clock(void); + GenericValue GV; + GV.IntVal = APInt(32, clock()); + return GV; +} + + +//===----------------------------------------------------------------------===// +// String Functions... +//===----------------------------------------------------------------------===// + +// int strcmp(const char *S1, const char *S2); +GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + GenericValue Ret; + Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); + return Ret; +} + +// char *strcat(char *Dest, const char *src); +GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer"); + return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); +} + +// char *strcpy(char *Dest, const char *src); +GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer"); + return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); +} + +static GenericValue size_t_to_GV (size_t n) { + GenericValue Ret; + if (sizeof (size_t) == sizeof (uint64_t)) { + Ret.IntVal = APInt(64, n); + } else { + assert (sizeof (size_t) == sizeof (unsigned int)); + Ret.IntVal = APInt(32, n); + } + return Ret; +} + +static size_t GV_to_size_t (GenericValue GV) { + size_t count; + if (sizeof (size_t) == sizeof (uint64_t)) { + count = (size_t)GV.IntVal.getZExtValue(); + } else { + assert (sizeof (size_t) == sizeof (unsigned int)); + count = (size_t)GV.IntVal.getZExtValue(); + } + return count; +} + +// size_t strlen(const char *src); +GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + size_t strlenResult = strlen ((char *) GVTOP (Args[0])); + return size_t_to_GV (strlenResult); +} + +// char *strdup(const char *src); +GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer"); + return PTOGV(strdup((char*)GVTOP(Args[0]))); +} + +// char *__strdup(const char *src); +GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer"); + return PTOGV(strdup((char*)GVTOP(Args[0]))); +} + +// void *memset(void *S, int C, size_t N) +GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 3); + size_t count = GV_to_size_t (Args[2]); + assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer"); + return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), + count)); +} + +// void *memcpy(void *Dest, void *src, size_t Size); +GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 3); + assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer"); + size_t count = GV_to_size_t (Args[2]); + return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); +} + +//===----------------------------------------------------------------------===// +// IO Functions... +//===----------------------------------------------------------------------===// + +// getFILE - Turn a pointer in the host address space into a legit pointer in +// the interpreter address space. This is an identity transformation. +#define getFILE(ptr) ((FILE*)ptr) + +// FILE *fopen(const char *filename, const char *mode); +GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer"); + return PTOGV(fopen((const char *)GVTOP(Args[0]), + (const char *)GVTOP(Args[1]))); +} + +// int fclose(FILE *F); +GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0])))); + return GV; +} + +// int feof(FILE *stream); +GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + + GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0])))); + return GV; +} + +// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); +GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 4); + size_t result; + + result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), + GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); + return size_t_to_GV (result); +} + +// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); +GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 4); + size_t result; + + result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), + GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); + return size_t_to_GV (result); +} + +// char *fgets(char *s, int n, FILE *stream); +GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 3); + return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(), + getFILE(GVTOP(Args[2])))); +} + +// FILE *freopen(const char *path, const char *mode, FILE *stream); +GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 3); + assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer"); + return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), + getFILE(GVTOP(Args[2])))); +} + +// int fflush(FILE *stream); +GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0])))); + return GV; +} + +// int getc(FILE *stream); +GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0])))); + return GV; +} + +// int _IO_getc(FILE *stream); +GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) { + return lle_X_getc(F, Args); +} + +// int fputc(int C, FILE *stream); +GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), + getFILE(GVTOP(Args[1])))); + return GV; +} + +// int ungetc(int C, FILE *stream); +GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), + getFILE(GVTOP(Args[1])))); + return GV; +} + +// int ferror (FILE *stream); +GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0])))); + return GV; +} + +// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output +// useful. +GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) { + assert(Args.size() >= 2); + char Buffer[10000]; + vector<GenericValue> NewArgs; + NewArgs.push_back(PTOGV(Buffer)); + NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); + GenericValue GV = lle_X_sprintf(FT, NewArgs); + + fputs(Buffer, getFILE(GVTOP(Args[0]))); + return GV; +} + +} // End extern "C" + + +void Interpreter::initializeExternalFunctions() { + FuncNames["lle_X_putchar"] = lle_X_putchar; + FuncNames["lle_X__IO_putc"] = lle_X__IO_putc; + FuncNames["lle_X_exit"] = lle_X_exit; + FuncNames["lle_X_abort"] = lle_X_abort; + FuncNames["lle_X_malloc"] = lle_X_malloc; + FuncNames["lle_X_calloc"] = lle_X_calloc; + FuncNames["lle_X_realloc"] = lle_X_realloc; + FuncNames["lle_X_free"] = lle_X_free; + FuncNames["lle_X_atoi"] = lle_X_atoi; + FuncNames["lle_X_pow"] = lle_X_pow; + FuncNames["lle_X_exp"] = lle_X_exp; + FuncNames["lle_X_log"] = lle_X_log; + FuncNames["lle_X_floor"] = lle_X_floor; + FuncNames["lle_X_srand"] = lle_X_srand; + FuncNames["lle_X_rand"] = lle_X_rand; +#ifdef HAVE_RAND48 + FuncNames["lle_X_drand48"] = lle_X_drand48; + FuncNames["lle_X_srand48"] = lle_X_srand48; + FuncNames["lle_X_lrand48"] = lle_X_lrand48; +#endif + FuncNames["lle_X_sqrt"] = lle_X_sqrt; + FuncNames["lle_X_puts"] = lle_X_puts; + FuncNames["lle_X_printf"] = lle_X_printf; + FuncNames["lle_X_sprintf"] = lle_X_sprintf; + FuncNames["lle_X_sscanf"] = lle_X_sscanf; + FuncNames["lle_X_scanf"] = lle_X_scanf; + FuncNames["lle_i_clock"] = lle_i_clock; + + FuncNames["lle_X_strcmp"] = lle_X_strcmp; + FuncNames["lle_X_strcat"] = lle_X_strcat; + FuncNames["lle_X_strcpy"] = lle_X_strcpy; + FuncNames["lle_X_strlen"] = lle_X_strlen; + FuncNames["lle_X___strdup"] = lle_X___strdup; + FuncNames["lle_X_memset"] = lle_X_memset; + FuncNames["lle_X_memcpy"] = lle_X_memcpy; + + FuncNames["lle_X_fopen"] = lle_X_fopen; + FuncNames["lle_X_fclose"] = lle_X_fclose; + FuncNames["lle_X_feof"] = lle_X_feof; + FuncNames["lle_X_fread"] = lle_X_fread; + FuncNames["lle_X_fwrite"] = lle_X_fwrite; + FuncNames["lle_X_fgets"] = lle_X_fgets; + FuncNames["lle_X_fflush"] = lle_X_fflush; + FuncNames["lle_X_fgetc"] = lle_X_getc; + FuncNames["lle_X_getc"] = lle_X_getc; + FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; + FuncNames["lle_X_fputc"] = lle_X_fputc; + FuncNames["lle_X_ungetc"] = lle_X_ungetc; + FuncNames["lle_X_fprintf"] = lle_X_fprintf; + FuncNames["lle_X_freopen"] = lle_X_freopen; +} + |