aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp')
-rw-r--r--lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp757
1 files changed, 757 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
new file mode 100644
index 0000000..14dcdf9
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -0,0 +1,757 @@
+//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains both code to deal with invoking "external" functions, but
+// also contains code that implements "exported" external functions.
+//
+// External functions in the interpreter are implemented by
+// using the system's dynamic loader to look up the address of the function
+// we want to invoke. If a function is found, then one of the
+// many lle_* wrapper functions in this file will translate its arguments from
+// GenericValues to the types the function is actually expecting, before the
+// function is called.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Target/TargetData.h"
+#include <csignal>
+#include <map>
+#include <cmath>
+using std::vector;
+
+using namespace llvm;
+
+typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
+static std::map<const Function *, ExFunc> Functions;
+static std::map<std::string, ExFunc> FuncNames;
+
+static Interpreter *TheInterpreter;
+
+static char getTypeID(const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return 'V';
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 1: return 'o';
+ case 8: return 'B';
+ case 16: return 'S';
+ case 32: return 'I';
+ case 64: return 'L';
+ default: return 'N';
+ }
+ case Type::FloatTyID: return 'F';
+ case Type::DoubleTyID: return 'D';
+ case Type::PointerTyID: return 'P';
+ case Type::FunctionTyID:return 'M';
+ case Type::StructTyID: return 'T';
+ case Type::ArrayTyID: return 'A';
+ case Type::OpaqueTyID: return 'O';
+ default: return 'U';
+ }
+}
+
+static ExFunc lookupFunction(const Function *F) {
+ // Function not found, look it up... start by figuring out what the
+ // composite function name should be.
+ std::string ExtName = "lle_";
+ const FunctionType *FT = F->getFunctionType();
+ for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
+ ExtName += getTypeID(FT->getContainedType(i));
+ ExtName += "_" + F->getName();
+
+ ExFunc FnPtr = FuncNames[ExtName];
+ if (FnPtr == 0)
+ FnPtr = FuncNames["lle_X_"+F->getName()];
+ if (FnPtr == 0) // Try calling a generic function... if it exists...
+ FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
+ ("lle_X_"+F->getName()).c_str());
+ if (FnPtr == 0)
+ FnPtr = (ExFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+ if (FnPtr != 0)
+ Functions.insert(std::make_pair(F, FnPtr)); // Cache for later
+ return FnPtr;
+}
+
+GenericValue Interpreter::callExternalFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals) {
+ TheInterpreter = this;
+
+ // Do a lookup to see if the function is in our cache... this should just be a
+ // deferred annotation!
+ std::map<const Function *, ExFunc>::iterator FI = Functions.find(F);
+ ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second;
+ if (Fn == 0) {
+ cerr << "Tried to execute an unknown external function: "
+ << F->getType()->getDescription() << " " << F->getName() << "\n";
+ if (F->getName() == "__main")
+ return GenericValue();
+ abort();
+ }
+
+ // TODO: FIXME when types are not const!
+ GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
+ ArgVals);
+ return Result;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Functions "exported" to the running application...
+//
+extern "C" { // Don't add C++ manglings to llvm mangling :)
+
+// void putchar(ubyte)
+GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
+ cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
+ return Args[0];
+}
+
+// void _IO_putc(int c, FILE* fp)
+GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
+#ifdef __linux__
+ _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
+#else
+ assert(0 && "Can't call _IO_putc on this platform");
+#endif
+ return Args[0];
+}
+
+// void atexit(Function*)
+GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+// void exit(int)
+GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
+ TheInterpreter->exitCalled(Args[0]);
+ return GenericValue();
+}
+
+// void abort(void)
+GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
+ raise (SIGABRT);
+ return GenericValue();
+}
+
+// void *malloc(uint)
+GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1 && "Malloc expects one argument!");
+ assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
+ return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
+}
+
+// void *calloc(uint, uint)
+GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2 && "calloc expects two arguments!");
+ assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
+ return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
+ Args[1].IntVal.getZExtValue()));
+}
+
+// void *calloc(uint, uint)
+GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2 && "calloc expects two arguments!");
+ assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
+ return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
+}
+
+// void free(void *)
+GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ free(GVTOP(Args[0]));
+ return GenericValue();
+}
+
+// int atoi(char *)
+GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
+ return GV;
+}
+
+// double pow(double, double)
+GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
+ return GV;
+}
+
+// double exp(double)
+GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = exp(Args[0].DoubleVal);
+ return GV;
+}
+
+// double sqrt(double)
+GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = sqrt(Args[0].DoubleVal);
+ return GV;
+}
+
+// double log(double)
+GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = log(Args[0].DoubleVal);
+ return GV;
+}
+
+// double floor(double)
+GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = floor(Args[0].DoubleVal);
+ return GV;
+}
+
+#ifdef HAVE_RAND48
+
+// double drand48()
+GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 0);
+ GenericValue GV;
+ GV.DoubleVal = drand48();
+ return GV;
+}
+
+// long lrand48()
+GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 0);
+ GenericValue GV;
+ GV.Int32Val = lrand48();
+ return GV;
+}
+
+// void srand48(long)
+GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ srand48(Args[0].Int32Val);
+ return GenericValue();
+}
+
+#endif
+
+// int rand()
+GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 0);
+ GenericValue GV;
+ GV.IntVal = APInt(32, rand());
+ return GV;
+}
+
+// void srand(uint)
+GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ srand(Args[0].IntVal.getZExtValue());
+ return GenericValue();
+}
+
+// int puts(const char*)
+GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
+ return GV;
+}
+
+// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
+// output useful.
+GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+ char *OutputBuffer = (char *)GVTOP(Args[0]);
+ const char *FmtStr = (const char *)GVTOP(Args[1]);
+ unsigned ArgNo = 2;
+
+ // printf should return # chars printed. This is completely incorrect, but
+ // close enough for now.
+ GenericValue GV;
+ GV.IntVal = APInt(32, strlen(FmtStr));
+ while (1) {
+ switch (*FmtStr) {
+ case 0: return GV; // Null terminator...
+ default: // Normal nonspecial character
+ sprintf(OutputBuffer++, "%c", *FmtStr++);
+ break;
+ case '\\': { // Handle escape codes
+ sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
+ FmtStr += 2; OutputBuffer += 2;
+ break;
+ }
+ case '%': { // Handle format specifiers
+ char FmtBuf[100] = "", Buffer[1000] = "";
+ char *FB = FmtBuf;
+ *FB++ = *FmtStr++;
+ char Last = *FB++ = *FmtStr++;
+ unsigned HowLong = 0;
+ while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
+ Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
+ Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
+ Last != 'p' && Last != 's' && Last != '%') {
+ if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
+ Last = *FB++ = *FmtStr++;
+ }
+ *FB = 0;
+
+ switch (Last) {
+ case '%':
+ sprintf(Buffer, FmtBuf); break;
+ case 'c':
+ sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'd': case 'i':
+ case 'u': case 'o':
+ case 'x': case 'X':
+ if (HowLong >= 1) {
+ if (HowLong == 1 &&
+ TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
+ sizeof(long) < sizeof(int64_t)) {
+ // Make sure we use %lld with a 64 bit argument because we might be
+ // compiling LLI on a 32 bit compiler.
+ unsigned Size = strlen(FmtBuf);
+ FmtBuf[Size] = FmtBuf[Size-1];
+ FmtBuf[Size+1] = 0;
+ FmtBuf[Size-1] = 'l';
+ }
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
+ } else
+ sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'e': case 'E': case 'g': case 'G': case 'f':
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
+ case 'p':
+ sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
+ case 's':
+ sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
+ default: cerr << "<unknown printf code '" << *FmtStr << "'!>";
+ ArgNo++; break;
+ }
+ strcpy(OutputBuffer, Buffer);
+ OutputBuffer += strlen(Buffer);
+ }
+ break;
+ }
+ }
+ return GV;
+}
+
+// int printf(sbyte *, ...) - a very rough implementation to make output useful.
+GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
+ char Buffer[10000];
+ vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV((void*)&Buffer[0]));
+ NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+ cout << Buffer;
+ return GV;
+}
+
+static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
+ void *Arg2, void *Arg3, void *Arg4, void *Arg5,
+ void *Arg6, void *Arg7, void *Arg8) {
+ void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
+
+ // Loop over the format string, munging read values as appropriate (performs
+ // byteswaps as necessary).
+ unsigned ArgNo = 0;
+ while (*Fmt) {
+ if (*Fmt++ == '%') {
+ // Read any flag characters that may be present...
+ bool Suppress = false;
+ bool Half = false;
+ bool Long = false;
+ bool LongLong = false; // long long or long double
+
+ while (1) {
+ switch (*Fmt++) {
+ case '*': Suppress = true; break;
+ case 'a': /*Allocate = true;*/ break; // We don't need to track this
+ case 'h': Half = true; break;
+ case 'l': Long = true; break;
+ case 'q':
+ case 'L': LongLong = true; break;
+ default:
+ if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
+ goto Out;
+ }
+ }
+ Out:
+
+ // Read the conversion character
+ if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
+ unsigned Size = 0;
+ const Type *Ty = 0;
+
+ switch (Fmt[-1]) {
+ case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
+ case 'd':
+ if (Long || LongLong) {
+ Size = 8; Ty = Type::Int64Ty;
+ } else if (Half) {
+ Size = 4; Ty = Type::Int16Ty;
+ } else {
+ Size = 4; Ty = Type::Int32Ty;
+ }
+ break;
+
+ case 'e': case 'g': case 'E':
+ case 'f':
+ if (Long || LongLong) {
+ Size = 8; Ty = Type::DoubleTy;
+ } else {
+ Size = 4; Ty = Type::FloatTy;
+ }
+ break;
+
+ case 's': case 'c': case '[': // No byteswap needed
+ Size = 1;
+ Ty = Type::Int8Ty;
+ break;
+
+ default: break;
+ }
+
+ if (Size) {
+ GenericValue GV;
+ void *Arg = Args[ArgNo++];
+ memcpy(&GV, Arg, Size);
+ TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
+ }
+ }
+ }
+ }
+}
+
+// int sscanf(const char *format, ...);
+GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9], 0);
+ return GV;
+}
+
+// int scanf(const char *format, ...);
+GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]);
+ return GV;
+}
+
+
+// int clock(void) - Profiling implementation
+GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
+ extern unsigned int clock(void);
+ GenericValue GV;
+ GV.IntVal = APInt(32, clock());
+ return GV;
+}
+
+
+//===----------------------------------------------------------------------===//
+// String Functions...
+//===----------------------------------------------------------------------===//
+
+// int strcmp(const char *S1, const char *S2);
+GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue Ret;
+ Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+ return Ret;
+}
+
+// char *strcat(char *Dest, const char *src);
+GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
+ return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+}
+
+// char *strcpy(char *Dest, const char *src);
+GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
+ return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+}
+
+static GenericValue size_t_to_GV (size_t n) {
+ GenericValue Ret;
+ if (sizeof (size_t) == sizeof (uint64_t)) {
+ Ret.IntVal = APInt(64, n);
+ } else {
+ assert (sizeof (size_t) == sizeof (unsigned int));
+ Ret.IntVal = APInt(32, n);
+ }
+ return Ret;
+}
+
+static size_t GV_to_size_t (GenericValue GV) {
+ size_t count;
+ if (sizeof (size_t) == sizeof (uint64_t)) {
+ count = (size_t)GV.IntVal.getZExtValue();
+ } else {
+ assert (sizeof (size_t) == sizeof (unsigned int));
+ count = (size_t)GV.IntVal.getZExtValue();
+ }
+ return count;
+}
+
+// size_t strlen(const char *src);
+GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
+ return size_t_to_GV (strlenResult);
+}
+
+// char *strdup(const char *src);
+GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
+ return PTOGV(strdup((char*)GVTOP(Args[0])));
+}
+
+// char *__strdup(const char *src);
+GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
+ return PTOGV(strdup((char*)GVTOP(Args[0])));
+}
+
+// void *memset(void *S, int C, size_t N)
+GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ size_t count = GV_to_size_t (Args[2]);
+ assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
+ return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
+ count));
+}
+
+// void *memcpy(void *Dest, void *src, size_t Size);
+GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
+ size_t count = GV_to_size_t (Args[2]);
+ return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
+}
+
+//===----------------------------------------------------------------------===//
+// IO Functions...
+//===----------------------------------------------------------------------===//
+
+// getFILE - Turn a pointer in the host address space into a legit pointer in
+// the interpreter address space. This is an identity transformation.
+#define getFILE(ptr) ((FILE*)ptr)
+
+// FILE *fopen(const char *filename, const char *mode);
+GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
+ return PTOGV(fopen((const char *)GVTOP(Args[0]),
+ (const char *)GVTOP(Args[1])));
+}
+
+// int fclose(FILE *F);
+GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int feof(FILE *stream);
+GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+
+ GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
+GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 4);
+ size_t result;
+
+ result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
+ GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
+ return size_t_to_GV (result);
+}
+
+// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
+GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 4);
+ size_t result;
+
+ result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
+ GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
+ return size_t_to_GV (result);
+}
+
+// char *fgets(char *s, int n, FILE *stream);
+GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[2]))));
+}
+
+// FILE *freopen(const char *path, const char *mode, FILE *stream);
+GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
+ return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
+ getFILE(GVTOP(Args[2]))));
+}
+
+// int fflush(FILE *stream);
+GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int getc(FILE *stream);
+GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int _IO_getc(FILE *stream);
+GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
+ return lle_X_getc(F, Args);
+}
+
+// int fputc(int C, FILE *stream);
+GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[1]))));
+ return GV;
+}
+
+// int ungetc(int C, FILE *stream);
+GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[1]))));
+ return GV;
+}
+
+// int ferror (FILE *stream);
+GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
+// useful.
+GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() >= 2);
+ char Buffer[10000];
+ vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV(Buffer));
+ NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+
+ fputs(Buffer, getFILE(GVTOP(Args[0])));
+ return GV;
+}
+
+} // End extern "C"
+
+
+void Interpreter::initializeExternalFunctions() {
+ FuncNames["lle_X_putchar"] = lle_X_putchar;
+ FuncNames["lle_X__IO_putc"] = lle_X__IO_putc;
+ FuncNames["lle_X_exit"] = lle_X_exit;
+ FuncNames["lle_X_abort"] = lle_X_abort;
+ FuncNames["lle_X_malloc"] = lle_X_malloc;
+ FuncNames["lle_X_calloc"] = lle_X_calloc;
+ FuncNames["lle_X_realloc"] = lle_X_realloc;
+ FuncNames["lle_X_free"] = lle_X_free;
+ FuncNames["lle_X_atoi"] = lle_X_atoi;
+ FuncNames["lle_X_pow"] = lle_X_pow;
+ FuncNames["lle_X_exp"] = lle_X_exp;
+ FuncNames["lle_X_log"] = lle_X_log;
+ FuncNames["lle_X_floor"] = lle_X_floor;
+ FuncNames["lle_X_srand"] = lle_X_srand;
+ FuncNames["lle_X_rand"] = lle_X_rand;
+#ifdef HAVE_RAND48
+ FuncNames["lle_X_drand48"] = lle_X_drand48;
+ FuncNames["lle_X_srand48"] = lle_X_srand48;
+ FuncNames["lle_X_lrand48"] = lle_X_lrand48;
+#endif
+ FuncNames["lle_X_sqrt"] = lle_X_sqrt;
+ FuncNames["lle_X_puts"] = lle_X_puts;
+ FuncNames["lle_X_printf"] = lle_X_printf;
+ FuncNames["lle_X_sprintf"] = lle_X_sprintf;
+ FuncNames["lle_X_sscanf"] = lle_X_sscanf;
+ FuncNames["lle_X_scanf"] = lle_X_scanf;
+ FuncNames["lle_i_clock"] = lle_i_clock;
+
+ FuncNames["lle_X_strcmp"] = lle_X_strcmp;
+ FuncNames["lle_X_strcat"] = lle_X_strcat;
+ FuncNames["lle_X_strcpy"] = lle_X_strcpy;
+ FuncNames["lle_X_strlen"] = lle_X_strlen;
+ FuncNames["lle_X___strdup"] = lle_X___strdup;
+ FuncNames["lle_X_memset"] = lle_X_memset;
+ FuncNames["lle_X_memcpy"] = lle_X_memcpy;
+
+ FuncNames["lle_X_fopen"] = lle_X_fopen;
+ FuncNames["lle_X_fclose"] = lle_X_fclose;
+ FuncNames["lle_X_feof"] = lle_X_feof;
+ FuncNames["lle_X_fread"] = lle_X_fread;
+ FuncNames["lle_X_fwrite"] = lle_X_fwrite;
+ FuncNames["lle_X_fgets"] = lle_X_fgets;
+ FuncNames["lle_X_fflush"] = lle_X_fflush;
+ FuncNames["lle_X_fgetc"] = lle_X_getc;
+ FuncNames["lle_X_getc"] = lle_X_getc;
+ FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
+ FuncNames["lle_X_fputc"] = lle_X_fputc;
+ FuncNames["lle_X_ungetc"] = lle_X_ungetc;
+ FuncNames["lle_X_fprintf"] = lle_X_fprintf;
+ FuncNames["lle_X_freopen"] = lle_X_freopen;
+}
+