aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/RuntimeDyld
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine/RuntimeDyld')
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt1
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/DyldELFObject.h388
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp76
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp308
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h178
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h93
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp522
-rw-r--r--lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h94
8 files changed, 1351 insertions, 309 deletions
diff --git a/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt b/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt
index 59bdfee3..002e63c 100644
--- a/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt
+++ b/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt
@@ -1,4 +1,5 @@
add_llvm_library(LLVMRuntimeDyld
RuntimeDyld.cpp
RuntimeDyldMachO.cpp
+ RuntimeDyldELF.cpp
)
diff --git a/lib/ExecutionEngine/RuntimeDyld/DyldELFObject.h b/lib/ExecutionEngine/RuntimeDyld/DyldELFObject.h
new file mode 100644
index 0000000..2d777da
--- /dev/null
+++ b/lib/ExecutionEngine/RuntimeDyld/DyldELFObject.h
@@ -0,0 +1,388 @@
+//===-- DyldELFObject.h - Dynamically loaded ELF object ----0---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Dynamically loaded ELF object class, a subclass of ELFObjectFile. Used
+// to represent a loadable ELF image.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIMEDYLD_DYLDELFOBJECT_H
+#define LLVM_RUNTIMEDYLD_DYLDELFOBJECT_H
+
+#include "llvm/Object/ELF.h"
+
+
+namespace llvm {
+
+using support::endianness;
+using namespace llvm::object;
+
+template<support::endianness target_endianness, bool is64Bits>
+class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
+ LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
+
+ typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
+ typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
+ typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
+ typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
+
+ typedef typename ELFObjectFile<target_endianness, is64Bits>::
+ Elf_Ehdr Elf_Ehdr;
+ Elf_Ehdr *Header;
+
+ // Update section headers according to the current location in memory
+ virtual void rebaseObject(std::vector<uint8_t*> *MemoryMap);
+ // Record memory addresses for cleanup
+ virtual void saveAddress(std::vector<uint8_t*> *MemoryMap, uint8_t *addr);
+
+protected:
+ virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
+
+public:
+ DyldELFObject(MemoryBuffer *Object, std::vector<uint8_t*> *MemoryMap,
+ error_code &ec);
+
+ // Methods for type inquiry through isa, cast, and dyn_cast
+ static inline bool classof(const Binary *v) {
+ return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
+ && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
+ }
+ static inline bool classof(
+ const ELFObjectFile<target_endianness, is64Bits> *v) {
+ return v->isDyldType();
+ }
+ static inline bool classof(const DyldELFObject *v) {
+ return true;
+ }
+};
+
+template<support::endianness target_endianness, bool is64Bits>
+DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
+ std::vector<uint8_t*> *MemoryMap, error_code &ec)
+ : ELFObjectFile<target_endianness, is64Bits>(Object, ec)
+ , Header(0) {
+ this->isDyldELFObject = true;
+ Header = const_cast<Elf_Ehdr *>(
+ reinterpret_cast<const Elf_Ehdr *>(this->base()));
+ if (Header->e_shoff == 0)
+ return;
+
+ // Mark the image as a dynamic shared library
+ Header->e_type = ELF::ET_DYN;
+
+ rebaseObject(MemoryMap);
+}
+
+// Walk through the ELF headers, updating virtual addresses to reflect where
+// the object is currently loaded in memory
+template<support::endianness target_endianness, bool is64Bits>
+void DyldELFObject<target_endianness, is64Bits>::rebaseObject(
+ std::vector<uint8_t*> *MemoryMap) {
+ typedef typename ELFDataTypeTypedefHelper<
+ target_endianness, is64Bits>::value_type addr_type;
+
+ uint8_t *base_p = const_cast<uint8_t *>(this->base());
+ Elf_Shdr *sectionTable =
+ reinterpret_cast<Elf_Shdr *>(base_p + Header->e_shoff);
+ uint64_t numSections = this->getNumSections();
+
+ // Allocate memory space for NOBITS sections (such as .bss), which only exist
+ // in memory, but don't occupy space in the object file.
+ // Update the address in the section headers to reflect this allocation.
+ for (uint64_t index = 0; index < numSections; index++) {
+ Elf_Shdr *sec = reinterpret_cast<Elf_Shdr *>(
+ reinterpret_cast<char *>(sectionTable) + index * Header->e_shentsize);
+
+ // Only update sections that are meant to be present in program memory
+ if (sec->sh_flags & ELF::SHF_ALLOC) {
+ uint8_t *addr = base_p + sec->sh_offset;
+ if (sec->sh_type == ELF::SHT_NOBITS) {
+ addr = static_cast<uint8_t *>(calloc(sec->sh_size, 1));
+ saveAddress(MemoryMap, addr);
+ }
+ else {
+ // FIXME: Currently memory with RWX permissions is allocated. In the
+ // future, make sure that permissions are as necessary
+ if (sec->sh_flags & ELF::SHF_WRITE) {
+ // see FIXME above
+ }
+ if (sec->sh_flags & ELF::SHF_EXECINSTR) {
+ // see FIXME above
+ }
+ }
+ assert(sizeof(addr_type) == sizeof(intptr_t) &&
+ "Cross-architecture ELF dy-load is not supported!");
+ sec->sh_addr = static_cast<addr_type>(intptr_t(addr));
+ }
+ }
+
+ // Now allocate actual space for COMMON symbols, which also don't occupy
+ // space in the object file.
+ // We want to allocate space for all COMMON symbols at once, so the flow is:
+ // 1. Go over all symbols, find those that are in COMMON. For each such
+ // symbol, record its size and the value field in its symbol header in a
+ // special vector.
+ // 2. Allocate memory for all COMMON symbols in one fell swoop.
+ // 3. Using the recorded information from (1), update the address fields in
+ // the symbol headers of the COMMON symbols to reflect their allocated
+ // address.
+ uint64_t TotalSize = 0;
+ std::vector<std::pair<Elf_Addr *, uint64_t> > SymbAddrInfo;
+ error_code ec = object_error::success;
+ for (symbol_iterator si = this->begin_symbols(),
+ se = this->end_symbols(); si != se; si.increment(ec)) {
+ uint64_t Size = 0;
+ ec = si->getSize(Size);
+ Elf_Sym* symb = const_cast<Elf_Sym*>(
+ this->getSymbol(si->getRawDataRefImpl()));
+ if (ec == object_error::success &&
+ this->getSymbolTableIndex(symb) == ELF::SHN_COMMON && Size > 0) {
+ SymbAddrInfo.push_back(std::make_pair(&(symb->st_value), Size));
+ TotalSize += Size;
+ }
+ }
+
+ uint8_t* SectionPtr = (uint8_t *)calloc(TotalSize, 1);
+ saveAddress(MemoryMap, SectionPtr);
+
+ typedef typename std::vector<std::pair<Elf_Addr *, uint64_t> >::iterator
+ AddrInfoIterator;
+ AddrInfoIterator EndIter = SymbAddrInfo.end();
+ for (AddrInfoIterator AddrIter = SymbAddrInfo.begin();
+ AddrIter != EndIter; ++AddrIter) {
+ assert(sizeof(addr_type) == sizeof(intptr_t) &&
+ "Cross-architecture ELF dy-load is not supported!");
+ *(AddrIter->first) = static_cast<addr_type>(intptr_t(SectionPtr));
+ SectionPtr += AddrIter->second;
+ }
+}
+
+// Record memory addresses for callers
+template<support::endianness target_endianness, bool is64Bits>
+void DyldELFObject<target_endianness, is64Bits>::saveAddress(
+ std::vector<uint8_t*> *MemoryMap, uint8_t* addr) {
+ if (MemoryMap)
+ MemoryMap->push_back(addr);
+ else
+ errs() << "WARNING: Memory leak - cannot record memory for ELF dyld.";
+}
+
+template<support::endianness target_endianness, bool is64Bits>
+error_code DyldELFObject<target_endianness, is64Bits>::getSymbolAddress(
+ DataRefImpl Symb, uint64_t &Result) const {
+ this->validateSymbol(Symb);
+ const Elf_Sym *symb = this->getSymbol(Symb);
+ if (this->getSymbolTableIndex(symb) == ELF::SHN_COMMON) {
+ Result = symb->st_value;
+ return object_error::success;
+ }
+ else {
+ return ELFObjectFile<target_endianness, is64Bits>::getSymbolAddress(
+ Symb, Result);
+ }
+}
+
+}
+
+#endif
+
+//===-- DyldELFObject.h - Dynamically loaded ELF object ----0---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Dynamically loaded ELF object class, a subclass of ELFObjectFile. Used
+// to represent a loadable ELF image.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIMEDYLD_DYLDELFOBJECT_H
+#define LLVM_RUNTIMEDYLD_DYLDELFOBJECT_H
+
+#include "llvm/Object/ELF.h"
+
+
+namespace llvm {
+
+using support::endianness;
+using namespace llvm::object;
+
+template<support::endianness target_endianness, bool is64Bits>
+class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
+ LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
+
+ typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
+ typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
+ typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
+ typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
+
+ typedef typename ELFObjectFile<target_endianness, is64Bits>::
+ Elf_Ehdr Elf_Ehdr;
+ Elf_Ehdr *Header;
+
+ // Update section headers according to the current location in memory
+ virtual void rebaseObject(std::vector<uint8_t*> *MemoryMap);
+ // Record memory addresses for cleanup
+ virtual void saveAddress(std::vector<uint8_t*> *MemoryMap, uint8_t *addr);
+
+protected:
+ virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
+
+public:
+ DyldELFObject(MemoryBuffer *Object, std::vector<uint8_t*> *MemoryMap,
+ error_code &ec);
+
+ // Methods for type inquiry through isa, cast, and dyn_cast
+ static inline bool classof(const Binary *v) {
+ return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
+ && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
+ }
+ static inline bool classof(
+ const ELFObjectFile<target_endianness, is64Bits> *v) {
+ return v->isDyldType();
+ }
+ static inline bool classof(const DyldELFObject *v) {
+ return true;
+ }
+};
+
+template<support::endianness target_endianness, bool is64Bits>
+DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
+ std::vector<uint8_t*> *MemoryMap, error_code &ec)
+ : ELFObjectFile<target_endianness, is64Bits>(Object, ec)
+ , Header(0) {
+ this->isDyldELFObject = true;
+ Header = const_cast<Elf_Ehdr *>(
+ reinterpret_cast<const Elf_Ehdr *>(this->base()));
+ if (Header->e_shoff == 0)
+ return;
+
+ // Mark the image as a dynamic shared library
+ Header->e_type = ELF::ET_DYN;
+
+ rebaseObject(MemoryMap);
+}
+
+// Walk through the ELF headers, updating virtual addresses to reflect where
+// the object is currently loaded in memory
+template<support::endianness target_endianness, bool is64Bits>
+void DyldELFObject<target_endianness, is64Bits>::rebaseObject(
+ std::vector<uint8_t*> *MemoryMap) {
+ typedef typename ELFDataTypeTypedefHelper<
+ target_endianness, is64Bits>::value_type addr_type;
+
+ uint8_t *base_p = const_cast<uint8_t *>(this->base());
+ Elf_Shdr *sectionTable =
+ reinterpret_cast<Elf_Shdr *>(base_p + Header->e_shoff);
+ uint64_t numSections = this->getNumSections();
+
+ // Allocate memory space for NOBITS sections (such as .bss), which only exist
+ // in memory, but don't occupy space in the object file.
+ // Update the address in the section headers to reflect this allocation.
+ for (uint64_t index = 0; index < numSections; index++) {
+ Elf_Shdr *sec = reinterpret_cast<Elf_Shdr *>(
+ reinterpret_cast<char *>(sectionTable) + index * Header->e_shentsize);
+
+ // Only update sections that are meant to be present in program memory
+ if (sec->sh_flags & ELF::SHF_ALLOC) {
+ uint8_t *addr = base_p + sec->sh_offset;
+ if (sec->sh_type == ELF::SHT_NOBITS) {
+ addr = static_cast<uint8_t *>(calloc(sec->sh_size, 1));
+ saveAddress(MemoryMap, addr);
+ }
+ else {
+ // FIXME: Currently memory with RWX permissions is allocated. In the
+ // future, make sure that permissions are as necessary
+ if (sec->sh_flags & ELF::SHF_WRITE) {
+ // see FIXME above
+ }
+ if (sec->sh_flags & ELF::SHF_EXECINSTR) {
+ // see FIXME above
+ }
+ }
+ assert(sizeof(addr_type) == sizeof(intptr_t) &&
+ "Cross-architecture ELF dy-load is not supported!");
+ sec->sh_addr = static_cast<addr_type>(intptr_t(addr));
+ }
+ }
+
+ // Now allocate actual space for COMMON symbols, which also don't occupy
+ // space in the object file.
+ // We want to allocate space for all COMMON symbols at once, so the flow is:
+ // 1. Go over all symbols, find those that are in COMMON. For each such
+ // symbol, record its size and the value field in its symbol header in a
+ // special vector.
+ // 2. Allocate memory for all COMMON symbols in one fell swoop.
+ // 3. Using the recorded information from (1), update the address fields in
+ // the symbol headers of the COMMON symbols to reflect their allocated
+ // address.
+ uint64_t TotalSize = 0;
+ std::vector<std::pair<Elf_Addr *, uint64_t> > SymbAddrInfo;
+ error_code ec = object_error::success;
+ for (symbol_iterator si = this->begin_symbols(),
+ se = this->end_symbols(); si != se; si.increment(ec)) {
+ uint64_t Size = 0;
+ ec = si->getSize(Size);
+ Elf_Sym* symb = const_cast<Elf_Sym*>(
+ this->getSymbol(si->getRawDataRefImpl()));
+ if (ec == object_error::success &&
+ this->getSymbolTableIndex(symb) == ELF::SHN_COMMON && Size > 0) {
+ SymbAddrInfo.push_back(std::make_pair(&(symb->st_value), Size));
+ TotalSize += Size;
+ }
+ }
+
+ uint8_t* SectionPtr = (uint8_t *)calloc(TotalSize, 1);
+ saveAddress(MemoryMap, SectionPtr);
+
+ typedef typename std::vector<std::pair<Elf_Addr *, uint64_t> >::iterator
+ AddrInfoIterator;
+ AddrInfoIterator EndIter = SymbAddrInfo.end();
+ for (AddrInfoIterator AddrIter = SymbAddrInfo.begin();
+ AddrIter != EndIter; ++AddrIter) {
+ assert(sizeof(addr_type) == sizeof(intptr_t) &&
+ "Cross-architecture ELF dy-load is not supported!");
+ *(AddrIter->first) = static_cast<addr_type>(intptr_t(SectionPtr));
+ SectionPtr += AddrIter->second;
+ }
+}
+
+// Record memory addresses for callers
+template<support::endianness target_endianness, bool is64Bits>
+void DyldELFObject<target_endianness, is64Bits>::saveAddress(
+ std::vector<uint8_t*> *MemoryMap, uint8_t* addr) {
+ if (MemoryMap)
+ MemoryMap->push_back(addr);
+ else
+ errs() << "WARNING: Memory leak - cannot record memory for ELF dyld.";
+}
+
+template<support::endianness target_endianness, bool is64Bits>
+error_code DyldELFObject<target_endianness, is64Bits>::getSymbolAddress(
+ DataRefImpl Symb, uint64_t &Result) const {
+ this->validateSymbol(Symb);
+ const Elf_Sym *symb = this->getSymbol(Symb);
+ if (this->getSymbolTableIndex(symb) == ELF::SHN_COMMON) {
+ Result = symb->st_value;
+ return object_error::success;
+ }
+ else {
+ return ELFObjectFile<target_endianness, is64Bits>::getSymbolAddress(
+ Symb, Result);
+ }
+}
+
+}
+
+#endif
+
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
index 33dd705..2896c2d 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -1,4 +1,4 @@
-//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
+//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -13,6 +13,10 @@
#define DEBUG_TYPE "dyld"
#include "RuntimeDyldImpl.h"
+#include "RuntimeDyldELF.h"
+#include "RuntimeDyldMachO.h"
+#include "llvm/Support/Path.h"
+
using namespace llvm;
using namespace llvm::object;
@@ -24,6 +28,7 @@ namespace llvm {
void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
uint8_t *EndAddress) {
+ // FIXME: DEPRECATED in favor of by-section allocation.
// Allocate memory for the function via the memory manager.
uintptr_t Size = EndAddress - StartAddress + 1;
uintptr_t AllocSize = Size;
@@ -34,21 +39,30 @@ void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
memcpy(Mem, StartAddress, Size);
MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
// Remember where we put it.
- Functions[Name] = sys::MemoryBlock(Mem, Size);
+ unsigned SectionID = Sections.size();
+ Sections.push_back(sys::MemoryBlock(Mem, Size));
+
// Default the assigned address for this symbol to wherever this
// allocated it.
- SymbolTable[Name] = Mem;
+ SymbolTable[Name] = SymbolLoc(SectionID, 0);
DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n");
}
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
- // Just iterate over the symbols in our symbol table and assign their
- // addresses.
- StringMap<uint8_t*>::iterator i = SymbolTable.begin();
- StringMap<uint8_t*>::iterator e = SymbolTable.end();
- for (;i != e; ++i)
- reassignSymbolAddress(i->getKey(), i->getValue());
+ // Just iterate over the sections we have and resolve all the relocations
+ // in them. Gross overkill, but it gets the job done.
+ for (int i = 0, e = Sections.size(); i != e; ++i) {
+ reassignSectionAddress(i, SectionLoadAddress[i]);
+ }
+}
+
+void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
+ uint64_t TargetAddress) {
+ assert(SectionLocalMemToID.count(LocalAddress) &&
+ "Attempting to remap address of unknown section!");
+ unsigned SectionID = SectionLocalMemToID[LocalAddress];
+ reassignSectionAddress(SectionID, TargetAddress);
}
//===----------------------------------------------------------------------===//
@@ -64,12 +78,36 @@ RuntimeDyld::~RuntimeDyld() {
bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
if (!Dyld) {
- if (RuntimeDyldMachO::isKnownFormat(InputBuffer))
- Dyld = new RuntimeDyldMachO(MM);
- else
- report_fatal_error("Unknown object format!");
+ sys::LLVMFileType type = sys::IdentifyFileType(
+ InputBuffer->getBufferStart(),
+ static_cast<unsigned>(InputBuffer->getBufferSize()));
+ switch (type) {
+ case sys::ELF_Relocatable_FileType:
+ case sys::ELF_Executable_FileType:
+ case sys::ELF_SharedObject_FileType:
+ case sys::ELF_Core_FileType:
+ Dyld = new RuntimeDyldELF(MM);
+ break;
+ case sys::Mach_O_Object_FileType:
+ case sys::Mach_O_Executable_FileType:
+ case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
+ case sys::Mach_O_Core_FileType:
+ case sys::Mach_O_PreloadExecutable_FileType:
+ case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
+ case sys::Mach_O_DynamicLinker_FileType:
+ case sys::Mach_O_Bundle_FileType:
+ case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
+ case sys::Mach_O_DSYMCompanion_FileType:
+ Dyld = new RuntimeDyldMachO(MM);
+ break;
+ case sys::Unknown_FileType:
+ case sys::Bitcode_FileType:
+ case sys::Archive_FileType:
+ case sys::COFF_FileType:
+ report_fatal_error("Incompatible object format!");
+ }
} else {
- if(!Dyld->isCompatibleFormat(InputBuffer))
+ if (!Dyld->isCompatibleFormat(InputBuffer))
report_fatal_error("Incompatible object format!");
}
@@ -84,8 +122,14 @@ void RuntimeDyld::resolveRelocations() {
Dyld->resolveRelocations();
}
-void RuntimeDyld::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
- Dyld->reassignSymbolAddress(Name, Addr);
+void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ Dyld->reassignSectionAddress(SectionID, Addr);
+}
+
+void RuntimeDyld::mapSectionAddress(void *LocalAddress,
+ uint64_t TargetAddress) {
+ Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}
StringRef RuntimeDyld::getErrorString() {
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
new file mode 100644
index 0000000..e15b200
--- /dev/null
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -0,0 +1,308 @@
+//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of ELF support for the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dyld"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "RuntimeDyldELF.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/ADT/Triple.h"
+using namespace llvm;
+using namespace llvm::object;
+
+namespace llvm {
+
+namespace {
+
+// FIXME: this function should probably not live here...
+//
+// Returns the name and address of an unrelocated symbol in an ELF section
+void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
+ //FIXME: error checking here required to catch corrupt ELF objects...
+ error_code Err = Sym->getName(Name);
+
+ uint64_t AddrInSection;
+ Err = Sym->getAddress(AddrInSection);
+
+ SectionRef empty_section;
+ section_iterator Section(empty_section);
+ Err = Sym->getSection(Section);
+
+ StringRef SectionContents;
+ Section->getContents(SectionContents);
+
+ Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
+}
+
+}
+
+bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
+ if (!isCompatibleFormat(InputBuffer))
+ return true;
+
+ OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
+
+ Arch = Obj->getArch();
+
+ // Map address in the Object file image to function names
+ IntervalMap<uint64_t, StringRef>::Allocator A;
+ IntervalMap<uint64_t, StringRef> FuncMap(A);
+
+ // This is a bit of a hack. The ObjectFile we've just loaded reports
+ // section addresses as 0 and doesn't provide access to the section
+ // offset (from which we could calculate the address. Instead,
+ // we're storing the address when it comes up in the ST_Debug case
+ // below.
+ //
+ StringMap<uint64_t> DebugSymbolMap;
+
+ symbol_iterator SymEnd = Obj->end_symbols();
+ error_code Err;
+ for (symbol_iterator Sym = Obj->begin_symbols();
+ Sym != SymEnd; Sym.increment(Err)) {
+ SymbolRef::Type Type;
+ Sym->getType(Type);
+ if (Type == SymbolRef::ST_Function) {
+ StringRef Name;
+ uint64_t Addr;
+ getSymbolInfo(Sym, Addr, Name);
+
+ uint64_t Size;
+ Err = Sym->getSize(Size);
+
+ uint8_t *Start;
+ uint8_t *End;
+ Start = reinterpret_cast<uint8_t*>(Addr);
+ End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
+
+ extractFunction(Name, Start, End);
+ FuncMap.insert(Addr, Addr + Size - 1, Name);
+ } else if (Type == SymbolRef::ST_Debug) {
+ // This case helps us find section addresses
+ StringRef Name;
+ uint64_t Addr;
+ getSymbolInfo(Sym, Addr, Name);
+ DebugSymbolMap[Name] = Addr;
+ }
+ }
+
+ // Iterate through the relocations for this object
+ section_iterator SecEnd = Obj->end_sections();
+ for (section_iterator Sec = Obj->begin_sections();
+ Sec != SecEnd; Sec.increment(Err)) {
+ StringRef SecName;
+ uint64_t SecAddr;
+ Sec->getName(SecName);
+ // Ignore sections that aren't in our map
+ if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
+ continue;
+ }
+ SecAddr = DebugSymbolMap[SecName];
+ relocation_iterator RelEnd = Sec->end_relocations();
+ for (relocation_iterator Rel = Sec->begin_relocations();
+ Rel != RelEnd; Rel.increment(Err)) {
+ uint64_t RelOffset;
+ uint64_t RelType;
+ int64_t RelAddend;
+ SymbolRef RelSym;
+ StringRef SymName;
+ uint64_t SymAddr;
+ uint64_t SymOffset;
+
+ Rel->getAddress(RelOffset);
+ Rel->getType(RelType);
+ Rel->getAdditionalInfo(RelAddend);
+ Rel->getSymbol(RelSym);
+ RelSym.getName(SymName);
+ RelSym.getAddress(SymAddr);
+ RelSym.getFileOffset(SymOffset);
+
+ // If this relocation is inside a function, we want to store the
+ // function name and a function-relative offset
+ IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
+ = FuncMap.find(SecAddr + RelOffset);
+ if (ContainingFunc.valid()) {
+ // Re-base the relocation to make it relative to the target function
+ RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
+ Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
+ RelOffset,
+ RelType,
+ RelAddend,
+ true));
+ } else {
+ Relocations[SymName].push_back(RelocationEntry(SecName,
+ RelOffset,
+ RelType,
+ RelAddend,
+ false));
+ }
+ }
+ }
+ return false;
+}
+
+void RuntimeDyldELF::resolveRelocations() {
+ // FIXME: deprecated. should be changed to use the by-section
+ // allocation and relocation scheme.
+
+ // Just iterate over the symbols in our symbol table and assign their
+ // addresses.
+ StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
+ StringMap<SymbolLoc>::iterator e = SymbolTable.end();
+ for (;i != e; ++i) {
+ assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
+ reassignSymbolAddress(i->getKey(),
+ (uint8_t*)Sections[i->getValue().first].base());
+ }
+}
+
+void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
+ uint8_t *TargetAddr;
+ if (RE.IsFunctionRelative) {
+ StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
+ assert(Loc != SymbolTable.end() && "Function for relocation not found");
+ TargetAddr =
+ reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
+ Loc->second.second + RE.Offset;
+ } else {
+ // FIXME: Get the address of the target section and add that to RE.Offset
+ llvm_unreachable("Non-function relocation not implemented yet!");
+ }
+
+ switch (RE.Type) {
+ default: llvm_unreachable("Relocation type not implemented yet!");
+ case ELF::R_X86_64_64: {
+ uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
+ *Target = Addr + RE.Addend;
+ break;
+ }
+ case ELF::R_X86_64_32:
+ case ELF::R_X86_64_32S: {
+ uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
+ // FIXME: Handle the possibility of this assertion failing
+ assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
+ (RE.Type == ELF::R_X86_64_32S &&
+ (Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
+ uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
+ *Target = TruncatedAddr;
+ break;
+ }
+ case ELF::R_X86_64_PC32: {
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
+ uint64_t RealOffset = *Placeholder +
+ reinterpret_cast<uint64_t>(Addr) +
+ RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
+ assert((RealOffset & 0xFFFFFFFF) == RealOffset);
+ uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
+ *Placeholder = TruncOffset;
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
+ uint8_t *TargetAddr;
+ if (RE.IsFunctionRelative) {
+ StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
+ assert(Loc != SymbolTable.end() && "Function for relocation not found");
+ TargetAddr =
+ reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
+ Loc->second.second + RE.Offset;
+ } else {
+ // FIXME: Get the address of the target section and add that to RE.Offset
+ llvm_unreachable("Non-function relocation not implemented yet!");
+ }
+
+ switch (RE.Type) {
+ case ELF::R_386_32: {
+ uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
+ *Target = Addr + RE.Addend;
+ break;
+ }
+ case ELF::R_386_PC32: {
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
+ uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
+ RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
+ *Placeholder = RealOffset;
+ break;
+ }
+ default:
+ // There are other relocation types, but it appears these are the
+ // only ones currently used by the LLVM ELF object writer
+ llvm_unreachable("Relocation type not implemented yet!");
+ }
+}
+
+void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
+}
+
+void RuntimeDyldELF::resolveRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE) {
+ switch (Arch) {
+ case Triple::x86_64:
+ resolveX86_64Relocation(Name, Addr, RE);
+ break;
+ case Triple::x86:
+ resolveX86Relocation(Name, Addr, RE);
+ break;
+ case Triple::arm:
+ resolveArmRelocation(Name, Addr, RE);
+ break;
+ default: llvm_unreachable("Unsupported CPU type!");
+ }
+}
+
+void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
+ // FIXME: deprecated. switch to reassignSectionAddress() instead.
+ //
+ // Actually moving the symbol address requires by-section mapping.
+ assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
+ "Unable to relocate section in by-function JIT allocation model!");
+
+ RelocationList &Relocs = Relocations[Name];
+ for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+ RelocationEntry &RE = Relocs[i];
+ resolveRelocation(Name, Addr, RE);
+ }
+}
+
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Re-apply any
+ // relocations referencing this section with the given address.
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+ assert(0);
+}
+
+bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
+ StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
+ return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
+}
+} // namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
new file mode 100644
index 0000000..e0f7d54
--- /dev/null
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
@@ -0,0 +1,178 @@
+//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ELF support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_ELF_H
+#define LLVM_RUNTIME_DYLD_ELF_H
+
+#include "RuntimeDyldImpl.h"
+
+using namespace llvm;
+
+
+namespace llvm {
+class RuntimeDyldELF : public RuntimeDyldImpl {
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ struct RelocationEntry {
+ // Function or section this relocation is contained in.
+ std::string Target;
+ // Offset into the target function or section for the relocation.
+ uint32_t Offset;
+ // Relocation type
+ uint32_t Type;
+ // Addend encoded in the instruction itself, if any.
+ int32_t Addend;
+ // Has the relocation been recalcuated as an offset within a function?
+ bool IsFunctionRelative;
+ // Has this relocation been resolved previously?
+ bool isResolved;
+
+ RelocationEntry(StringRef t,
+ uint32_t offset,
+ uint32_t type,
+ int32_t addend,
+ bool isFunctionRelative)
+ : Target(t)
+ , Offset(offset)
+ , Type(type)
+ , Addend(addend)
+ , IsFunctionRelative(isFunctionRelative)
+ , isResolved(false) { }
+ };
+ typedef SmallVector<RelocationEntry, 4> RelocationList;
+ StringMap<RelocationList> Relocations;
+ unsigned Arch;
+
+ void resolveRelocations();
+
+ void resolveX86_64Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveX86Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveArmRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+public:
+ RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+
+ bool loadObject(MemoryBuffer *InputBuffer);
+
+ void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
+};
+
+} // end namespace llvm
+
+#endif
+
+//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ELF support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_ELF_H
+#define LLVM_RUNTIME_DYLD_ELF_H
+
+#include "RuntimeDyldImpl.h"
+
+using namespace llvm;
+
+
+namespace llvm {
+class RuntimeDyldELF : public RuntimeDyldImpl {
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ struct RelocationEntry {
+ // Function or section this relocation is contained in.
+ std::string Target;
+ // Offset into the target function or section for the relocation.
+ uint32_t Offset;
+ // Relocation type
+ uint32_t Type;
+ // Addend encoded in the instruction itself, if any.
+ int32_t Addend;
+ // Has the relocation been recalcuated as an offset within a function?
+ bool IsFunctionRelative;
+ // Has this relocation been resolved previously?
+ bool isResolved;
+
+ RelocationEntry(StringRef t,
+ uint32_t offset,
+ uint32_t type,
+ int32_t addend,
+ bool isFunctionRelative)
+ : Target(t)
+ , Offset(offset)
+ , Type(type)
+ , Addend(addend)
+ , IsFunctionRelative(isFunctionRelative)
+ , isResolved(false) { }
+ };
+ typedef SmallVector<RelocationEntry, 4> RelocationList;
+ StringMap<RelocationList> Relocations;
+ unsigned Arch;
+
+ void resolveRelocations();
+
+ void resolveX86_64Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveX86Relocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveArmRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+ void resolveRelocation(StringRef Name,
+ uint8_t *Addr,
+ const RelocationEntry &RE);
+
+public:
+ RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+
+ bool loadObject(MemoryBuffer *InputBuffer);
+
+ void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const;
+};
+
+} // end namespace llvm
+
+#endif
+
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
index 7190a3c..28e99be 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
@@ -1,4 +1,4 @@
-//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
+//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -15,12 +15,11 @@
#define LLVM_RUNTIME_DYLD_IMPL_H
#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "llvm/Object/MachOObject.h"
+#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/Support/Format.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/system_error.h"
@@ -29,7 +28,6 @@
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
-using namespace llvm::object;
namespace llvm {
class RuntimeDyldImpl {
@@ -40,17 +38,22 @@ protected:
// The MemoryManager to load objects into.
RTDyldMemoryManager *MemMgr;
- // FIXME: This all assumes we're dealing with external symbols for anything
- // explicitly referenced. I.e., we can index by name and things
- // will work out. In practice, this may not be the case, so we
- // should find a way to effectively generalize.
+ // For each section, we have a MemoryBlock of it's data.
+ // Indexed by SectionID.
+ SmallVector<sys::MemoryBlock, 32> Sections;
+ // For each section, the address it will be considered to live at for
+ // relocations. The same as the pointer to the above memory block for hosted
+ // JITs. Indexed by SectionID.
+ SmallVector<uint64_t, 32> SectionLoadAddress;
- // For each function, we have a MemoryBlock of it's instruction data.
- StringMap<sys::MemoryBlock> Functions;
+ // Keep a map of starting local address to the SectionID which references it.
+ // Lookup function for when we assign virtual addresses.
+ DenseMap<void *, unsigned> SectionLocalMemToID;
// Master symbol table. As modules are loaded and external symbols are
- // resolved, their addresses are stored here.
- StringMap<uint8_t*> SymbolTable;
+ // resolved, their addresses are stored here as a SectionID/Offset pair.
+ typedef std::pair<unsigned, uint64_t> SymbolLoc;
+ StringMap<SymbolLoc> SymbolTable;
bool HasError;
std::string ErrorStr;
@@ -62,6 +65,9 @@ protected:
return true;
}
+ uint8_t *getSectionAddress(unsigned SectionID) {
+ return (uint8_t*)Sections[SectionID].base();
+ }
void extractFunction(StringRef Name, uint8_t *StartAddress,
uint8_t *EndAddress);
@@ -75,12 +81,17 @@ public:
void *getSymbolAddress(StringRef Name) {
// FIXME: Just look up as a function for now. Overly simple of course.
// Work in progress.
- return SymbolTable.lookup(Name);
+ if (SymbolTable.find(Name) == SymbolTable.end())
+ return 0;
+ SymbolLoc Loc = SymbolTable.lookup(Name);
+ return getSectionAddress(Loc.first) + Loc.second;
}
- void resolveRelocations();
+ virtual void resolveRelocations();
+
+ virtual void reassignSectionAddress(unsigned SectionID, uint64_t Addr) = 0;
- virtual void reassignSymbolAddress(StringRef Name, uint8_t *Addr) = 0;
+ void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress);
// Is the linker in an error state?
bool hasError() { return HasError; }
@@ -94,58 +105,6 @@ public:
virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0;
};
-
-class RuntimeDyldMachO : public RuntimeDyldImpl {
-
- // For each symbol, keep a list of relocations based on it. Anytime
- // its address is reassigned (the JIT re-compiled the function, e.g.),
- // the relocations get re-resolved.
- struct RelocationEntry {
- std::string Target; // Object this relocation is contained in.
- uint64_t Offset; // Offset into the object for the relocation.
- uint32_t Data; // Second word of the raw macho relocation entry.
- int64_t Addend; // Addend encoded in the instruction itself, if any.
- bool isResolved; // Has this relocation been resolved previously?
-
- RelocationEntry(StringRef t, uint64_t offset, uint32_t data, int64_t addend)
- : Target(t), Offset(offset), Data(data), Addend(addend),
- isResolved(false) {}
- };
- typedef SmallVector<RelocationEntry, 4> RelocationList;
- StringMap<RelocationList> Relocations;
-
- // FIXME: Also keep a map of all the relocations contained in an object. Use
- // this to dynamically answer whether all of the relocations in it have
- // been resolved or not.
-
- bool resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
- unsigned Type, unsigned Size);
- bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
- unsigned Type, unsigned Size);
- bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
- unsigned Type, unsigned Size);
-
- bool loadSegment32(const MachOObject *Obj,
- const MachOObject::LoadCommandInfo *SegmentLCI,
- const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
- bool loadSegment64(const MachOObject *Obj,
- const MachOObject::LoadCommandInfo *SegmentLCI,
- const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
-
-public:
- RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
-
- bool loadObject(MemoryBuffer *InputBuffer);
-
- void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
-
- static bool isKnownFormat(const MemoryBuffer *InputBuffer);
-
- bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
- return isKnownFormat(InputBuffer);
- }
-};
-
} // end namespace llvm
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
index f5a68c8..c11b2c3 100644
--- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
@@ -1,4 +1,4 @@
-//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
+//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
@@ -15,32 +15,30 @@
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
-#include "RuntimeDyldImpl.h"
+#include "RuntimeDyldMachO.h"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
bool RuntimeDyldMachO::
-resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
- unsigned Type, unsigned Size) {
+resolveRelocation(uint8_t *Address, uint64_t Value, bool isPCRel,
+ unsigned Type, unsigned Size, int64_t Addend) {
// This just dispatches to the proper target specific routine.
switch (CPUType) {
- default: assert(0 && "Unsupported CPU type!");
+ default: llvm_unreachable("Unsupported CPU type!");
case mach::CTM_x86_64:
return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
- isPCRel, Type, Size);
+ isPCRel, Type, Size, Addend);
case mach::CTM_ARM:
return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
- isPCRel, Type, Size);
+ isPCRel, Type, Size, Addend);
}
- llvm_unreachable("");
}
bool RuntimeDyldMachO::
-resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
- bool isPCRel, unsigned Type,
- unsigned Size) {
+resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
+ unsigned Type, unsigned Size, int64_t Addend) {
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (isPCRel)
@@ -51,8 +49,13 @@ resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
switch(Type) {
default:
llvm_unreachable("Invalid relocation type!");
+ case macho::RIT_X86_64_Signed1:
+ case macho::RIT_X86_64_Signed2:
+ case macho::RIT_X86_64_Signed4:
+ case macho::RIT_X86_64_Signed:
case macho::RIT_X86_64_Unsigned:
case macho::RIT_X86_64_Branch: {
+ Value += Addend;
// Mask in the target value a byte at a time (we don't have an alignment
// guarantee for the target address, so this is safest).
uint8_t *p = (uint8_t*)Address;
@@ -62,22 +65,17 @@ resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
}
return false;
}
- case macho::RIT_X86_64_Signed:
case macho::RIT_X86_64_GOTLoad:
case macho::RIT_X86_64_GOT:
case macho::RIT_X86_64_Subtractor:
- case macho::RIT_X86_64_Signed1:
- case macho::RIT_X86_64_Signed2:
- case macho::RIT_X86_64_Signed4:
case macho::RIT_X86_64_TLV:
return Error("Relocation type not implemented yet!");
}
- return false;
}
-bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
- bool isPCRel, unsigned Type,
- unsigned Size) {
+bool RuntimeDyldMachO::
+resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
+ unsigned Type, unsigned Size, int64_t Addend) {
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (isPCRel) {
@@ -92,7 +90,6 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
default:
llvm_unreachable("Invalid relocation type!");
case macho::RIT_Vanilla: {
- llvm_unreachable("Invalid relocation type!");
// Mask in the target value a byte at a time (we don't have an alignment
// guarantee for the target address, so this is safest).
uint8_t *p = (uint8_t*)Address;
@@ -135,84 +132,64 @@ bool RuntimeDyldMachO::
loadSegment32(const MachOObject *Obj,
const MachOObject::LoadCommandInfo *SegmentLCI,
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ // FIXME: This should really be combined w/ loadSegment64. Templatized
+ // function on the 32/64 datatypes maybe?
InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
if (!SegmentLC)
return Error("unable to load segment load command");
+
+ SmallVector<unsigned, 16> SectionMap;
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section> Sect;
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
if (!Sect)
return Error("unable to load section: '" + Twine(SectNum) + "'");
- // FIXME: For the time being, we're only loading text segments.
- if (Sect->Flags != 0x80000400)
- continue;
+ // Allocate memory via the MM for the section.
+ uint8_t *Buffer;
+ uint32_t SectionID = Sections.size();
+ if (Sect->Flags == 0x80000400)
+ Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID);
+ else
+ Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID);
+
+ DEBUG(dbgs() << "Loading "
+ << ((Sect->Flags == 0x80000400) ? "text" : "data")
+ << " (ID #" << SectionID << ")"
+ << " '" << Sect->SegmentName << ","
+ << Sect->Name << "' of size " << Sect->Size
+ << " to address " << Buffer << ".\n");
+
+ // Copy the payload from the object file into the allocated buffer.
+ uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
+ SegmentLC->FileSize).data();
+ memcpy(Buffer, Base + Sect->Address, Sect->Size);
- // Address and names of symbols in the section.
- typedef std::pair<uint64_t, StringRef> SymbolEntry;
- SmallVector<SymbolEntry, 64> Symbols;
- // Index of all the names, in this section or not. Used when we're
- // dealing with relocation entries.
- SmallVector<StringRef, 64> SymbolNames;
- for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
- InMemoryStruct<macho::SymbolTableEntry> STE;
- Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
- if (!STE)
- return Error("unable to read symbol: '" + Twine(i) + "'");
- if (STE->SectionIndex > SegmentLC->NumSections)
- return Error("invalid section index for symbol: '" + Twine(i) + "'");
- // Get the symbol name.
- StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
- SymbolNames.push_back(Name);
-
- // Just skip symbols not defined in this section.
- if ((unsigned)STE->SectionIndex - 1 != SectNum)
- continue;
-
- // FIXME: Check the symbol type and flags.
- if (STE->Type != 0xF) // external, defined in this section.
- continue;
- // Flags == 0x8 marks a thumb function for ARM, which is fine as it
- // doesn't require any special handling here.
- // Flags in the upper nibble we don't care about.
- if ((STE->Flags & 0xf) != 0x0 && STE->Flags != 0x8)
- continue;
-
- // Remember the symbol.
- Symbols.push_back(SymbolEntry(STE->Value, Name));
-
- DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
- (Sect->Address + STE->Value) << "\n");
- }
- // Sort the symbols by address, just in case they didn't come in that way.
- array_pod_sort(Symbols.begin(), Symbols.end());
+ // Remember what got allocated for this SectionID.
+ Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
+ SectionLocalMemToID[Buffer] = SectionID;
- // If there weren't any functions (odd, but just in case...)
- if (!Symbols.size())
- continue;
+ // By default, the load address of a section is its memory buffer.
+ SectionLoadAddress.push_back((uint64_t)Buffer);
- // Extract the function data.
- uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
- SegmentLC->FileSize).data();
- for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
- uint64_t StartOffset = Sect->Address + Symbols[i].first;
- uint64_t EndOffset = Symbols[i + 1].first - 1;
- DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
- << " from [" << StartOffset << ", " << EndOffset << "]\n");
- extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
- }
- // The last symbol we do after since the end address is calculated
- // differently because there is no next symbol to reference.
- uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
- uint64_t EndOffset = Sect->Size - 1;
- DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
- << " from [" << StartOffset << ", " << EndOffset << "]\n");
- extractFunction(Symbols[Symbols.size()-1].second,
- Base + StartOffset, Base + EndOffset);
-
- // Now extract the relocation information for each function and process it.
+ // Keep a map of object file section numbers to corresponding SectionIDs
+ // while processing the file.
+ SectionMap.push_back(SectionID);
+ }
+
+ // Process the symbol table.
+ SmallVector<StringRef, 64> SymbolNames;
+ processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC);
+
+ // Process the relocations for each section we're loading.
+ Relocations.grow(Relocations.size() + SegmentLC->NumSections);
+ for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
+ InMemoryStruct<macho::Section> Sect;
+ Obj->ReadSection(*SegmentLCI, SectNum, Sect);
+ if (!Sect)
+ return Error("unable to load section: '" + Twine(SectNum) + "'");
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
InMemoryStruct<macho::RelocationEntry> RE;
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
@@ -222,51 +199,53 @@ loadSegment32(const MachOObject *Obj,
// relocation should be applied. We need to translate that into an
// offset into a function since that's our atom.
uint32_t Offset = RE->Word0;
- // Look for the function containing the address. This is used for JIT
- // code, so the number of functions in section is almost always going
- // to be very small (usually just one), so until we have use cases
- // where that's not true, just use a trivial linear search.
- unsigned SymbolNum;
- unsigned NumSymbols = Symbols.size();
- assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
- "No symbol containing relocation!");
- for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
- if (Symbols[SymbolNum + 1].first > Offset)
- break;
- // Adjust the offset to be relative to the symbol.
- Offset -= Symbols[SymbolNum].first;
- // Get the name of the symbol containing the relocation.
- StringRef TargetName = SymbolNames[SymbolNum];
-
bool isExtern = (RE->Word1 >> 27) & 1;
+
+ // FIXME: Get the relocation addend from the target address.
+ // FIXME: VERY imporant for internal relocations.
+
// Figure out the source symbol of the relocation. If isExtern is true,
// this relocation references the symbol table, otherwise it references
// a section in the same object, numbered from 1 through NumSections
// (SectionBases is [0, NumSections-1]).
- // FIXME: Some targets (ARM) use internal relocations even for
- // externally visible symbols, if the definition is in the same
- // file as the reference. We need to convert those back to by-name
- // references. We can resolve the address based on the section
- // offset and see if we have a symbol at that address. If we do,
- // use that; otherwise, puke.
- if (!isExtern)
- return Error("Internal relocations not supported.");
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
- StringRef SourceName = SymbolNames[SourceNum];
-
- // FIXME: Get the relocation addend from the target address.
-
- // Now store the relocation information. Associate it with the source
- // symbol.
- Relocations[SourceName].push_back(RelocationEntry(TargetName,
- Offset,
- RE->Word1,
- 0 /*Addend*/));
- DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
- << " from '" << SourceName << "(Word1: "
- << format("0x%x", RE->Word1) << ")\n");
+ if (!isExtern) {
+ assert(SourceNum > 0 && "Invalid relocation section number!");
+ unsigned SectionID = SectionMap[SourceNum - 1];
+ unsigned TargetID = SectionMap[SectNum];
+ DEBUG(dbgs() << "Internal relocation at Section #"
+ << TargetID << " + " << Offset
+ << " from Section #"
+ << SectionID << " (Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+
+ // Store the relocation information. It will get resolved when
+ // the section addresses are assigned.
+ Relocations[SectionID].push_back(RelocationEntry(TargetID,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ } else {
+ StringRef SourceName = SymbolNames[SourceNum];
+
+ // Now store the relocation information. Associate it with the source
+ // symbol. Just add it to the unresolved list and let the general
+ // path post-load resolve it if we know where the symbol is.
+ UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
+ << " from '" << SourceName << "(Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+ }
}
}
+
+ // Resolve the addresses of any symbols that were defined in this segment.
+ for (int i = 0, e = SymbolNames.size(); i != e; ++i)
+ resolveSymbol(SymbolNames[i]);
+
return false;
}
@@ -280,77 +259,59 @@ loadSegment64(const MachOObject *Obj,
if (!Segment64LC)
return Error("unable to load segment load command");
+
+ SmallVector<unsigned, 16> SectionMap;
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
InMemoryStruct<macho::Section64> Sect;
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
if (!Sect)
return Error("unable to load section: '" + Twine(SectNum) + "'");
- // FIXME: For the time being, we're only loading text segments.
- if (Sect->Flags != 0x80000400)
- continue;
+ // Allocate memory via the MM for the section.
+ uint8_t *Buffer;
+ uint32_t SectionID = Sections.size();
+ unsigned Align = 1 << Sect->Align; // .o file has log2 alignment.
+ if (Sect->Flags == 0x80000400)
+ Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID);
+ else
+ Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID);
+
+ DEBUG(dbgs() << "Loading "
+ << ((Sect->Flags == 0x80000400) ? "text" : "data")
+ << " (ID #" << SectionID << ")"
+ << " '" << Sect->SegmentName << ","
+ << Sect->Name << "' of size " << Sect->Size
+ << " (align " << Align << ")"
+ << " to address " << Buffer << ".\n");
+
+ // Copy the payload from the object file into the allocated buffer.
+ uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
+ Segment64LC->FileSize).data();
+ memcpy(Buffer, Base + Sect->Address, Sect->Size);
- // Address and names of symbols in the section.
- typedef std::pair<uint64_t, StringRef> SymbolEntry;
- SmallVector<SymbolEntry, 64> Symbols;
- // Index of all the names, in this section or not. Used when we're
- // dealing with relocation entries.
- SmallVector<StringRef, 64> SymbolNames;
- for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
- InMemoryStruct<macho::Symbol64TableEntry> STE;
- Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
- if (!STE)
- return Error("unable to read symbol: '" + Twine(i) + "'");
- if (STE->SectionIndex > Segment64LC->NumSections)
- return Error("invalid section index for symbol: '" + Twine(i) + "'");
- // Get the symbol name.
- StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
- SymbolNames.push_back(Name);
-
- // Just skip symbols not defined in this section.
- if ((unsigned)STE->SectionIndex - 1 != SectNum)
- continue;
-
- // FIXME: Check the symbol type and flags.
- if (STE->Type != 0xF) // external, defined in this section.
- continue;
- // Flags in the upper nibble we don't care about.
- if ((STE->Flags & 0xf) != 0x0)
- continue;
-
- // Remember the symbol.
- Symbols.push_back(SymbolEntry(STE->Value, Name));
-
- DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
- (Sect->Address + STE->Value) << "\n");
- }
- // Sort the symbols by address, just in case they didn't come in that way.
- array_pod_sort(Symbols.begin(), Symbols.end());
+ // Remember what got allocated for this SectionID.
+ Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
+ SectionLocalMemToID[Buffer] = SectionID;
- // If there weren't any functions (odd, but just in case...)
- if (!Symbols.size())
- continue;
+ // By default, the load address of a section is its memory buffer.
+ SectionLoadAddress.push_back((uint64_t)Buffer);
- // Extract the function data.
- uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
- Segment64LC->FileSize).data();
- for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
- uint64_t StartOffset = Sect->Address + Symbols[i].first;
- uint64_t EndOffset = Symbols[i + 1].first - 1;
- DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
- << " from [" << StartOffset << ", " << EndOffset << "]\n");
- extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
- }
- // The last symbol we do after since the end address is calculated
- // differently because there is no next symbol to reference.
- uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
- uint64_t EndOffset = Sect->Size - 1;
- DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
- << " from [" << StartOffset << ", " << EndOffset << "]\n");
- extractFunction(Symbols[Symbols.size()-1].second,
- Base + StartOffset, Base + EndOffset);
-
- // Now extract the relocation information for each function and process it.
+ // Keep a map of object file section numbers to corresponding SectionIDs
+ // while processing the file.
+ SectionMap.push_back(SectionID);
+ }
+
+ // Process the symbol table.
+ SmallVector<StringRef, 64> SymbolNames;
+ processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC);
+
+ // Process the relocations for each section we're loading.
+ Relocations.grow(Relocations.size() + Segment64LC->NumSections);
+ for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
+ InMemoryStruct<macho::Section64> Sect;
+ Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
+ if (!Sect)
+ return Error("unable to load section: '" + Twine(SectNum) + "'");
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
InMemoryStruct<macho::RelocationEntry> RE;
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
@@ -360,48 +321,142 @@ loadSegment64(const MachOObject *Obj,
// relocation should be applied. We need to translate that into an
// offset into a function since that's our atom.
uint32_t Offset = RE->Word0;
- // Look for the function containing the address. This is used for JIT
- // code, so the number of functions in section is almost always going
- // to be very small (usually just one), so until we have use cases
- // where that's not true, just use a trivial linear search.
- unsigned SymbolNum;
- unsigned NumSymbols = Symbols.size();
- assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
- "No symbol containing relocation!");
- for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
- if (Symbols[SymbolNum + 1].first > Offset)
- break;
- // Adjust the offset to be relative to the symbol.
- Offset -= Symbols[SymbolNum].first;
- // Get the name of the symbol containing the relocation.
- StringRef TargetName = SymbolNames[SymbolNum];
-
bool isExtern = (RE->Word1 >> 27) & 1;
+
+ // FIXME: Get the relocation addend from the target address.
+ // FIXME: VERY imporant for internal relocations.
+
// Figure out the source symbol of the relocation. If isExtern is true,
// this relocation references the symbol table, otherwise it references
// a section in the same object, numbered from 1 through NumSections
// (SectionBases is [0, NumSections-1]).
- if (!isExtern)
- return Error("Internal relocations not supported.");
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
- StringRef SourceName = SymbolNames[SourceNum];
+ if (!isExtern) {
+ assert(SourceNum > 0 && "Invalid relocation section number!");
+ unsigned SectionID = SectionMap[SourceNum - 1];
+ unsigned TargetID = SectionMap[SectNum];
+ DEBUG(dbgs() << "Internal relocation at Section #"
+ << TargetID << " + " << Offset
+ << " from Section #"
+ << SectionID << " (Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+
+ // Store the relocation information. It will get resolved when
+ // the section addresses are assigned.
+ Relocations[SectionID].push_back(RelocationEntry(TargetID,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ } else {
+ StringRef SourceName = SymbolNames[SourceNum];
+
+ // Now store the relocation information. Associate it with the source
+ // symbol. Just add it to the unresolved list and let the general
+ // path post-load resolve it if we know where the symbol is.
+ UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
+ Offset,
+ RE->Word1,
+ 0 /*Addend*/));
+ DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
+ << " from '" << SourceName << "(Word1: "
+ << format("0x%x", RE->Word1) << ")\n");
+ }
+ }
+ }
- // FIXME: Get the relocation addend from the target address.
+ // Resolve the addresses of any symbols that were defined in this segment.
+ for (int i = 0, e = SymbolNames.size(); i != e; ++i)
+ resolveSymbol(SymbolNames[i]);
- // Now store the relocation information. Associate it with the source
- // symbol.
- Relocations[SourceName].push_back(RelocationEntry(TargetName,
- Offset,
- RE->Word1,
- 0 /*Addend*/));
- DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
- << " from '" << SourceName << "(Word1: "
- << format("0x%x", RE->Word1) << ")\n");
- }
+ return false;
+}
+
+bool RuntimeDyldMachO::
+processSymbols32(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ // FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such.
+ for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
+ InMemoryStruct<macho::SymbolTableEntry> STE;
+ Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
+ if (!STE)
+ return Error("unable to read symbol: '" + Twine(i) + "'");
+ // Get the symbol name.
+ StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
+ SymbolNames.push_back(Name);
+
+ // FIXME: Check the symbol type and flags.
+ if (STE->Type != 0xF) // external, defined in this segment.
+ continue;
+ // Flags in the upper nibble we don't care about.
+ if ((STE->Flags & 0xf) != 0x0)
+ continue;
+
+ // Remember the symbol.
+ uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
+ SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
+
+ DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
+ << (getSectionAddress(SectionID) + STE->Value)
+ << "\n");
}
return false;
}
+bool RuntimeDyldMachO::
+processSymbols64(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
+ for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
+ InMemoryStruct<macho::Symbol64TableEntry> STE;
+ Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
+ if (!STE)
+ return Error("unable to read symbol: '" + Twine(i) + "'");
+ // Get the symbol name.
+ StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
+ SymbolNames.push_back(Name);
+
+ // FIXME: Check the symbol type and flags.
+ if (STE->Type != 0xF) // external, defined in this segment.
+ continue;
+ // Flags in the upper nibble we don't care about.
+ if ((STE->Flags & 0xf) != 0x0)
+ continue;
+
+ // Remember the symbol.
+ uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
+ SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
+
+ DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
+ << (getSectionAddress(SectionID) + STE->Value)
+ << "\n");
+ }
+ return false;
+}
+
+// resolveSymbol - Resolve any relocations to the specified symbol if
+// we know where it lives.
+void RuntimeDyldMachO::resolveSymbol(StringRef Name) {
+ StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
+ if (Loc == SymbolTable.end())
+ return;
+
+ RelocationList &Relocs = UnresolvedRelocations[Name];
+ DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
+ for (int i = 0, e = Relocs.size(); i != e; ++i) {
+ // Change the relocation to be section relative rather than symbol
+ // relative and move it to the resolved relocation list.
+ RelocationEntry Entry = Relocs[i];
+ Entry.Addend += Loc->second.second;
+ Relocations[Loc->second.first].push_back(Entry);
+ }
+ // FIXME: Keep a worklist of the relocations we've added so that we can
+ // resolve more selectively later.
+ Relocs.clear();
+}
+
bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
// If the linker is in an error state, don't do anything.
if (hasError())
@@ -451,7 +506,7 @@ bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
if (!SymtabLCI)
return Error("no symbol table found in object");
if (!SegmentLCI)
- return Error("no symbol table found in object");
+ return Error("no segments found in object");
// Read and register the symbol table data.
InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
@@ -486,31 +541,46 @@ bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
return true;
}
+ // Assign the addresses of the sections from the object so that any
+ // relocations to them get set properly.
+ // FIXME: This is done directly from the client at the moment. We should
+ // default the values to the local storage, at least when the target arch
+ // is the same as the host arch.
+
return false;
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
-void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
- // Assign the address in our symbol table.
- SymbolTable[Name] = Addr;
-
- RelocationList &Relocs = Relocations[Name];
+void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Re-apply any
+ // relocations referencing this section with the given address.
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+
+ SectionLoadAddress[SectionID] = Addr;
+
+ RelocationList &Relocs = Relocations[SectionID];
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry &RE = Relocs[i];
- uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
+ uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
bool isPCRel = (RE.Data >> 24) & 1;
unsigned Type = (RE.Data >> 28) & 0xf;
unsigned Size = 1 << ((RE.Data >> 25) & 3);
- DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
- << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
- << " from '" << Name << " (" << format("%p", Addr) << ")"
+ DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
+ << " + " << RE.Offset << " (" << format("%p", Target) << ")"
+ << " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
<< "(" << (isPCRel ? "pcrel" : "absolute")
- << ", type: " << Type << ", Size: " << Size << ").\n");
+ << ", type: " << Type << ", Size: " << Size << ", Addend: "
+ << RE.Addend << ").\n");
- resolveRelocation(Target, Addr, isPCRel, Type, Size);
- RE.isResolved = true;
+ resolveRelocation(Target, Addr, isPCRel, Type, Size, RE.Addend);
}
}
diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
new file mode 100644
index 0000000..5798981
--- /dev/null
+++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
@@ -0,0 +1,94 @@
+//===-- RuntimeDyldMachO.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachO support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_MACHO_H
+#define LLVM_RUNTIME_DYLD_MACHO_H
+
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/Object/MachOObject.h"
+#include "llvm/Support/Format.h"
+#include "RuntimeDyldImpl.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+
+namespace llvm {
+class RuntimeDyldMachO : public RuntimeDyldImpl {
+
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ // The symbol (or section) the relocation is sourced from is the Key
+ // in the relocation list where it's stored.
+ struct RelocationEntry {
+ unsigned SectionID; // Section the relocation is contained in.
+ uint64_t Offset; // Offset into the section for the relocation.
+ uint32_t Data; // Second word of the raw macho relocation entry.
+ int64_t Addend; // Addend encoded in the instruction itself, if any,
+ // plus the offset into the source section for
+ // the symbol once the relocation is resolvable.
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend)
+ : SectionID(id), Offset(offset), Data(data), Addend(addend) {}
+ };
+ typedef SmallVector<RelocationEntry, 4> RelocationList;
+ // Relocations to sections already loaded. Indexed by SectionID which is the
+ // source of the address. The target where the address will be writen is
+ // SectionID/Offset in the relocation itself.
+ IndexedMap<RelocationList> Relocations;
+ // Relocations to symbols that are not yet resolved. Must be external
+ // relocations by definition. Indexed by symbol name.
+ StringMap<RelocationList> UnresolvedRelocations;
+
+ bool resolveRelocation(uint8_t *Address, uint64_t Value, bool isPCRel,
+ unsigned Type, unsigned Size, int64_t Addend);
+ bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
+ unsigned Type, unsigned Size, int64_t Addend);
+ bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
+ unsigned Type, unsigned Size, int64_t Addend);
+
+ bool loadSegment32(const MachOObject *Obj,
+ const MachOObject::LoadCommandInfo *SegmentLCI,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+ bool loadSegment64(const MachOObject *Obj,
+ const MachOObject::LoadCommandInfo *SegmentLCI,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+ bool processSymbols32(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+ bool processSymbols64(const MachOObject *Obj,
+ SmallVectorImpl<unsigned> &SectionMap,
+ SmallVectorImpl<StringRef> &SymbolNames,
+ const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
+
+ void resolveSymbol(StringRef Name);
+
+public:
+ RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+
+ bool loadObject(MemoryBuffer *InputBuffer);
+
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ static bool isKnownFormat(const MemoryBuffer *InputBuffer);
+
+ bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
+ return isKnownFormat(InputBuffer);
+ }
+};
+
+} // end namespace llvm
+
+#endif