diff options
Diffstat (limited to 'lib/Support/APFloat.cpp')
-rw-r--r-- | lib/Support/APFloat.cpp | 248 |
1 files changed, 228 insertions, 20 deletions
diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp index 57e60da..4efbaf7 100644 --- a/lib/Support/APFloat.cpp +++ b/lib/Support/APFloat.cpp @@ -685,6 +685,67 @@ APFloat::isDenormal() const { } bool +APFloat::isSmallest() const { + // The smallest number by magnitude in our format will be the smallest + // denormal, i.e. the floating point normal with exponent being minimum + // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). + return isNormal() && exponent == semantics->minExponent && + significandMSB() == 0; +} + +bool APFloat::isSignificandAllOnes() const { + // Test if the significand excluding the integral bit is all ones. This allows + // us to test for binade boundaries. + const integerPart *Parts = significandParts(); + const unsigned PartCount = partCount(); + for (unsigned i = 0; i < PartCount - 1; i++) + if (~Parts[i]) + return false; + + // Set the unused high bits to all ones when we compare. + const unsigned NumHighBits = + PartCount*integerPartWidth - semantics->precision + 1; + assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " + "fill than integerPartWidth"); + const integerPart HighBitFill = + ~integerPart(0) << (integerPartWidth - NumHighBits); + if (~(Parts[PartCount - 1] | HighBitFill)) + return false; + + return true; +} + +bool APFloat::isSignificandAllZeros() const { + // Test if the significand excluding the integral bit is all zeros. This + // allows us to test for binade boundaries. + const integerPart *Parts = significandParts(); + const unsigned PartCount = partCount(); + + for (unsigned i = 0; i < PartCount - 1; i++) + if (Parts[i]) + return false; + + const unsigned NumHighBits = + PartCount*integerPartWidth - semantics->precision + 1; + assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " + "clear than integerPartWidth"); + const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; + + if (Parts[PartCount - 1] & HighBitMask) + return false; + + return true; +} + +bool +APFloat::isLargest() const { + // The largest number by magnitude in our format will be the floating point + // number with maximum exponent and with significand that is all ones. + return isNormal() && exponent == semantics->maxExponent + && isSignificandAllOnes(); +} + +bool APFloat::bitwiseIsEqual(const APFloat &rhs) const { if (this == &rhs) return true; @@ -3236,42 +3297,60 @@ APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) } } -APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { - APFloat Val(Sem, fcNormal, Negative); - +/// Make this number the largest magnitude normal number in the given +/// semantics. +void APFloat::makeLargest(bool Negative) { // We want (in interchange format): // sign = {Negative} // exponent = 1..10 // significand = 1..1 + category = fcNormal; + sign = Negative; + exponent = semantics->maxExponent; - Val.exponent = Sem.maxExponent; // unbiased + // Use memset to set all but the highest integerPart to all ones. + integerPart *significand = significandParts(); + unsigned PartCount = partCount(); + memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); - // 1-initialize all bits.... - Val.zeroSignificand(); - integerPart *significand = Val.significandParts(); - unsigned N = partCountForBits(Sem.precision); - for (unsigned i = 0; i != N; ++i) - significand[i] = ~((integerPart) 0); + // Set the high integerPart especially setting all unused top bits for + // internal consistency. + const unsigned NumUnusedHighBits = + PartCount*integerPartWidth - semantics->precision; + significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits; +} + +/// Make this number the smallest magnitude denormal number in the given +/// semantics. +void APFloat::makeSmallest(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 0..01 + category = fcNormal; + sign = Negative; + exponent = semantics->minExponent; + APInt::tcSet(significandParts(), 1, partCount()); +} - // ...and then clear the top bits for internal consistency. - if (Sem.precision % integerPartWidth != 0) - significand[N-1] &= - (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1; +APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 1..10 + // significand = 1..1 + APFloat Val(Sem, uninitialized); + Val.makeLargest(Negative); return Val; } APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) { - APFloat Val(Sem, fcNormal, Negative); - // We want (in interchange format): // sign = {Negative} // exponent = 0..0 // significand = 0..01 - - Val.exponent = Sem.minExponent; // unbiased - Val.zeroSignificand(); - Val.significandParts()[0] = 1; + APFloat Val(Sem, uninitialized); + Val.makeSmallest(Negative); return Val; } @@ -3615,3 +3694,132 @@ bool APFloat::getExactInverse(APFloat *inv) const { return true; } + +bool APFloat::isSignaling() const { + if (!isNaN()) + return false; + + // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the + // first bit of the trailing significand being 0. + return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); +} + +/// IEEE-754R 2008 5.3.1: nextUp/nextDown. +/// +/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with +/// appropriate sign switching before/after the computation. +APFloat::opStatus APFloat::next(bool nextDown) { + // If we are performing nextDown, swap sign so we have -x. + if (nextDown) + changeSign(); + + // Compute nextUp(x) + opStatus result = opOK; + + // Handle each float category separately. + switch (category) { + case fcInfinity: + // nextUp(+inf) = +inf + if (!isNegative()) + break; + // nextUp(-inf) = -getLargest() + makeLargest(true); + break; + case fcNaN: + // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. + // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not + // change the payload. + if (isSignaling()) { + result = opInvalidOp; + // For consistency, propogate the sign of the sNaN to the qNaN. + makeNaN(false, isNegative(), 0); + } + break; + case fcZero: + // nextUp(pm 0) = +getSmallest() + makeSmallest(false); + break; + case fcNormal: + // nextUp(-getSmallest()) = -0 + if (isSmallest() && isNegative()) { + APInt::tcSet(significandParts(), 0, partCount()); + category = fcZero; + exponent = 0; + break; + } + + // nextUp(getLargest()) == INFINITY + if (isLargest() && !isNegative()) { + APInt::tcSet(significandParts(), 0, partCount()); + category = fcInfinity; + exponent = semantics->maxExponent + 1; + break; + } + + // nextUp(normal) == normal + inc. + if (isNegative()) { + // If we are negative, we need to decrement the significand. + + // We only cross a binade boundary that requires adjusting the exponent + // if: + // 1. exponent != semantics->minExponent. This implies we are not in the + // smallest binade or are dealing with denormals. + // 2. Our significand excluding the integral bit is all zeros. + bool WillCrossBinadeBoundary = + exponent != semantics->minExponent && isSignificandAllZeros(); + + // Decrement the significand. + // + // We always do this since: + // 1. If we are dealing with a non binade decrement, by definition we + // just decrement the significand. + // 2. If we are dealing with a normal -> normal binade decrement, since + // we have an explicit integral bit the fact that all bits but the + // integral bit are zero implies that subtracting one will yield a + // significand with 0 integral bit and 1 in all other spots. Thus we + // must just adjust the exponent and set the integral bit to 1. + // 3. If we are dealing with a normal -> denormal binade decrement, + // since we set the integral bit to 0 when we represent denormals, we + // just decrement the significand. + integerPart *Parts = significandParts(); + APInt::tcDecrement(Parts, partCount()); + + if (WillCrossBinadeBoundary) { + // Our result is a normal number. Do the following: + // 1. Set the integral bit to 1. + // 2. Decrement the exponent. + APInt::tcSetBit(Parts, semantics->precision - 1); + exponent--; + } + } else { + // If we are positive, we need to increment the significand. + + // We only cross a binade boundary that requires adjusting the exponent if + // the input is not a denormal and all of said input's significand bits + // are set. If all of said conditions are true: clear the significand, set + // the integral bit to 1, and increment the exponent. If we have a + // denormal always increment since moving denormals and the numbers in the + // smallest normal binade have the same exponent in our representation. + bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); + + if (WillCrossBinadeBoundary) { + integerPart *Parts = significandParts(); + APInt::tcSet(Parts, 0, partCount()); + APInt::tcSetBit(Parts, semantics->precision - 1); + assert(exponent != semantics->maxExponent && + "We can not increment an exponent beyond the maxExponent allowed" + " by the given floating point semantics."); + exponent++; + } else { + incrementSignificand(); + } + } + break; + } + + // If we are performing nextDown, swap sign so we have -nextUp(-x) + if (nextDown) + changeSign(); + + return result; +} |