diff options
Diffstat (limited to 'lib/Support/APInt.cpp')
-rw-r--r-- | lib/Support/APInt.cpp | 70 |
1 files changed, 29 insertions, 41 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index 50a639c..2533fa0 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -672,6 +672,14 @@ hash_code llvm::hash_value(const APInt &Arg) { return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); } +bool APInt::isSplat(unsigned SplatSizeInBits) const { + assert(getBitWidth() % SplatSizeInBits == 0 && + "SplatSizeInBits must divide width!"); + // We can check that all parts of an integer are equal by making use of a + // little trick: rotate and check if it's still the same value. + return *this == rotl(SplatSizeInBits); +} + /// HiBits - This function returns the high "numBits" bits of this APInt. APInt APInt::getHiBits(unsigned numBits) const { return APIntOps::lshr(*this, BitWidth - numBits); @@ -1310,13 +1318,8 @@ APInt APInt::sqrt() const { // libc sqrt function which will probably use a hardware sqrt computation. // This should be faster than the algorithm below. if (magnitude < 52) { -#if HAVE_ROUND return APInt(BitWidth, uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); -#else - return APInt(BitWidth, - uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); -#endif } // Okay, all the short cuts are exhausted. We must compute it. The following @@ -1508,21 +1511,18 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); - assert(u != v && u != q && v != q && "Must us different memory"); + assert(u != v && u != q && v != q && "Must use different memory"); assert(n>1 && "n must be > 1"); - // Knuth uses the value b as the base of the number system. In our case b - // is 2^31 so we just set it to -1u. - uint64_t b = uint64_t(1) << 32; + // b denotes the base of the number system. In our case b is 2^32. + LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32; -#if 0 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); DEBUG(dbgs() << "KnuthDiv: original:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << " by"); DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); DEBUG(dbgs() << '\n'); -#endif // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of // u and v by d. Note that we have taken Knuth's advice here to use a power // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of @@ -1547,13 +1547,12 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, } } u[m+n] = u_carry; -#if 0 + DEBUG(dbgs() << "KnuthDiv: normal:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << " by"); DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); DEBUG(dbgs() << '\n'); -#endif // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; @@ -1583,46 +1582,35 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation // consists of a simple multiplication by a one-place number, combined with // a subtraction. + // The digits (u[j+n]...u[j]) should be kept positive; if the result of + // this step is actually negative, (u[j+n]...u[j]) should be left as the + // true value plus b**(n+1), namely as the b's complement of + // the true value, and a "borrow" to the left should be remembered. bool isNeg = false; for (unsigned i = 0; i < n; ++i) { - uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); + uint64_t u_tmp = (uint64_t(u[j+i+1]) << 32) | uint64_t(u[j+i]); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; - DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp - << ", subtrahend == " << subtrahend + DEBUG(dbgs() << "KnuthDiv: u_tmp = " << u_tmp + << ", subtrahend = " << subtrahend << ", borrow = " << borrow << '\n'); uint64_t result = u_tmp - subtrahend; unsigned k = j + i; - u[k++] = (unsigned)(result & (b-1)); // subtract low word - u[k++] = (unsigned)(result >> 32); // subtract high word - while (borrow && k <= m+n) { // deal with borrow to the left + u[k++] = (unsigned)result; // subtraction low word + u[k++] = (unsigned)(result >> 32); // subtraction high word + while (borrow && k <= m+n) { // deal with borrow to the left borrow = u[k] == 0; u[k]--; k++; } isNeg |= borrow; - DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << - u[j+i+1] << '\n'); + DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] + << ", u[j+i+1] = " << u[j+i+1] << '\n'); } DEBUG(dbgs() << "KnuthDiv: after subtraction:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << '\n'); - // The digits (u[j+n]...u[j]) should be kept positive; if the result of - // this step is actually negative, (u[j+n]...u[j]) should be left as the - // true value plus b**(n+1), namely as the b's complement of - // the true value, and a "borrow" to the left should be remembered. - // - if (isNeg) { - bool carry = true; // true because b's complement is "complement + 1" - for (unsigned i = 0; i <= m+n; ++i) { - u[i] = ~u[i] + carry; // b's complement - carry = carry && u[i] == 0; - } - } - DEBUG(dbgs() << "KnuthDiv: after complement:"); - DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); - DEBUG(dbgs() << '\n'); // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. @@ -1644,7 +1632,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, u[j+n] += carry; } DEBUG(dbgs() << "KnuthDiv: after correction:"); - DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. @@ -1677,9 +1665,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, } DEBUG(dbgs() << '\n'); } -#if 0 DEBUG(dbgs() << '\n'); -#endif } void APInt::divide(const APInt LHS, unsigned lhsWords, @@ -1803,6 +1789,8 @@ void APInt::divide(const APInt LHS, unsigned lhsWords, // The quotient is in Q. Reconstitute the quotient into Quotient's low // order words. + // This case is currently dead as all users of divide() handle trivial cases + // earlier. if (lhsWords == 1) { uint64_t tmp = uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); @@ -2296,13 +2284,13 @@ void APInt::dump() const { this->toStringUnsigned(U); this->toStringSigned(S); dbgs() << "APInt(" << BitWidth << "b, " - << U.str() << "u " << S.str() << "s)"; + << U << "u " << S << "s)"; } void APInt::print(raw_ostream &OS, bool isSigned) const { SmallString<40> S; this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); - OS << S.str(); + OS << S; } // This implements a variety of operations on a representation of |