aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp')
-rw-r--r--lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp694
1 files changed, 0 insertions, 694 deletions
diff --git a/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp b/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp
deleted file mode 100644
index 195a48e..0000000
--- a/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp
+++ /dev/null
@@ -1,694 +0,0 @@
-//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-// For best-case performance on Cortex-A57, we should try to use a balanced
-// mix of odd and even D-registers when performing a critical sequence of
-// independent, non-quadword FP/ASIMD floating-point multiply or
-// multiply-accumulate operations.
-//
-// This pass attempts to detect situations where the register allocation may
-// adversely affect this load balancing and to change the registers used so as
-// to better utilize the CPU.
-//
-// Ideally we'd just take each multiply or multiply-accumulate in turn and
-// allocate it alternating even or odd registers. However, multiply-accumulates
-// are most efficiently performed in the same functional unit as their
-// accumulation operand. Therefore this pass tries to find maximal sequences
-// ("Chains") of multiply-accumulates linked via their accumulation operand,
-// and assign them all the same "color" (oddness/evenness).
-//
-// This optimization affects S-register and D-register floating point
-// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
-// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
-// not affected.
-//===----------------------------------------------------------------------===//
-
-#include "AArch64.h"
-#include "AArch64InstrInfo.h"
-#include "AArch64Subtarget.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/RegisterScavenging.h"
-#include "llvm/CodeGen/RegisterClassInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <list>
-using namespace llvm;
-
-#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
-
-// Enforce the algorithm to use the scavenged register even when the original
-// destination register is the correct color. Used for testing.
-static cl::opt<bool>
-TransformAll("aarch64-a57-fp-load-balancing-force-all",
- cl::desc("Always modify dest registers regardless of color"),
- cl::init(false), cl::Hidden);
-
-// Never use the balance information obtained from chains - return a specific
-// color always. Used for testing.
-static cl::opt<unsigned>
-OverrideBalance("aarch64-a57-fp-load-balancing-override",
- cl::desc("Ignore balance information, always return "
- "(1: Even, 2: Odd)."),
- cl::init(0), cl::Hidden);
-
-//===----------------------------------------------------------------------===//
-// Helper functions
-
-// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
-static bool isMul(MachineInstr *MI) {
- switch (MI->getOpcode()) {
- case AArch64::FMULSrr:
- case AArch64::FNMULSrr:
- case AArch64::FMULDrr:
- case AArch64::FNMULDrr:
-
- case AArch64::FMULv2f32:
- return true;
- default:
- return false;
- }
-}
-
-// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
-static bool isMla(MachineInstr *MI) {
- switch (MI->getOpcode()) {
- case AArch64::FMSUBSrrr:
- case AArch64::FMADDSrrr:
- case AArch64::FNMSUBSrrr:
- case AArch64::FNMADDSrrr:
- case AArch64::FMSUBDrrr:
- case AArch64::FMADDDrrr:
- case AArch64::FNMSUBDrrr:
- case AArch64::FNMADDDrrr:
-
- case AArch64::FMLAv2f32:
- case AArch64::FMLSv2f32:
- return true;
- default:
- return false;
- }
-}
-
-//===----------------------------------------------------------------------===//
-
-namespace {
-/// A "color", which is either even or odd. Yes, these aren't really colors
-/// but the algorithm is conceptually doing two-color graph coloring.
-enum class Color { Even, Odd };
-static const char *ColorNames[2] = { "Even", "Odd" };
-
-class Chain;
-
-class AArch64A57FPLoadBalancing : public MachineFunctionPass {
- const AArch64InstrInfo *TII;
- MachineRegisterInfo *MRI;
- const TargetRegisterInfo *TRI;
- RegisterClassInfo RCI;
-
-public:
- static char ID;
- explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {}
-
- bool runOnMachineFunction(MachineFunction &F) override;
-
- const char *getPassName() const override {
- return "A57 FP Anti-dependency breaker";
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
-private:
- bool runOnBasicBlock(MachineBasicBlock &MBB);
- bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
- int &Balance);
- bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
- int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
- void scanInstruction(MachineInstr *MI, unsigned Idx,
- std::map<unsigned, Chain*> &Chains,
- std::set<Chain*> &ChainSet);
- void maybeKillChain(MachineOperand &MO, unsigned Idx,
- std::map<unsigned, Chain*> &RegChains);
- Color getColor(unsigned Register);
- Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
-};
-char AArch64A57FPLoadBalancing::ID = 0;
-
-/// A Chain is a sequence of instructions that are linked together by
-/// an accumulation operand. For example:
-///
-/// fmul d0<def>, ?
-/// fmla d1<def>, ?, ?, d0<kill>
-/// fmla d2<def>, ?, ?, d1<kill>
-///
-/// There may be other instructions interleaved in the sequence that
-/// do not belong to the chain. These other instructions must not use
-/// the "chain" register at any point.
-///
-/// We currently only support chains where the "chain" operand is killed
-/// at each link in the chain for simplicity.
-/// A chain has three important instructions - Start, Last and Kill.
-/// * The start instruction is the first instruction in the chain.
-/// * Last is the final instruction in the chain.
-/// * Kill may or may not be defined. If defined, Kill is the instruction
-/// where the outgoing value of the Last instruction is killed.
-/// This information is important as if we know the outgoing value is
-/// killed with no intervening uses, we can safely change its register.
-///
-/// Without a kill instruction, we must assume the outgoing value escapes
-/// beyond our model and either must not change its register or must
-/// create a fixup FMOV to keep the old register value consistent.
-///
-class Chain {
-public:
- /// The important (marker) instructions.
- MachineInstr *StartInst, *LastInst, *KillInst;
- /// The index, from the start of the basic block, that each marker
- /// appears. These are stored so we can do quick interval tests.
- unsigned StartInstIdx, LastInstIdx, KillInstIdx;
- /// All instructions in the chain.
- std::set<MachineInstr*> Insts;
- /// True if KillInst cannot be modified. If this is true,
- /// we cannot change LastInst's outgoing register.
- /// This will be true for tied values and regmasks.
- bool KillIsImmutable;
- /// The "color" of LastInst. This will be the preferred chain color,
- /// as changing intermediate nodes is easy but changing the last
- /// instruction can be more tricky.
- Color LastColor;
-
- Chain(MachineInstr *MI, unsigned Idx, Color C) :
- StartInst(MI), LastInst(MI), KillInst(NULL),
- StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
- LastColor(C) {
- Insts.insert(MI);
- }
-
- /// Add a new instruction into the chain. The instruction's dest operand
- /// has the given color.
- void add(MachineInstr *MI, unsigned Idx, Color C) {
- LastInst = MI;
- LastInstIdx = Idx;
- LastColor = C;
-
- Insts.insert(MI);
- }
-
- /// Return true if MI is a member of the chain.
- bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
-
- /// Return the number of instructions in the chain.
- unsigned size() const {
- return Insts.size();
- }
-
- /// Inform the chain that its last active register (the dest register of
- /// LastInst) is killed by MI with no intervening uses or defs.
- void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
- KillInst = MI;
- KillInstIdx = Idx;
- KillIsImmutable = Immutable;
- }
-
- /// Return the first instruction in the chain.
- MachineInstr *getStart() const { return StartInst; }
- /// Return the last instruction in the chain.
- MachineInstr *getLast() const { return LastInst; }
- /// Return the "kill" instruction (as set with setKill()) or NULL.
- MachineInstr *getKill() const { return KillInst; }
- /// Return an instruction that can be used as an iterator for the end
- /// of the chain. This is the maximum of KillInst (if set) and LastInst.
- MachineInstr *getEnd() const {
- return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
- }
-
- /// Can the Kill instruction (assuming one exists) be modified?
- bool isKillImmutable() const { return KillIsImmutable; }
-
- /// Return the preferred color of this chain.
- Color getPreferredColor() {
- if (OverrideBalance != 0)
- return OverrideBalance == 1 ? Color::Even : Color::Odd;
- return LastColor;
- }
-
- /// Return true if this chain (StartInst..KillInst) overlaps with Other.
- bool rangeOverlapsWith(Chain *Other) {
- unsigned End = KillInst ? KillInstIdx : LastInstIdx;
- unsigned OtherEnd = Other->KillInst ?
- Other->KillInstIdx : Other->LastInstIdx;
-
- return StartInstIdx <= OtherEnd && Other->StartInstIdx <= End;
- }
-
- /// Return true if this chain starts before Other.
- bool startsBefore(Chain *Other) {
- return StartInstIdx < Other->StartInstIdx;
- }
-
- /// Return true if the group will require a fixup MOV at the end.
- bool requiresFixup() const {
- return (getKill() && isKillImmutable()) || !getKill();
- }
-
- /// Return a simple string representation of the chain.
- std::string str() const {
- std::string S;
- raw_string_ostream OS(S);
-
- OS << "{";
- StartInst->print(OS, NULL, true);
- OS << " -> ";
- LastInst->print(OS, NULL, true);
- if (KillInst) {
- OS << " (kill @ ";
- KillInst->print(OS, NULL, true);
- OS << ")";
- }
- OS << "}";
-
- return OS.str();
- }
-
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-
-bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
- bool Changed = false;
- DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
-
- const TargetMachine &TM = F.getTarget();
- MRI = &F.getRegInfo();
- TRI = F.getRegInfo().getTargetRegisterInfo();
- TII = TM.getSubtarget<AArch64Subtarget>().getInstrInfo();
- RCI.runOnMachineFunction(F);
-
- for (auto &MBB : F) {
- Changed |= runOnBasicBlock(MBB);
- }
-
- return Changed;
-}
-
-bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
- bool Changed = false;
- DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
-
- // First, scan the basic block producing a set of chains.
-
- // The currently "active" chains - chains that can be added to and haven't
- // been killed yet. This is keyed by register - all chains can only have one
- // "link" register between each inst in the chain.
- std::map<unsigned, Chain*> ActiveChains;
- std::set<Chain*> AllChains;
- unsigned Idx = 0;
- for (auto &MI : MBB)
- scanInstruction(&MI, Idx++, ActiveChains, AllChains);
-
- DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
-
- // Group the chains into disjoint sets based on their liveness range. This is
- // a poor-man's version of graph coloring. Ideally we'd create an interference
- // graph and perform full-on graph coloring on that, but;
- // (a) That's rather heavyweight for only two colors.
- // (b) We expect multiple disjoint interference regions - in practice the live
- // range of chains is quite small and they are clustered between loads
- // and stores.
- EquivalenceClasses<Chain*> EC;
- for (auto *I : AllChains)
- EC.insert(I);
-
- for (auto *I : AllChains) {
- for (auto *J : AllChains) {
- if (I != J && I->rangeOverlapsWith(J))
- EC.unionSets(I, J);
- }
- }
- DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
-
- // Now we assume that every member of an equivalence class interferes
- // with every other member of that class, and with no members of other classes.
-
- // Convert the EquivalenceClasses to a simpler set of sets.
- std::vector<std::vector<Chain*> > V;
- for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
- std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
- if (Cs.empty()) continue;
- V.push_back(Cs);
- }
-
- // Now we have a set of sets, order them by start address so
- // we can iterate over them sequentially.
- std::sort(V.begin(), V.end(),
- [](const std::vector<Chain*> &A,
- const std::vector<Chain*> &B) {
- return A.front()->startsBefore(B.front());
- });
-
- // As we only have two colors, we can track the global (BB-level) balance of
- // odds versus evens. We aim to keep this near zero to keep both execution
- // units fed.
- // Positive means we're even-heavy, negative we're odd-heavy.
- //
- // FIXME: If chains have interdependencies, for example:
- // mul r0, r1, r2
- // mul r3, r0, r1
- // We do not model this and may color each one differently, assuming we'll
- // get ILP when we obviously can't. This hasn't been seen to be a problem
- // in practice so far, so we simplify the algorithm by ignoring it.
- int Parity = 0;
-
- for (auto &I : V)
- Changed |= colorChainSet(I, MBB, Parity);
-
- for (auto *C : AllChains)
- delete C;
-
- return Changed;
-}
-
-Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
- std::vector<Chain*> &L) {
- if (L.empty())
- return nullptr;
-
- // We try and get the best candidate from L to color next, given that our
- // preferred color is "PreferredColor". L is ordered from larger to smaller
- // chains. It is beneficial to color the large chains before the small chains,
- // but if we can't find a chain of the maximum length with the preferred color,
- // we fuzz the size and look for slightly smaller chains before giving up and
- // returning a chain that must be recolored.
-
- // FIXME: Does this need to be configurable?
- const unsigned SizeFuzz = 1;
- unsigned MinSize = L.front()->size() - SizeFuzz;
- for (auto I = L.begin(), E = L.end(); I != E; ++I) {
- if ((*I)->size() <= MinSize) {
- // We've gone past the size limit. Return the previous item.
- Chain *Ch = *--I;
- L.erase(I);
- return Ch;
- }
-
- if ((*I)->getPreferredColor() == PreferredColor) {
- Chain *Ch = *I;
- L.erase(I);
- return Ch;
- }
- }
-
- // Bailout case - just return the first item.
- Chain *Ch = L.front();
- L.erase(L.begin());
- return Ch;
-}
-
-bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
- MachineBasicBlock &MBB,
- int &Parity) {
- bool Changed = false;
- DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
-
- // Sort by descending size order so that we allocate the most important
- // sets first.
- // Tie-break equivalent sizes by sorting chains requiring fixups before
- // those without fixups. The logic here is that we should look at the
- // chains that we cannot change before we look at those we can,
- // so the parity counter is updated and we know what color we should
- // change them to!
- std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
- if (G1->size() != G2->size())
- return G1->size() > G2->size();
- return G1->requiresFixup() > G2->requiresFixup();
- });
-
- Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
- while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
- // Start off by assuming we'll color to our own preferred color.
- Color C = PreferredColor;
- if (Parity == 0)
- // But if we really don't care, use the chain's preferred color.
- C = G->getPreferredColor();
-
- DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
- << ColorNames[(int)C] << "\n");
-
- // If we'll need a fixup FMOV, don't bother. Testing has shown that this
- // happens infrequently and when it does it has at least a 50% chance of
- // slowing code down instead of speeding it up.
- if (G->requiresFixup() && C != G->getPreferredColor()) {
- C = G->getPreferredColor();
- DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
- "color remains " << ColorNames[(int)C] << "\n");
- }
-
- Changed |= colorChain(G, C, MBB);
-
- Parity += (C == Color::Even) ? G->size() : -G->size();
- PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
- }
-
- return Changed;
-}
-
-int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
- MachineBasicBlock &MBB) {
- RegScavenger RS;
- RS.enterBasicBlock(&MBB);
- RS.forward(MachineBasicBlock::iterator(G->getStart()));
-
- // Can we find an appropriate register that is available throughout the life
- // of the chain?
- unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
- BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
- for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
- I != E; ++I) {
- RS.forward(I);
- AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
-
- // Remove any registers clobbered by a regmask.
- for (auto J : I->operands()) {
- if (J.isRegMask())
- AvailableRegs.clearBitsNotInMask(J.getRegMask());
- }
- }
-
- // Make sure we allocate in-order, to get the cheapest registers first.
- auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
- for (auto Reg : Ord) {
- if (!AvailableRegs[Reg])
- continue;
- if ((C == Color::Even && (Reg % 2) == 0) ||
- (C == Color::Odd && (Reg % 2) == 1))
- return Reg;
- }
-
- return -1;
-}
-
-bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
- MachineBasicBlock &MBB) {
- bool Changed = false;
- DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
- << ColorNames[(int)C] << ")\n");
-
- // Try and obtain a free register of the right class. Without a register
- // to play with we cannot continue.
- int Reg = scavengeRegister(G, C, MBB);
- if (Reg == -1) {
- DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
- return false;
- }
- DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
-
- std::map<unsigned, unsigned> Substs;
- for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
- I != E; ++I) {
- if (!G->contains(I) &&
- (&*I != G->getKill() || G->isKillImmutable()))
- continue;
-
- // I is a member of G, or I is a mutable instruction that kills G.
-
- std::vector<unsigned> ToErase;
- for (auto &U : I->operands()) {
- if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
- unsigned OrigReg = U.getReg();
- U.setReg(Substs[OrigReg]);
- if (U.isKill())
- // Don't erase straight away, because there may be other operands
- // that also reference this substitution!
- ToErase.push_back(OrigReg);
- } else if (U.isRegMask()) {
- for (auto J : Substs) {
- if (U.clobbersPhysReg(J.first))
- ToErase.push_back(J.first);
- }
- }
- }
- // Now it's safe to remove the substs identified earlier.
- for (auto J : ToErase)
- Substs.erase(J);
-
- // Only change the def if this isn't the last instruction.
- if (&*I != G->getKill()) {
- MachineOperand &MO = I->getOperand(0);
-
- bool Change = TransformAll || getColor(MO.getReg()) != C;
- if (G->requiresFixup() && &*I == G->getLast())
- Change = false;
-
- if (Change) {
- Substs[MO.getReg()] = Reg;
- MO.setReg(Reg);
- MRI->setPhysRegUsed(Reg);
-
- Changed = true;
- }
- }
- }
- assert(Substs.size() == 0 && "No substitutions should be left active!");
-
- if (G->getKill()) {
- DEBUG(dbgs() << " - Kill instruction seen.\n");
- } else {
- // We didn't have a kill instruction, but we didn't seem to need to change
- // the destination register anyway.
- DEBUG(dbgs() << " - Destination register not changed.\n");
- }
- return Changed;
-}
-
-void AArch64A57FPLoadBalancing::
-scanInstruction(MachineInstr *MI, unsigned Idx,
- std::map<unsigned, Chain*> &ActiveChains,
- std::set<Chain*> &AllChains) {
- // Inspect "MI", updating ActiveChains and AllChains.
-
- if (isMul(MI)) {
-
- for (auto &I : MI->operands())
- maybeKillChain(I, Idx, ActiveChains);
-
- // Create a new chain. Multiplies don't require forwarding so can go on any
- // unit.
- unsigned DestReg = MI->getOperand(0).getReg();
-
- DEBUG(dbgs() << "New chain started for register "
- << TRI->getName(DestReg) << " at " << *MI);
-
- Chain *G = new Chain(MI, Idx, getColor(DestReg));
- ActiveChains[DestReg] = G;
- AllChains.insert(G);
-
- } else if (isMla(MI)) {
-
- // It is beneficial to keep MLAs on the same functional unit as their
- // accumulator operand.
- unsigned DestReg = MI->getOperand(0).getReg();
- unsigned AccumReg = MI->getOperand(3).getReg();
-
- maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
- maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
- if (DestReg != AccumReg)
- maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
-
- if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
- DEBUG(dbgs() << "Chain found for accumulator register "
- << TRI->getName(AccumReg) << " in MI " << *MI);
-
- // For simplicity we only chain together sequences of MULs/MLAs where the
- // accumulator register is killed on each instruction. This means we don't
- // need to track other uses of the registers we want to rewrite.
- //
- // FIXME: We could extend to handle the non-kill cases for more coverage.
- if (MI->getOperand(3).isKill()) {
- // Add to chain.
- DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
- ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
- // Handle cases where the destination is not the same as the accumulator.
- ActiveChains[DestReg] = ActiveChains[AccumReg];
- return;
- }
-
- DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
- << "marked <kill>!\n");
- maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
- }
-
- DEBUG(dbgs() << "Creating new chain for dest register "
- << TRI->getName(DestReg) << "\n");
- Chain *G = new Chain(MI, Idx, getColor(DestReg));
- ActiveChains[DestReg] = G;
- AllChains.insert(G);
-
- } else {
-
- // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
- // lists.
- for (auto &I : MI->operands())
- maybeKillChain(I, Idx, ActiveChains);
-
- }
-}
-
-void AArch64A57FPLoadBalancing::
-maybeKillChain(MachineOperand &MO, unsigned Idx,
- std::map<unsigned, Chain*> &ActiveChains) {
- // Given an operand and the set of active chains (keyed by register),
- // determine if a chain should be ended and remove from ActiveChains.
- MachineInstr *MI = MO.getParent();
-
- if (MO.isReg()) {
-
- // If this is a KILL of a current chain, record it.
- if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
- DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
- << "\n");
- ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
- }
- ActiveChains.erase(MO.getReg());
-
- } else if (MO.isRegMask()) {
-
- for (auto I = ActiveChains.begin(), E = ActiveChains.end();
- I != E; ++I) {
- if (MO.clobbersPhysReg(I->first)) {
- DEBUG(dbgs() << "Kill (regmask) seen for chain "
- << TRI->getName(I->first) << "\n");
- I->second->setKill(MI, Idx, /*Immutable=*/true);
- ActiveChains.erase(I);
- }
- }
-
- }
-}
-
-Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
- if ((TRI->getEncodingValue(Reg) % 2) == 0)
- return Color::Even;
- else
- return Color::Odd;
-}
-
-// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
-FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
- return new AArch64A57FPLoadBalancing();
-}