diff options
Diffstat (limited to 'lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp')
-rw-r--r-- | lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp | 694 |
1 files changed, 0 insertions, 694 deletions
diff --git a/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp b/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp deleted file mode 100644 index 195a48e..0000000 --- a/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp +++ /dev/null @@ -1,694 +0,0 @@ -//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// For best-case performance on Cortex-A57, we should try to use a balanced -// mix of odd and even D-registers when performing a critical sequence of -// independent, non-quadword FP/ASIMD floating-point multiply or -// multiply-accumulate operations. -// -// This pass attempts to detect situations where the register allocation may -// adversely affect this load balancing and to change the registers used so as -// to better utilize the CPU. -// -// Ideally we'd just take each multiply or multiply-accumulate in turn and -// allocate it alternating even or odd registers. However, multiply-accumulates -// are most efficiently performed in the same functional unit as their -// accumulation operand. Therefore this pass tries to find maximal sequences -// ("Chains") of multiply-accumulates linked via their accumulation operand, -// and assign them all the same "color" (oddness/evenness). -// -// This optimization affects S-register and D-register floating point -// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and -// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are -// not affected. -//===----------------------------------------------------------------------===// - -#include "AArch64.h" -#include "AArch64InstrInfo.h" -#include "AArch64Subtarget.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/EquivalenceClasses.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/RegisterScavenging.h" -#include "llvm/CodeGen/RegisterClassInfo.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <list> -using namespace llvm; - -#define DEBUG_TYPE "aarch64-a57-fp-load-balancing" - -// Enforce the algorithm to use the scavenged register even when the original -// destination register is the correct color. Used for testing. -static cl::opt<bool> -TransformAll("aarch64-a57-fp-load-balancing-force-all", - cl::desc("Always modify dest registers regardless of color"), - cl::init(false), cl::Hidden); - -// Never use the balance information obtained from chains - return a specific -// color always. Used for testing. -static cl::opt<unsigned> -OverrideBalance("aarch64-a57-fp-load-balancing-override", - cl::desc("Ignore balance information, always return " - "(1: Even, 2: Odd)."), - cl::init(0), cl::Hidden); - -//===----------------------------------------------------------------------===// -// Helper functions - -// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? -static bool isMul(MachineInstr *MI) { - switch (MI->getOpcode()) { - case AArch64::FMULSrr: - case AArch64::FNMULSrr: - case AArch64::FMULDrr: - case AArch64::FNMULDrr: - - case AArch64::FMULv2f32: - return true; - default: - return false; - } -} - -// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? -static bool isMla(MachineInstr *MI) { - switch (MI->getOpcode()) { - case AArch64::FMSUBSrrr: - case AArch64::FMADDSrrr: - case AArch64::FNMSUBSrrr: - case AArch64::FNMADDSrrr: - case AArch64::FMSUBDrrr: - case AArch64::FMADDDrrr: - case AArch64::FNMSUBDrrr: - case AArch64::FNMADDDrrr: - - case AArch64::FMLAv2f32: - case AArch64::FMLSv2f32: - return true; - default: - return false; - } -} - -//===----------------------------------------------------------------------===// - -namespace { -/// A "color", which is either even or odd. Yes, these aren't really colors -/// but the algorithm is conceptually doing two-color graph coloring. -enum class Color { Even, Odd }; -static const char *ColorNames[2] = { "Even", "Odd" }; - -class Chain; - -class AArch64A57FPLoadBalancing : public MachineFunctionPass { - const AArch64InstrInfo *TII; - MachineRegisterInfo *MRI; - const TargetRegisterInfo *TRI; - RegisterClassInfo RCI; - -public: - static char ID; - explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {} - - bool runOnMachineFunction(MachineFunction &F) override; - - const char *getPassName() const override { - return "A57 FP Anti-dependency breaker"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - MachineFunctionPass::getAnalysisUsage(AU); - } - -private: - bool runOnBasicBlock(MachineBasicBlock &MBB); - bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB, - int &Balance); - bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); - int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); - void scanInstruction(MachineInstr *MI, unsigned Idx, - std::map<unsigned, Chain*> &Chains, - std::set<Chain*> &ChainSet); - void maybeKillChain(MachineOperand &MO, unsigned Idx, - std::map<unsigned, Chain*> &RegChains); - Color getColor(unsigned Register); - Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L); -}; -char AArch64A57FPLoadBalancing::ID = 0; - -/// A Chain is a sequence of instructions that are linked together by -/// an accumulation operand. For example: -/// -/// fmul d0<def>, ? -/// fmla d1<def>, ?, ?, d0<kill> -/// fmla d2<def>, ?, ?, d1<kill> -/// -/// There may be other instructions interleaved in the sequence that -/// do not belong to the chain. These other instructions must not use -/// the "chain" register at any point. -/// -/// We currently only support chains where the "chain" operand is killed -/// at each link in the chain for simplicity. -/// A chain has three important instructions - Start, Last and Kill. -/// * The start instruction is the first instruction in the chain. -/// * Last is the final instruction in the chain. -/// * Kill may or may not be defined. If defined, Kill is the instruction -/// where the outgoing value of the Last instruction is killed. -/// This information is important as if we know the outgoing value is -/// killed with no intervening uses, we can safely change its register. -/// -/// Without a kill instruction, we must assume the outgoing value escapes -/// beyond our model and either must not change its register or must -/// create a fixup FMOV to keep the old register value consistent. -/// -class Chain { -public: - /// The important (marker) instructions. - MachineInstr *StartInst, *LastInst, *KillInst; - /// The index, from the start of the basic block, that each marker - /// appears. These are stored so we can do quick interval tests. - unsigned StartInstIdx, LastInstIdx, KillInstIdx; - /// All instructions in the chain. - std::set<MachineInstr*> Insts; - /// True if KillInst cannot be modified. If this is true, - /// we cannot change LastInst's outgoing register. - /// This will be true for tied values and regmasks. - bool KillIsImmutable; - /// The "color" of LastInst. This will be the preferred chain color, - /// as changing intermediate nodes is easy but changing the last - /// instruction can be more tricky. - Color LastColor; - - Chain(MachineInstr *MI, unsigned Idx, Color C) : - StartInst(MI), LastInst(MI), KillInst(NULL), - StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), - LastColor(C) { - Insts.insert(MI); - } - - /// Add a new instruction into the chain. The instruction's dest operand - /// has the given color. - void add(MachineInstr *MI, unsigned Idx, Color C) { - LastInst = MI; - LastInstIdx = Idx; - LastColor = C; - - Insts.insert(MI); - } - - /// Return true if MI is a member of the chain. - bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; } - - /// Return the number of instructions in the chain. - unsigned size() const { - return Insts.size(); - } - - /// Inform the chain that its last active register (the dest register of - /// LastInst) is killed by MI with no intervening uses or defs. - void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { - KillInst = MI; - KillInstIdx = Idx; - KillIsImmutable = Immutable; - } - - /// Return the first instruction in the chain. - MachineInstr *getStart() const { return StartInst; } - /// Return the last instruction in the chain. - MachineInstr *getLast() const { return LastInst; } - /// Return the "kill" instruction (as set with setKill()) or NULL. - MachineInstr *getKill() const { return KillInst; } - /// Return an instruction that can be used as an iterator for the end - /// of the chain. This is the maximum of KillInst (if set) and LastInst. - MachineInstr *getEnd() const { - return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); - } - - /// Can the Kill instruction (assuming one exists) be modified? - bool isKillImmutable() const { return KillIsImmutable; } - - /// Return the preferred color of this chain. - Color getPreferredColor() { - if (OverrideBalance != 0) - return OverrideBalance == 1 ? Color::Even : Color::Odd; - return LastColor; - } - - /// Return true if this chain (StartInst..KillInst) overlaps with Other. - bool rangeOverlapsWith(Chain *Other) { - unsigned End = KillInst ? KillInstIdx : LastInstIdx; - unsigned OtherEnd = Other->KillInst ? - Other->KillInstIdx : Other->LastInstIdx; - - return StartInstIdx <= OtherEnd && Other->StartInstIdx <= End; - } - - /// Return true if this chain starts before Other. - bool startsBefore(Chain *Other) { - return StartInstIdx < Other->StartInstIdx; - } - - /// Return true if the group will require a fixup MOV at the end. - bool requiresFixup() const { - return (getKill() && isKillImmutable()) || !getKill(); - } - - /// Return a simple string representation of the chain. - std::string str() const { - std::string S; - raw_string_ostream OS(S); - - OS << "{"; - StartInst->print(OS, NULL, true); - OS << " -> "; - LastInst->print(OS, NULL, true); - if (KillInst) { - OS << " (kill @ "; - KillInst->print(OS, NULL, true); - OS << ")"; - } - OS << "}"; - - return OS.str(); - } - -}; - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// - -bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { - bool Changed = false; - DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); - - const TargetMachine &TM = F.getTarget(); - MRI = &F.getRegInfo(); - TRI = F.getRegInfo().getTargetRegisterInfo(); - TII = TM.getSubtarget<AArch64Subtarget>().getInstrInfo(); - RCI.runOnMachineFunction(F); - - for (auto &MBB : F) { - Changed |= runOnBasicBlock(MBB); - } - - return Changed; -} - -bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { - bool Changed = false; - DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n"); - - // First, scan the basic block producing a set of chains. - - // The currently "active" chains - chains that can be added to and haven't - // been killed yet. This is keyed by register - all chains can only have one - // "link" register between each inst in the chain. - std::map<unsigned, Chain*> ActiveChains; - std::set<Chain*> AllChains; - unsigned Idx = 0; - for (auto &MI : MBB) - scanInstruction(&MI, Idx++, ActiveChains, AllChains); - - DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n"); - - // Group the chains into disjoint sets based on their liveness range. This is - // a poor-man's version of graph coloring. Ideally we'd create an interference - // graph and perform full-on graph coloring on that, but; - // (a) That's rather heavyweight for only two colors. - // (b) We expect multiple disjoint interference regions - in practice the live - // range of chains is quite small and they are clustered between loads - // and stores. - EquivalenceClasses<Chain*> EC; - for (auto *I : AllChains) - EC.insert(I); - - for (auto *I : AllChains) { - for (auto *J : AllChains) { - if (I != J && I->rangeOverlapsWith(J)) - EC.unionSets(I, J); - } - } - DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); - - // Now we assume that every member of an equivalence class interferes - // with every other member of that class, and with no members of other classes. - - // Convert the EquivalenceClasses to a simpler set of sets. - std::vector<std::vector<Chain*> > V; - for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { - std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end()); - if (Cs.empty()) continue; - V.push_back(Cs); - } - - // Now we have a set of sets, order them by start address so - // we can iterate over them sequentially. - std::sort(V.begin(), V.end(), - [](const std::vector<Chain*> &A, - const std::vector<Chain*> &B) { - return A.front()->startsBefore(B.front()); - }); - - // As we only have two colors, we can track the global (BB-level) balance of - // odds versus evens. We aim to keep this near zero to keep both execution - // units fed. - // Positive means we're even-heavy, negative we're odd-heavy. - // - // FIXME: If chains have interdependencies, for example: - // mul r0, r1, r2 - // mul r3, r0, r1 - // We do not model this and may color each one differently, assuming we'll - // get ILP when we obviously can't. This hasn't been seen to be a problem - // in practice so far, so we simplify the algorithm by ignoring it. - int Parity = 0; - - for (auto &I : V) - Changed |= colorChainSet(I, MBB, Parity); - - for (auto *C : AllChains) - delete C; - - return Changed; -} - -Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, - std::vector<Chain*> &L) { - if (L.empty()) - return nullptr; - - // We try and get the best candidate from L to color next, given that our - // preferred color is "PreferredColor". L is ordered from larger to smaller - // chains. It is beneficial to color the large chains before the small chains, - // but if we can't find a chain of the maximum length with the preferred color, - // we fuzz the size and look for slightly smaller chains before giving up and - // returning a chain that must be recolored. - - // FIXME: Does this need to be configurable? - const unsigned SizeFuzz = 1; - unsigned MinSize = L.front()->size() - SizeFuzz; - for (auto I = L.begin(), E = L.end(); I != E; ++I) { - if ((*I)->size() <= MinSize) { - // We've gone past the size limit. Return the previous item. - Chain *Ch = *--I; - L.erase(I); - return Ch; - } - - if ((*I)->getPreferredColor() == PreferredColor) { - Chain *Ch = *I; - L.erase(I); - return Ch; - } - } - - // Bailout case - just return the first item. - Chain *Ch = L.front(); - L.erase(L.begin()); - return Ch; -} - -bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV, - MachineBasicBlock &MBB, - int &Parity) { - bool Changed = false; - DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); - - // Sort by descending size order so that we allocate the most important - // sets first. - // Tie-break equivalent sizes by sorting chains requiring fixups before - // those without fixups. The logic here is that we should look at the - // chains that we cannot change before we look at those we can, - // so the parity counter is updated and we know what color we should - // change them to! - std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) { - if (G1->size() != G2->size()) - return G1->size() > G2->size(); - return G1->requiresFixup() > G2->requiresFixup(); - }); - - Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; - while (Chain *G = getAndEraseNext(PreferredColor, GV)) { - // Start off by assuming we'll color to our own preferred color. - Color C = PreferredColor; - if (Parity == 0) - // But if we really don't care, use the chain's preferred color. - C = G->getPreferredColor(); - - DEBUG(dbgs() << " - Parity=" << Parity << ", Color=" - << ColorNames[(int)C] << "\n"); - - // If we'll need a fixup FMOV, don't bother. Testing has shown that this - // happens infrequently and when it does it has at least a 50% chance of - // slowing code down instead of speeding it up. - if (G->requiresFixup() && C != G->getPreferredColor()) { - C = G->getPreferredColor(); - DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; " - "color remains " << ColorNames[(int)C] << "\n"); - } - - Changed |= colorChain(G, C, MBB); - - Parity += (C == Color::Even) ? G->size() : -G->size(); - PreferredColor = Parity < 0 ? Color::Even : Color::Odd; - } - - return Changed; -} - -int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, - MachineBasicBlock &MBB) { - RegScavenger RS; - RS.enterBasicBlock(&MBB); - RS.forward(MachineBasicBlock::iterator(G->getStart())); - - // Can we find an appropriate register that is available throughout the life - // of the chain? - unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass; - BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID)); - for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); - I != E; ++I) { - RS.forward(I); - AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID)); - - // Remove any registers clobbered by a regmask. - for (auto J : I->operands()) { - if (J.isRegMask()) - AvailableRegs.clearBitsNotInMask(J.getRegMask()); - } - } - - // Make sure we allocate in-order, to get the cheapest registers first. - auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); - for (auto Reg : Ord) { - if (!AvailableRegs[Reg]) - continue; - if ((C == Color::Even && (Reg % 2) == 0) || - (C == Color::Odd && (Reg % 2) == 1)) - return Reg; - } - - return -1; -} - -bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, - MachineBasicBlock &MBB) { - bool Changed = false; - DEBUG(dbgs() << " - colorChain(" << G->str() << ", " - << ColorNames[(int)C] << ")\n"); - - // Try and obtain a free register of the right class. Without a register - // to play with we cannot continue. - int Reg = scavengeRegister(G, C, MBB); - if (Reg == -1) { - DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); - return false; - } - DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n"); - - std::map<unsigned, unsigned> Substs; - for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); - I != E; ++I) { - if (!G->contains(I) && - (&*I != G->getKill() || G->isKillImmutable())) - continue; - - // I is a member of G, or I is a mutable instruction that kills G. - - std::vector<unsigned> ToErase; - for (auto &U : I->operands()) { - if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { - unsigned OrigReg = U.getReg(); - U.setReg(Substs[OrigReg]); - if (U.isKill()) - // Don't erase straight away, because there may be other operands - // that also reference this substitution! - ToErase.push_back(OrigReg); - } else if (U.isRegMask()) { - for (auto J : Substs) { - if (U.clobbersPhysReg(J.first)) - ToErase.push_back(J.first); - } - } - } - // Now it's safe to remove the substs identified earlier. - for (auto J : ToErase) - Substs.erase(J); - - // Only change the def if this isn't the last instruction. - if (&*I != G->getKill()) { - MachineOperand &MO = I->getOperand(0); - - bool Change = TransformAll || getColor(MO.getReg()) != C; - if (G->requiresFixup() && &*I == G->getLast()) - Change = false; - - if (Change) { - Substs[MO.getReg()] = Reg; - MO.setReg(Reg); - MRI->setPhysRegUsed(Reg); - - Changed = true; - } - } - } - assert(Substs.size() == 0 && "No substitutions should be left active!"); - - if (G->getKill()) { - DEBUG(dbgs() << " - Kill instruction seen.\n"); - } else { - // We didn't have a kill instruction, but we didn't seem to need to change - // the destination register anyway. - DEBUG(dbgs() << " - Destination register not changed.\n"); - } - return Changed; -} - -void AArch64A57FPLoadBalancing:: -scanInstruction(MachineInstr *MI, unsigned Idx, - std::map<unsigned, Chain*> &ActiveChains, - std::set<Chain*> &AllChains) { - // Inspect "MI", updating ActiveChains and AllChains. - - if (isMul(MI)) { - - for (auto &I : MI->operands()) - maybeKillChain(I, Idx, ActiveChains); - - // Create a new chain. Multiplies don't require forwarding so can go on any - // unit. - unsigned DestReg = MI->getOperand(0).getReg(); - - DEBUG(dbgs() << "New chain started for register " - << TRI->getName(DestReg) << " at " << *MI); - - Chain *G = new Chain(MI, Idx, getColor(DestReg)); - ActiveChains[DestReg] = G; - AllChains.insert(G); - - } else if (isMla(MI)) { - - // It is beneficial to keep MLAs on the same functional unit as their - // accumulator operand. - unsigned DestReg = MI->getOperand(0).getReg(); - unsigned AccumReg = MI->getOperand(3).getReg(); - - maybeKillChain(MI->getOperand(1), Idx, ActiveChains); - maybeKillChain(MI->getOperand(2), Idx, ActiveChains); - if (DestReg != AccumReg) - maybeKillChain(MI->getOperand(0), Idx, ActiveChains); - - if (ActiveChains.find(AccumReg) != ActiveChains.end()) { - DEBUG(dbgs() << "Chain found for accumulator register " - << TRI->getName(AccumReg) << " in MI " << *MI); - - // For simplicity we only chain together sequences of MULs/MLAs where the - // accumulator register is killed on each instruction. This means we don't - // need to track other uses of the registers we want to rewrite. - // - // FIXME: We could extend to handle the non-kill cases for more coverage. - if (MI->getOperand(3).isKill()) { - // Add to chain. - DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); - ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); - // Handle cases where the destination is not the same as the accumulator. - ActiveChains[DestReg] = ActiveChains[AccumReg]; - return; - } - - DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't " - << "marked <kill>!\n"); - maybeKillChain(MI->getOperand(3), Idx, ActiveChains); - } - - DEBUG(dbgs() << "Creating new chain for dest register " - << TRI->getName(DestReg) << "\n"); - Chain *G = new Chain(MI, Idx, getColor(DestReg)); - ActiveChains[DestReg] = G; - AllChains.insert(G); - - } else { - - // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs - // lists. - for (auto &I : MI->operands()) - maybeKillChain(I, Idx, ActiveChains); - - } -} - -void AArch64A57FPLoadBalancing:: -maybeKillChain(MachineOperand &MO, unsigned Idx, - std::map<unsigned, Chain*> &ActiveChains) { - // Given an operand and the set of active chains (keyed by register), - // determine if a chain should be ended and remove from ActiveChains. - MachineInstr *MI = MO.getParent(); - - if (MO.isReg()) { - - // If this is a KILL of a current chain, record it. - if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { - DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg()) - << "\n"); - ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); - } - ActiveChains.erase(MO.getReg()); - - } else if (MO.isRegMask()) { - - for (auto I = ActiveChains.begin(), E = ActiveChains.end(); - I != E; ++I) { - if (MO.clobbersPhysReg(I->first)) { - DEBUG(dbgs() << "Kill (regmask) seen for chain " - << TRI->getName(I->first) << "\n"); - I->second->setKill(MI, Idx, /*Immutable=*/true); - ActiveChains.erase(I); - } - } - - } -} - -Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { - if ((TRI->getEncodingValue(Reg) % 2) == 0) - return Color::Even; - else - return Color::Odd; -} - -// Factory function used by AArch64TargetMachine to add the pass to the passmanager. -FunctionPass *llvm::createAArch64A57FPLoadBalancing() { - return new AArch64A57FPLoadBalancing(); -} |