aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64FastISel.cpp')
-rw-r--r--lib/Target/AArch64/AArch64FastISel.cpp4494
1 files changed, 3724 insertions, 770 deletions
diff --git a/lib/Target/AArch64/AArch64FastISel.cpp b/lib/Target/AArch64/AArch64FastISel.cpp
index 2164d77..612cb00 100644
--- a/lib/Target/AArch64/AArch64FastISel.cpp
+++ b/lib/Target/AArch64/AArch64FastISel.cpp
@@ -14,9 +14,10 @@
//===----------------------------------------------------------------------===//
#include "AArch64.h"
-#include "AArch64TargetMachine.h"
#include "AArch64Subtarget.h"
+#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
@@ -39,8 +40,7 @@ using namespace llvm;
namespace {
-class AArch64FastISel : public FastISel {
-
+class AArch64FastISel final : public FastISel {
class Address {
public:
typedef enum {
@@ -50,16 +50,23 @@ class AArch64FastISel : public FastISel {
private:
BaseKind Kind;
+ AArch64_AM::ShiftExtendType ExtType;
union {
unsigned Reg;
int FI;
} Base;
+ unsigned OffsetReg;
+ unsigned Shift;
int64_t Offset;
+ const GlobalValue *GV;
public:
- Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
+ Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
+ OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
void setKind(BaseKind K) { Kind = K; }
BaseKind getKind() const { return Kind; }
+ void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
+ AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
@@ -70,6 +77,12 @@ class AArch64FastISel : public FastISel {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
+ void setOffsetReg(unsigned Reg) {
+ OffsetReg = Reg;
+ }
+ unsigned getOffsetReg() const {
+ return OffsetReg;
+ }
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
Base.FI = FI;
@@ -80,8 +93,11 @@ class AArch64FastISel : public FastISel {
}
void setOffset(int64_t O) { Offset = O; }
int64_t getOffset() { return Offset; }
+ void setShift(unsigned S) { Shift = S; }
+ unsigned getShift() { return Shift; }
- bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
+ void setGlobalValue(const GlobalValue *G) { GV = G; }
+ const GlobalValue *getGlobalValue() { return GV; }
};
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
@@ -89,74 +105,152 @@ class AArch64FastISel : public FastISel {
const AArch64Subtarget *Subtarget;
LLVMContext *Context;
+ bool fastLowerArguments() override;
+ bool fastLowerCall(CallLoweringInfo &CLI) override;
+ bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
+
private:
// Selection routines.
- bool SelectLoad(const Instruction *I);
- bool SelectStore(const Instruction *I);
- bool SelectBranch(const Instruction *I);
- bool SelectIndirectBr(const Instruction *I);
- bool SelectCmp(const Instruction *I);
- bool SelectSelect(const Instruction *I);
- bool SelectFPExt(const Instruction *I);
- bool SelectFPTrunc(const Instruction *I);
- bool SelectFPToInt(const Instruction *I, bool Signed);
- bool SelectIntToFP(const Instruction *I, bool Signed);
- bool SelectRem(const Instruction *I, unsigned ISDOpcode);
- bool SelectCall(const Instruction *I, const char *IntrMemName);
- bool SelectIntrinsicCall(const IntrinsicInst &I);
- bool SelectRet(const Instruction *I);
- bool SelectTrunc(const Instruction *I);
- bool SelectIntExt(const Instruction *I);
- bool SelectMul(const Instruction *I);
+ bool selectAddSub(const Instruction *I);
+ bool selectLogicalOp(const Instruction *I);
+ bool selectLoad(const Instruction *I);
+ bool selectStore(const Instruction *I);
+ bool selectBranch(const Instruction *I);
+ bool selectIndirectBr(const Instruction *I);
+ bool selectCmp(const Instruction *I);
+ bool selectSelect(const Instruction *I);
+ bool selectFPExt(const Instruction *I);
+ bool selectFPTrunc(const Instruction *I);
+ bool selectFPToInt(const Instruction *I, bool Signed);
+ bool selectIntToFP(const Instruction *I, bool Signed);
+ bool selectRem(const Instruction *I, unsigned ISDOpcode);
+ bool selectRet(const Instruction *I);
+ bool selectTrunc(const Instruction *I);
+ bool selectIntExt(const Instruction *I);
+ bool selectMul(const Instruction *I);
+ bool selectShift(const Instruction *I);
+ bool selectBitCast(const Instruction *I);
+ bool selectFRem(const Instruction *I);
+ bool selectSDiv(const Instruction *I);
+ bool selectGetElementPtr(const Instruction *I);
// Utility helper routines.
bool isTypeLegal(Type *Ty, MVT &VT);
- bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
- bool ComputeAddress(const Value *Obj, Address &Addr);
- bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
- bool UseUnscaled);
- void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
- unsigned Flags, bool UseUnscaled);
- bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
- bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+ bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
+ bool isValueAvailable(const Value *V) const;
+ bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
+ bool computeCallAddress(const Value *V, Address &Addr);
+ bool simplifyAddress(Address &Addr, MVT VT);
+ void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
+ unsigned Flags, unsigned ScaleFactor,
+ MachineMemOperand *MMO);
+ bool isMemCpySmall(uint64_t Len, unsigned Alignment);
+ bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
unsigned Alignment);
- // Emit functions.
- bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
- bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
- bool UseUnscaled = false);
- bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
- bool UseUnscaled = false);
- unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
- unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+ bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
+ const Value *Cond);
+ bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
+ bool optimizeSelect(const SelectInst *SI);
+ std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
+
+ // Emit helper routines.
+ unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
+ const Value *RHS, bool SetFlags = false,
+ bool WantResult = true, bool IsZExt = false);
+ unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ bool SetFlags = false, bool WantResult = true);
+ unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
+ bool WantResult = true);
+ unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType,
+ uint64_t ShiftImm, bool SetFlags = false,
+ bool WantResult = true);
+ unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ExtType,
+ uint64_t ShiftImm, bool SetFlags = false,
+ bool WantResult = true);
- unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
- unsigned AArch64MaterializeGV(const GlobalValue *GV);
+ // Emit functions.
+ bool emitCompareAndBranch(const BranchInst *BI);
+ bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
+ bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
+ bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
+ bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
+ unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
+ MachineMemOperand *MMO = nullptr);
+ bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
+ MachineMemOperand *MMO = nullptr);
+ unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags = false, bool WantResult = true,
+ bool IsZExt = false);
+ unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
+ unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags = false, bool WantResult = true,
+ bool IsZExt = false);
+ unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
+ unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ unsigned RHSReg, bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
+ bool WantResult = true);
+ unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
+ const Value *RHS);
+ unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, uint64_t Imm);
+ unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ uint64_t ShiftImm);
+ unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
+ unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill);
+ unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
+ uint64_t Imm, bool IsZExt = true);
+ unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill);
+ unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
+ uint64_t Imm, bool IsZExt = true);
+ unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill);
+ unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
+ uint64_t Imm, bool IsZExt = false);
+
+ unsigned materializeInt(const ConstantInt *CI, MVT VT);
+ unsigned materializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned materializeGV(const GlobalValue *GV);
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
- bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
- SmallVectorImpl<unsigned> &ArgRegs,
- SmallVectorImpl<MVT> &ArgVTs,
- SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
- SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+ bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
unsigned &NumBytes);
- bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
- const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
+ bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
public:
// Backend specific FastISel code.
- unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
- unsigned TargetMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
+ unsigned fastMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
- explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo)
- : FastISel(funcInfo, libInfo) {
+ explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo)
+ : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
Subtarget = &TM.getSubtarget<AArch64Subtarget>();
- Context = &funcInfo.Fn->getContext();
+ Context = &FuncInfo.Fn->getContext();
}
- bool TargetSelectInstruction(const Instruction *I) override;
+ bool fastSelectInstruction(const Instruction *I) override;
#include "AArch64GenFastISel.inc"
};
@@ -165,13 +259,52 @@ public:
#include "AArch64GenCallingConv.inc"
+/// \brief Check if the sign-/zero-extend will be a noop.
+static bool isIntExtFree(const Instruction *I) {
+ assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ "Unexpected integer extend instruction.");
+ assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
+ "Unexpected value type.");
+ bool IsZExt = isa<ZExtInst>(I);
+
+ if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
+ if (LI->hasOneUse())
+ return true;
+
+ if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
+ if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
+ return true;
+
+ return false;
+}
+
+/// \brief Determine the implicit scale factor that is applied by a memory
+/// operation for a given value type.
+static unsigned getImplicitScaleFactor(MVT VT) {
+ switch (VT.SimpleTy) {
+ default:
+ return 0; // invalid
+ case MVT::i1: // fall-through
+ case MVT::i8:
+ return 1;
+ case MVT::i16:
+ return 2;
+ case MVT::i32: // fall-through
+ case MVT::f32:
+ return 4;
+ case MVT::i64: // fall-through
+ case MVT::f64:
+ return 8;
+ }
+}
+
CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
if (CC == CallingConv::WebKit_JS)
return CC_AArch64_WebKit_JS;
return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
}
-unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
"Alloca should always return a pointer.");
@@ -183,7 +316,7 @@ unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
- unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(SI->second)
@@ -195,29 +328,42 @@ unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
return 0;
}
-unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
+unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
+ if (VT > MVT::i64)
+ return 0;
+
+ if (!CI->isZero())
+ return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+
+ // Create a copy from the zero register to materialize a "0" value.
+ const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
+ : &AArch64::GPR32RegClass;
+ unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(ZeroReg, getKillRegState(true));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
+ // Positive zero (+0.0) has to be materialized with a fmov from the zero
+ // register, because the immediate version of fmov cannot encode zero.
+ if (CFP->isNullValue())
+ return fastMaterializeFloatZero(CFP);
+
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
const APFloat Val = CFP->getValueAPF();
- bool is64bit = (VT == MVT::f64);
-
+ bool Is64Bit = (VT == MVT::f64);
// This checks to see if we can use FMOV instructions to materialize
// a constant, otherwise we have to materialize via the constant pool.
if (TLI.isFPImmLegal(Val, VT)) {
- int Imm;
- unsigned Opc;
- if (is64bit) {
- Imm = AArch64_AM::getFP64Imm(Val);
- Opc = AArch64::FMOVDi;
- } else {
- Imm = AArch64_AM::getFP32Imm(Val);
- Opc = AArch64::FMOVSi;
- }
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addImm(Imm);
- return ResultReg;
+ int Imm =
+ Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
+ assert((Imm != -1) && "Cannot encode floating-point constant.");
+ unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
+ return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
}
// Materialize via constant pool. MachineConstantPool wants an explicit
@@ -226,20 +372,20 @@ unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
if (Align == 0)
Align = DL.getTypeAllocSize(CFP->getType());
- unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
- ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE);
+ ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
- unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui;
+ unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(ADRPReg)
- .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
return ResultReg;
}
-unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
+unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
// We can't handle thread-local variables quickly yet.
if (GV->isThreadLocal())
return 0;
@@ -262,30 +408,34 @@ unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
// ADRP + LDRX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
- .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
ResultReg)
- .addReg(ADRPReg)
- .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
- AArch64II::MO_NC);
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ } else if (OpFlags & AArch64II::MO_CONSTPOOL) {
+ // We can't handle addresses loaded from a constant pool quickly yet.
+ return 0;
} else {
// ADRP + ADDX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
- ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
+ ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
- .addReg(ADRPReg)
- .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
- .addImm(0);
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
+ .addImm(0);
}
return ResultReg;
}
-unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
+unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
@@ -293,17 +443,48 @@ unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
return 0;
MVT VT = CEVT.getSimpleVT();
- // FIXME: Handle ConstantInt.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return AArch64MaterializeFP(CFP, VT);
+ if (const auto *CI = dyn_cast<ConstantInt>(C))
+ return materializeInt(CI, VT);
+ else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return materializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return AArch64MaterializeGV(GV);
+ return materializeGV(GV);
return 0;
}
+unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
+ assert(CFP->isNullValue() &&
+ "Floating-point constant is not a positive zero.");
+ MVT VT;
+ if (!isTypeLegal(CFP->getType(), VT))
+ return 0;
+
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return 0;
+
+ bool Is64Bit = (VT == MVT::f64);
+ unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+ unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
+ return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
+}
+
+/// \brief Check if the multiply is by a power-of-2 constant.
+static bool isMulPowOf2(const Value *I) {
+ if (const auto *MI = dyn_cast<MulOperator>(I)) {
+ if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
+ if (C->getValue().isPowerOf2())
+ return true;
+ if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
+ if (C->getValue().isPowerOf2())
+ return true;
+ }
+ return false;
+}
+
// Computes the address to get to an object.
-bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
+bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
+{
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
@@ -330,18 +511,18 @@ bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
break;
case Instruction::BitCast: {
// Look through bitcasts.
- return ComputeAddress(U->getOperand(0), Addr);
+ return computeAddress(U->getOperand(0), Addr, Ty);
}
case Instruction::IntToPtr: {
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
- return ComputeAddress(U->getOperand(0), Addr);
+ return computeAddress(U->getOperand(0), Addr, Ty);
break;
}
case Instruction::PtrToInt: {
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
- return ComputeAddress(U->getOperand(0), Addr);
+ return computeAddress(U->getOperand(0), Addr, Ty);
break;
}
case Instruction::GetElementPtr: {
@@ -383,7 +564,7 @@ bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
- if (ComputeAddress(U->getOperand(0), Addr))
+ if (computeAddress(U->getOperand(0), Addr, Ty))
return true;
// We failed, restore everything and try the other options.
@@ -403,14 +584,301 @@ bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
}
break;
}
+ case Instruction::Add: {
+ // Adds of constants are common and easy enough.
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ if (isa<ConstantInt>(LHS))
+ std::swap(LHS, RHS);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
+ return computeAddress(LHS, Addr, Ty);
+ }
+
+ Address Backup = Addr;
+ if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
+ return true;
+ Addr = Backup;
+
+ break;
+ }
+ case Instruction::Sub: {
+ // Subs of constants are common and easy enough.
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
+ return computeAddress(LHS, Addr, Ty);
+ }
+ break;
+ }
+ case Instruction::Shl: {
+ if (Addr.getOffsetReg())
+ break;
+
+ const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
+ if (!CI)
+ break;
+
+ unsigned Val = CI->getZExtValue();
+ if (Val < 1 || Val > 3)
+ break;
+
+ uint64_t NumBytes = 0;
+ if (Ty && Ty->isSized()) {
+ uint64_t NumBits = DL.getTypeSizeInBits(Ty);
+ NumBytes = NumBits / 8;
+ if (!isPowerOf2_64(NumBits))
+ NumBytes = 0;
+ }
+
+ if (NumBytes != (1ULL << Val))
+ break;
+
+ Addr.setShift(Val);
+ Addr.setExtendType(AArch64_AM::LSL);
+
+ const Value *Src = U->getOperand(0);
+ if (const auto *I = dyn_cast<Instruction>(Src))
+ if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
+ Src = I;
+
+ // Fold the zext or sext when it won't become a noop.
+ if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
+ if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ Src = ZE->getOperand(0);
+ }
+ } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
+ if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::SXTW);
+ Src = SE->getOperand(0);
+ }
+ }
+
+ if (const auto *AI = dyn_cast<BinaryOperator>(Src))
+ if (AI->getOpcode() == Instruction::And) {
+ const Value *LHS = AI->getOperand(0);
+ const Value *RHS = AI->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(LHS))
+ if (C->getValue() == 0xffffffff)
+ std::swap(LHS, RHS);
+
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 0xffffffff) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ unsigned Reg = getRegForValue(LHS);
+ if (!Reg)
+ return false;
+ bool RegIsKill = hasTrivialKill(LHS);
+ Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
+ AArch64::sub_32);
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ }
+
+ unsigned Reg = getRegForValue(Src);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ case Instruction::Mul: {
+ if (Addr.getOffsetReg())
+ break;
+
+ if (!isMulPowOf2(U))
+ break;
+
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ // Canonicalize power-of-2 value to the RHS.
+ if (const auto *C = dyn_cast<ConstantInt>(LHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(LHS, RHS);
+
+ assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
+ const auto *C = cast<ConstantInt>(RHS);
+ unsigned Val = C->getValue().logBase2();
+ if (Val < 1 || Val > 3)
+ break;
+
+ uint64_t NumBytes = 0;
+ if (Ty && Ty->isSized()) {
+ uint64_t NumBits = DL.getTypeSizeInBits(Ty);
+ NumBytes = NumBits / 8;
+ if (!isPowerOf2_64(NumBits))
+ NumBytes = 0;
+ }
+
+ if (NumBytes != (1ULL << Val))
+ break;
+
+ Addr.setShift(Val);
+ Addr.setExtendType(AArch64_AM::LSL);
+
+ const Value *Src = LHS;
+ if (const auto *I = dyn_cast<Instruction>(Src))
+ if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
+ Src = I;
+
+
+ // Fold the zext or sext when it won't become a noop.
+ if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
+ if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ Src = ZE->getOperand(0);
+ }
+ } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
+ if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::SXTW);
+ Src = SE->getOperand(0);
+ }
+ }
+
+ unsigned Reg = getRegForValue(Src);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ case Instruction::And: {
+ if (Addr.getOffsetReg())
+ break;
+
+ if (DL.getTypeSizeInBits(Ty) != 8)
+ break;
+
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(LHS))
+ if (C->getValue() == 0xffffffff)
+ std::swap(LHS, RHS);
+
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 0xffffffff) {
+ Addr.setShift(0);
+ Addr.setExtendType(AArch64_AM::LSL);
+ Addr.setExtendType(AArch64_AM::UXTW);
+
+ unsigned Reg = getRegForValue(LHS);
+ if (!Reg)
+ return false;
+ bool RegIsKill = hasTrivialKill(LHS);
+ Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
+ AArch64::sub_32);
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ break;
+ }
+ case Instruction::SExt:
+ case Instruction::ZExt: {
+ if (!Addr.getReg() || Addr.getOffsetReg())
+ break;
+
+ const Value *Src = nullptr;
+ // Fold the zext or sext when it won't become a noop.
+ if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
+ if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ Src = ZE->getOperand(0);
+ }
+ } else if (const auto *SE = dyn_cast<SExtInst>(U)) {
+ if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::SXTW);
+ Src = SE->getOperand(0);
+ }
+ }
+
+ if (!Src)
+ break;
+
+ Addr.setShift(0);
+ unsigned Reg = getRegForValue(Src);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ } // end switch
+
+ if (Addr.isRegBase() && !Addr.getReg()) {
+ unsigned Reg = getRegForValue(Obj);
+ if (!Reg)
+ return false;
+ Addr.setReg(Reg);
+ return true;
+ }
+
+ if (!Addr.getOffsetReg()) {
+ unsigned Reg = getRegForValue(Obj);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+
+ return false;
+}
+
+bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ bool InMBB = true;
+
+ if (const auto *I = dyn_cast<Instruction>(V)) {
+ Opcode = I->getOpcode();
+ U = I;
+ InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
+ } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts if its operand is in the same BB.
+ if (InMBB)
+ return computeCallAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return computeCallAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return computeCallAddress(U->getOperand(0), Addr);
+ break;
+ }
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Addr.setGlobalValue(GV);
+ return true;
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!Addr.getGlobalValue()) {
+ Addr.setReg(getRegForValue(V));
+ return Addr.getReg() != 0;
}
- // Try to get this in a register if nothing else has worked.
- if (!Addr.isValid())
- Addr.setReg(getRegForValue(Obj));
- return Addr.isValid();
+ return false;
}
+
bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
@@ -428,62 +896,122 @@ bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
return TLI.isTypeLegal(VT);
}
-bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
+/// \brief Determine if the value type is supported by FastISel.
+///
+/// FastISel for AArch64 can handle more value types than are legal. This adds
+/// simple value type such as i1, i8, and i16.
+bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
+ if (Ty->isVectorTy() && !IsVectorAllowed)
+ return false;
+
if (isTypeLegal(Ty, VT))
return true;
// If this is a type than can be sign or zero-extended to a basic operation
- // go ahead and accept it now. For stores, this reflects truncation.
+ // go ahead and accept it now.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
-bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
- int64_t ScaleFactor, bool UseUnscaled) {
- bool needsLowering = false;
- int64_t Offset = Addr.getOffset();
- switch (VT.SimpleTy) {
- default:
+bool AArch64FastISel::isValueAvailable(const Value *V) const {
+ if (!isa<Instruction>(V))
+ return true;
+
+ const auto *I = cast<Instruction>(V);
+ if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
+ return true;
+
+ return false;
+}
+
+bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
+ unsigned ScaleFactor = getImplicitScaleFactor(VT);
+ if (!ScaleFactor)
return false;
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
- case MVT::f32:
- case MVT::f64:
- if (!UseUnscaled)
- // Using scaled, 12-bit, unsigned immediate offsets.
- needsLowering = ((Offset & 0xfff) != Offset);
- else
- // Using unscaled, 9-bit, signed immediate offsets.
- needsLowering = (Offset > 256 || Offset < -256);
- break;
- }
- //If this is a stack pointer and the offset needs to be simplified then put
+ bool ImmediateOffsetNeedsLowering = false;
+ bool RegisterOffsetNeedsLowering = false;
+ int64_t Offset = Addr.getOffset();
+ if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
+ ImmediateOffsetNeedsLowering = true;
+ else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
+ !isUInt<12>(Offset / ScaleFactor))
+ ImmediateOffsetNeedsLowering = true;
+
+ // Cannot encode an offset register and an immediate offset in the same
+ // instruction. Fold the immediate offset into the load/store instruction and
+ // emit an additonal add to take care of the offset register.
+ if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
+ RegisterOffsetNeedsLowering = true;
+
+ // Cannot encode zero register as base.
+ if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
+ RegisterOffsetNeedsLowering = true;
+
+ // If this is a stack pointer and the offset needs to be simplified then put
// the alloca address into a register, set the base type back to register and
// continue. This should almost never happen.
- if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
- unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
+ {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
- .addFrameIndex(Addr.getFI())
- .addImm(0)
- .addImm(0);
+ .addFrameIndex(Addr.getFI())
+ .addImm(0)
+ .addImm(0);
Addr.setKind(Address::RegBase);
Addr.setReg(ResultReg);
}
+ if (RegisterOffsetNeedsLowering) {
+ unsigned ResultReg = 0;
+ if (Addr.getReg()) {
+ if (Addr.getExtendType() == AArch64_AM::SXTW ||
+ Addr.getExtendType() == AArch64_AM::UXTW )
+ ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
+ /*TODO:IsKill=*/false, Addr.getOffsetReg(),
+ /*TODO:IsKill=*/false, Addr.getExtendType(),
+ Addr.getShift());
+ else
+ ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
+ /*TODO:IsKill=*/false, Addr.getOffsetReg(),
+ /*TODO:IsKill=*/false, AArch64_AM::LSL,
+ Addr.getShift());
+ } else {
+ if (Addr.getExtendType() == AArch64_AM::UXTW)
+ ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
+ /*Op0IsKill=*/false, Addr.getShift(),
+ /*IsZExt=*/true);
+ else if (Addr.getExtendType() == AArch64_AM::SXTW)
+ ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
+ /*Op0IsKill=*/false, Addr.getShift(),
+ /*IsZExt=*/false);
+ else
+ ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
+ /*Op0IsKill=*/false, Addr.getShift());
+ }
+ if (!ResultReg)
+ return false;
+
+ Addr.setReg(ResultReg);
+ Addr.setOffsetReg(0);
+ Addr.setShift(0);
+ Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
+ }
+
// Since the offset is too large for the load/store instruction get the
// reg+offset into a register.
- if (needsLowering) {
- uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
- unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
- UnscaledOffset, MVT::i64);
- if (ResultReg == 0)
+ if (ImmediateOffsetNeedsLowering) {
+ unsigned ResultReg;
+ if (Addr.getReg())
+ // Try to fold the immediate into the add instruction.
+ ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
+ else
+ ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
+
+ if (!ResultReg)
return false;
Addr.setReg(ResultReg);
Addr.setOffset(0);
@@ -491,222 +1019,1021 @@ bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
return true;
}
-void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
+void AArch64FastISel::addLoadStoreOperands(Address &Addr,
const MachineInstrBuilder &MIB,
- unsigned Flags, bool UseUnscaled) {
- int64_t Offset = Addr.getOffset();
+ unsigned Flags,
+ unsigned ScaleFactor,
+ MachineMemOperand *MMO) {
+ int64_t Offset = Addr.getOffset() / ScaleFactor;
// Frame base works a bit differently. Handle it separately.
- if (Addr.getKind() == Address::FrameIndexBase) {
+ if (Addr.isFIBase()) {
int FI = Addr.getFI();
// FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
// and alignment should be based on the VT.
- MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
- MachinePointerInfo::getFixedStack(FI, Offset), Flags,
- MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
+ MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI, Offset), Flags,
+ MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
// Now add the rest of the operands.
- MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
+ MIB.addFrameIndex(FI).addImm(Offset);
} else {
- // Now add the rest of the operands.
- MIB.addReg(Addr.getReg());
- MIB.addImm(Offset);
+ assert(Addr.isRegBase() && "Unexpected address kind.");
+ const MCInstrDesc &II = MIB->getDesc();
+ unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
+ Addr.setReg(
+ constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
+ Addr.setOffsetReg(
+ constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
+ if (Addr.getOffsetReg()) {
+ assert(Addr.getOffset() == 0 && "Unexpected offset");
+ bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
+ Addr.getExtendType() == AArch64_AM::SXTX;
+ MIB.addReg(Addr.getReg());
+ MIB.addReg(Addr.getOffsetReg());
+ MIB.addImm(IsSigned);
+ MIB.addImm(Addr.getShift() != 0);
+ } else
+ MIB.addReg(Addr.getReg()).addImm(Offset);
}
+
+ if (MMO)
+ MIB.addMemOperand(MMO);
}
-bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
- bool UseUnscaled) {
- // Negative offsets require unscaled, 9-bit, signed immediate offsets.
- // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
- if (!UseUnscaled && Addr.getOffset() < 0)
- UseUnscaled = true;
+unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
+ const Value *RHS, bool SetFlags,
+ bool WantResult, bool IsZExt) {
+ AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
+ bool NeedExtend = false;
+ switch (RetVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ NeedExtend = true;
+ break;
+ case MVT::i8:
+ NeedExtend = true;
+ ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
+ break;
+ case MVT::i16:
+ NeedExtend = true;
+ ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
+ break;
+ case MVT::i32: // fall-through
+ case MVT::i64:
+ break;
+ }
+ MVT SrcVT = RetVT;
+ RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
+
+ // Canonicalize immediates to the RHS first.
+ if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize mul by power of 2 to the RHS.
+ if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
+ if (isMulPowOf2(LHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize shift immediate to the RHS.
+ if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
+ if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
+ if (isa<ConstantInt>(SI->getOperand(1)))
+ if (SI->getOpcode() == Instruction::Shl ||
+ SI->getOpcode() == Instruction::LShr ||
+ SI->getOpcode() == Instruction::AShr )
+ std::swap(LHS, RHS);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return 0;
+ bool LHSIsKill = hasTrivialKill(LHS);
- unsigned Opc;
+ if (NeedExtend)
+ LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
+
+ unsigned ResultReg = 0;
+ if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
+ uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
+ if (C->isNegative())
+ ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
+ SetFlags, WantResult);
+ else
+ ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
+ WantResult);
+ } else if (const auto *C = dyn_cast<Constant>(RHS))
+ if (C->isNullValue())
+ ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
+ WantResult);
+
+ if (ResultReg)
+ return ResultReg;
+
+ // Only extend the RHS within the instruction if there is a valid extend type.
+ if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
+ isValueAvailable(RHS)) {
+ if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
+ if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
+ if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
+ unsigned RHSReg = getRegForValue(SI->getOperand(0));
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
+ return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ExtendType, C->getZExtValue(),
+ SetFlags, WantResult);
+ }
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(RHS);
+ return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ ExtendType, 0, SetFlags, WantResult);
+ }
+
+ // Check if the mul can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (isMulPowOf2(RHS)) {
+ const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
+ const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(MulLHS, MulRHS);
+
+ assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
+ uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
+ unsigned RHSReg = getRegForValue(MulLHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(MulLHS);
+ return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ AArch64_AM::LSL, ShiftVal, SetFlags, WantResult);
+ }
+
+ // Check if the shift can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
+ if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
+ switch (SI->getOpcode()) {
+ default: break;
+ case Instruction::Shl: ShiftType = AArch64_AM::LSL; break;
+ case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
+ case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
+ }
+ uint64_t ShiftVal = C->getZExtValue();
+ if (ShiftType != AArch64_AM::InvalidShiftExtend) {
+ unsigned RHSReg = getRegForValue(SI->getOperand(0));
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
+ return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftType, ShiftVal, SetFlags,
+ WantResult);
+ }
+ }
+ }
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (NeedExtend)
+ RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
+
+ return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ SetFlags, WantResult);
+}
+
+unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill, bool SetFlags,
+ bool WantResult) {
+ assert(LHSReg && RHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWrr, AArch64::SUBXrr },
+ { AArch64::ADDWrr, AArch64::ADDXrr } },
+ { { AArch64::SUBSWrr, AArch64::SUBSXrr },
+ { AArch64::ADDSWrr, AArch64::ADDSXrr } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, uint64_t Imm,
+ bool SetFlags, bool WantResult) {
+ assert(LHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ unsigned ShiftImm;
+ if (isUInt<12>(Imm))
+ ShiftImm = 0;
+ else if ((Imm & 0xfff000) == Imm) {
+ ShiftImm = 12;
+ Imm >>= 12;
+ } else
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWri, AArch64::SUBXri },
+ { AArch64::ADDWri, AArch64::ADDXri } },
+ { { AArch64::SUBSWri, AArch64::SUBSXri },
+ { AArch64::ADDSWri, AArch64::ADDSXri } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC;
- bool VTIsi1 = false;
- int64_t ScaleFactor = 0;
+ if (SetFlags)
+ RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ else
+ RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addImm(Imm)
+ .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType,
+ uint64_t ShiftImm, bool SetFlags,
+ bool WantResult) {
+ assert(LHSReg && RHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWrs, AArch64::SUBXrs },
+ { AArch64::ADDWrs, AArch64::ADDXrs } },
+ { { AArch64::SUBSWrs, AArch64::SUBSXrs },
+ { AArch64::ADDSWrs, AArch64::ADDSXrs } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill))
+ .addImm(getShifterImm(ShiftType, ShiftImm));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ExtType,
+ uint64_t ShiftImm, bool SetFlags,
+ bool WantResult) {
+ assert(LHSReg && RHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWrx, AArch64::SUBXrx },
+ { AArch64::ADDWrx, AArch64::ADDXrx } },
+ { { AArch64::SUBSWrx, AArch64::SUBSXrx },
+ { AArch64::ADDSWrx, AArch64::ADDSXrx } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
+ const TargetRegisterClass *RC = nullptr;
+ if (SetFlags)
+ RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ else
+ RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill))
+ .addImm(getArithExtendImm(ExtType, ShiftImm));
+ return ResultReg;
+}
+
+bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
+ Type *Ty = LHS->getType();
+ EVT EVT = TLI.getValueType(Ty, true);
+ if (!EVT.isSimple())
+ return false;
+ MVT VT = EVT.getSimpleVT();
+
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
- VTIsi1 = true;
- // Intentional fall-through.
case MVT::i8:
- Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ return emitICmp(VT, LHS, RHS, IsZExt);
+ case MVT::f32:
+ case MVT::f64:
+ return emitFCmp(VT, LHS, RHS);
+ }
+}
+
+bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool IsZExt) {
+ return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
+ IsZExt) != 0;
+}
+
+bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ uint64_t Imm) {
+ return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
+ /*SetFlags=*/true, /*WantResult=*/false) != 0;
+}
+
+bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
+ if (RetVT != MVT::f32 && RetVT != MVT::f64)
+ return false;
+
+ // Check to see if the 2nd operand is a constant that we can encode directly
+ // in the compare.
+ bool UseImm = false;
+ if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
+ if (CFP->isZero() && !CFP->isNegative())
+ UseImm = true;
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ if (UseImm) {
+ unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ return true;
+ }
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return false;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill));
+ return true;
+}
+
+unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags, bool WantResult, bool IsZExt) {
+ return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
+ IsZExt);
+}
+
+/// \brief This method is a wrapper to simplify add emission.
+///
+/// First try to emit an add with an immediate operand using emitAddSub_ri. If
+/// that fails, then try to materialize the immediate into a register and use
+/// emitAddSub_rr instead.
+unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
+ int64_t Imm) {
+ unsigned ResultReg;
+ if (Imm < 0)
+ ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
+ else
+ ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
+
+ if (ResultReg)
+ return ResultReg;
+
+ unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
+ if (!CReg)
+ return 0;
+
+ ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags, bool WantResult, bool IsZExt) {
+ return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
+ IsZExt);
+}
+
+unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill, bool WantResult) {
+ return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, /*SetFlags=*/true, WantResult);
+}
+
+unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType,
+ uint64_t ShiftImm, bool WantResult) {
+ return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
+ WantResult);
+}
+
+unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
+ const Value *LHS, const Value *RHS) {
+ // Canonicalize immediates to the RHS first.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize mul by power-of-2 to the RHS.
+ if (LHS->hasOneUse() && isValueAvailable(LHS))
+ if (isMulPowOf2(LHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize shift immediate to the RHS.
+ if (LHS->hasOneUse() && isValueAvailable(LHS))
+ if (const auto *SI = dyn_cast<ShlOperator>(LHS))
+ if (isa<ConstantInt>(SI->getOperand(1)))
+ std::swap(LHS, RHS);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return 0;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned ResultReg = 0;
+ if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
+ uint64_t Imm = C->getZExtValue();
+ ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
+ }
+ if (ResultReg)
+ return ResultReg;
+
+ // Check if the mul can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (isMulPowOf2(RHS)) {
+ const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
+ const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(MulLHS, MulRHS);
+
+ assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
+ uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
+
+ unsigned RHSReg = getRegForValue(MulLHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(MulLHS);
+ return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftVal);
+ }
+
+ // Check if the shift can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (const auto *SI = dyn_cast<ShlOperator>(RHS))
+ if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ uint64_t ShiftVal = C->getZExtValue();
+ unsigned RHSReg = getRegForValue(SI->getOperand(0));
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
+ return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftVal);
+ }
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
+ ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
+ uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
+ unsigned LHSReg, bool LHSIsKill,
+ uint64_t Imm) {
+ assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
+ "ISD nodes are not consecutive!");
+ static const unsigned OpcTable[3][2] = {
+ { AArch64::ANDWri, AArch64::ANDXri },
+ { AArch64::ORRWri, AArch64::ORRXri },
+ { AArch64::EORWri, AArch64::EORXri }
+ };
+ const TargetRegisterClass *RC;
+ unsigned Opc;
+ unsigned RegSize;
+ switch (RetVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32: {
+ unsigned Idx = ISDOpc - ISD::AND;
+ Opc = OpcTable[Idx][0];
+ RC = &AArch64::GPR32spRegClass;
+ RegSize = 32;
+ break;
+ }
+ case MVT::i64:
+ Opc = OpcTable[ISDOpc - ISD::AND][1];
+ RC = &AArch64::GPR64spRegClass;
+ RegSize = 64;
+ break;
+ }
+
+ if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
+ return 0;
+
+ unsigned ResultReg =
+ fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
+ AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
+ if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
+ uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
+ unsigned LHSReg, bool LHSIsKill,
+ unsigned RHSReg, bool RHSIsKill,
+ uint64_t ShiftImm) {
+ assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
+ "ISD nodes are not consecutive!");
+ static const unsigned OpcTable[3][2] = {
+ { AArch64::ANDWrs, AArch64::ANDXrs },
+ { AArch64::ORRWrs, AArch64::ORRXrs },
+ { AArch64::EORWrs, AArch64::EORXrs }
+ };
+ const TargetRegisterClass *RC;
+ unsigned Opc;
+ switch (RetVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ Opc = OpcTable[ISDOpc - ISD::AND][0];
RC = &AArch64::GPR32RegClass;
+ break;
+ case MVT::i64:
+ Opc = OpcTable[ISDOpc - ISD::AND][1];
+ RC = &AArch64::GPR64RegClass;
+ break;
+ }
+ unsigned ResultReg =
+ fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
+ if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
+ uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ uint64_t Imm) {
+ return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
+}
+
+unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
+ bool WantZExt, MachineMemOperand *MMO) {
+ // Simplify this down to something we can handle.
+ if (!simplifyAddress(Addr, VT))
+ return 0;
+
+ unsigned ScaleFactor = getImplicitScaleFactor(VT);
+ if (!ScaleFactor)
+ llvm_unreachable("Unexpected value type.");
+
+ // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+ // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+ bool UseScaled = true;
+ if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
+ UseScaled = false;
ScaleFactor = 1;
+ }
+
+ static const unsigned GPOpcTable[2][8][4] = {
+ // Sign-extend.
+ { { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi,
+ AArch64::LDURXi },
+ { AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi,
+ AArch64::LDURXi },
+ { AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui,
+ AArch64::LDRXui },
+ { AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui,
+ AArch64::LDRXui },
+ { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
+ AArch64::LDRXroW },
+ { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
+ AArch64::LDRXroW }
+ },
+ // Zero-extend.
+ { { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
+ AArch64::LDURXi },
+ { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
+ AArch64::LDURXi },
+ { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
+ AArch64::LDRXui },
+ { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
+ AArch64::LDRXui },
+ { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
+ AArch64::LDRXroW },
+ { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
+ AArch64::LDRXroW }
+ }
+ };
+
+ static const unsigned FPOpcTable[4][2] = {
+ { AArch64::LDURSi, AArch64::LDURDi },
+ { AArch64::LDRSui, AArch64::LDRDui },
+ { AArch64::LDRSroX, AArch64::LDRDroX },
+ { AArch64::LDRSroW, AArch64::LDRDroW }
+ };
+
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
+ Addr.getOffsetReg();
+ unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
+ if (Addr.getExtendType() == AArch64_AM::UXTW ||
+ Addr.getExtendType() == AArch64_AM::SXTW)
+ Idx++;
+
+ bool IsRet64Bit = RetVT == MVT::i64;
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("Unexpected value type.");
+ case MVT::i1: // Intentional fall-through.
+ case MVT::i8:
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
+ RC = (IsRet64Bit && !WantZExt) ?
+ &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i16:
- Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
- RC = &AArch64::GPR32RegClass;
- ScaleFactor = 2;
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
+ RC = (IsRet64Bit && !WantZExt) ?
+ &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i32:
- Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
- RC = &AArch64::GPR32RegClass;
- ScaleFactor = 4;
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
+ RC = (IsRet64Bit && !WantZExt) ?
+ &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i64:
- Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
RC = &AArch64::GPR64RegClass;
- ScaleFactor = 8;
break;
case MVT::f32:
- Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
- RC = TLI.getRegClassFor(VT);
- ScaleFactor = 4;
+ Opc = FPOpcTable[Idx][0];
+ RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
- Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
- RC = TLI.getRegClassFor(VT);
- ScaleFactor = 8;
+ Opc = FPOpcTable[Idx][1];
+ RC = &AArch64::FPR64RegClass;
break;
}
- // Scale the offset.
- if (!UseUnscaled) {
- int64_t Offset = Addr.getOffset();
- if (Offset & (ScaleFactor - 1))
- // Retry using an unscaled, 9-bit, signed immediate offset.
- return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
-
- Addr.setOffset(Offset / ScaleFactor);
- }
-
- // Simplify this down to something we can handle.
- if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
- return false;
// Create the base instruction, then add the operands.
- ResultReg = createResultReg(RC);
+ unsigned ResultReg = createResultReg(RC);
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg);
- AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
+ addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
// Loading an i1 requires special handling.
- if (VTIsi1) {
- MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(ResultReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ if (VT == MVT::i1) {
+ unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
+ assert(ANDReg && "Unexpected AND instruction emission failure.");
ResultReg = ANDReg;
}
+
+ // For zero-extending loads to 64bit we emit a 32bit load and then convert
+ // the 32bit reg to a 64bit reg.
+ if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
+ unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Reg64)
+ .addImm(0)
+ .addReg(ResultReg, getKillRegState(true))
+ .addImm(AArch64::sub_32);
+ ResultReg = Reg64;
+ }
+ return ResultReg;
+}
+
+bool AArch64FastISel::selectAddSub(const Instruction *I) {
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
+ return false;
+
+ if (VT.isVector())
+ return selectOperator(I, I->getOpcode());
+
+ unsigned ResultReg;
+ switch (I->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instruction.");
+ case Instruction::Add:
+ ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
+ break;
+ case Instruction::Sub:
+ ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
+ break;
+ }
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
+ return false;
+
+ if (VT.isVector())
+ return selectOperator(I, I->getOpcode());
+
+ unsigned ResultReg;
+ switch (I->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instruction.");
+ case Instruction::And:
+ ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
+ break;
+ case Instruction::Or:
+ ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
+ break;
+ case Instruction::Xor:
+ ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
+ break;
+ }
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectLoad(const Instruction *I) {
+bool AArch64FastISel::selectLoad(const Instruction *I) {
MVT VT;
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
- if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
+ cast<LoadInst>(I)->isAtomic())
return false;
// See if we can handle this address.
Address Addr;
- if (!ComputeAddress(I->getOperand(0), Addr))
+ if (!computeAddress(I->getOperand(0), Addr, I->getType()))
return false;
- unsigned ResultReg;
- if (!EmitLoad(VT, ResultReg, Addr))
+ // Fold the following sign-/zero-extend into the load instruction.
+ bool WantZExt = true;
+ MVT RetVT = VT;
+ const Value *IntExtVal = nullptr;
+ if (I->hasOneUse()) {
+ if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
+ if (isTypeSupported(ZE->getType(), RetVT))
+ IntExtVal = ZE;
+ else
+ RetVT = VT;
+ } else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
+ if (isTypeSupported(SE->getType(), RetVT))
+ IntExtVal = SE;
+ else
+ RetVT = VT;
+ WantZExt = false;
+ }
+ }
+
+ unsigned ResultReg =
+ emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
+ if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+ // There are a few different cases we have to handle, because the load or the
+ // sign-/zero-extend might not be selected by FastISel if we fall-back to
+ // SelectionDAG. There is also an ordering issue when both instructions are in
+ // different basic blocks.
+ // 1.) The load instruction is selected by FastISel, but the integer extend
+ // not. This usually happens when the integer extend is in a different
+ // basic block and SelectionDAG took over for that basic block.
+ // 2.) The load instruction is selected before the integer extend. This only
+ // happens when the integer extend is in a different basic block.
+ // 3.) The load instruction is selected by SelectionDAG and the integer extend
+ // by FastISel. This happens if there are instructions between the load
+ // and the integer extend that couldn't be selected by FastISel.
+ if (IntExtVal) {
+ // The integer extend hasn't been emitted yet. FastISel or SelectionDAG
+ // could select it. Emit a copy to subreg if necessary. FastISel will remove
+ // it when it selects the integer extend.
+ unsigned Reg = lookUpRegForValue(IntExtVal);
+ if (!Reg) {
+ if (RetVT == MVT::i64 && VT <= MVT::i32) {
+ if (WantZExt) {
+ // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
+ std::prev(FuncInfo.InsertPt)->eraseFromParent();
+ ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
+ } else
+ ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
+ /*IsKill=*/true,
+ AArch64::sub_32);
+ }
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ // The integer extend has already been emitted - delete all the instructions
+ // that have been emitted by the integer extend lowering code and use the
+ // result from the load instruction directly.
+ while (Reg) {
+ auto *MI = MRI.getUniqueVRegDef(Reg);
+ if (!MI)
+ break;
+ Reg = 0;
+ for (auto &Opnd : MI->uses()) {
+ if (Opnd.isReg()) {
+ Reg = Opnd.getReg();
+ break;
+ }
+ }
+ MI->eraseFromParent();
+ }
+ updateValueMap(IntExtVal, ResultReg);
+ return true;
+ }
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
- bool UseUnscaled) {
+bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
+ MachineMemOperand *MMO) {
+ // Simplify this down to something we can handle.
+ if (!simplifyAddress(Addr, VT))
+ return false;
+
+ unsigned ScaleFactor = getImplicitScaleFactor(VT);
+ if (!ScaleFactor)
+ llvm_unreachable("Unexpected value type.");
+
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
- if (!UseUnscaled && Addr.getOffset() < 0)
- UseUnscaled = true;
-
- unsigned StrOpc;
- bool VTIsi1 = false;
- int64_t ScaleFactor = 0;
- // Using scaled, 12-bit, unsigned immediate offsets.
- switch (VT.SimpleTy) {
- default:
- return false;
- case MVT::i1:
- VTIsi1 = true;
- case MVT::i8:
- StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
+ bool UseScaled = true;
+ if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
+ UseScaled = false;
ScaleFactor = 1;
- break;
- case MVT::i16:
- StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
- ScaleFactor = 2;
- break;
- case MVT::i32:
- StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
- ScaleFactor = 4;
- break;
- case MVT::i64:
- StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
- ScaleFactor = 8;
- break;
- case MVT::f32:
- StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
- ScaleFactor = 4;
- break;
- case MVT::f64:
- StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
- ScaleFactor = 8;
- break;
}
- // Scale the offset.
- if (!UseUnscaled) {
- int64_t Offset = Addr.getOffset();
- if (Offset & (ScaleFactor - 1))
- // Retry using an unscaled, 9-bit, signed immediate offset.
- return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
- Addr.setOffset(Offset / ScaleFactor);
- }
+ static const unsigned OpcTable[4][6] = {
+ { AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi,
+ AArch64::STURSi, AArch64::STURDi },
+ { AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui,
+ AArch64::STRSui, AArch64::STRDui },
+ { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
+ AArch64::STRSroX, AArch64::STRDroX },
+ { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
+ AArch64::STRSroW, AArch64::STRDroW }
+ };
- // Simplify this down to something we can handle.
- if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
- return false;
+ unsigned Opc;
+ bool VTIsi1 = false;
+ bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
+ Addr.getOffsetReg();
+ unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
+ if (Addr.getExtendType() == AArch64_AM::UXTW ||
+ Addr.getExtendType() == AArch64_AM::SXTW)
+ Idx++;
+
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type.");
+ case MVT::i1: VTIsi1 = true;
+ case MVT::i8: Opc = OpcTable[Idx][0]; break;
+ case MVT::i16: Opc = OpcTable[Idx][1]; break;
+ case MVT::i32: Opc = OpcTable[Idx][2]; break;
+ case MVT::i64: Opc = OpcTable[Idx][3]; break;
+ case MVT::f32: Opc = OpcTable[Idx][4]; break;
+ case MVT::f64: Opc = OpcTable[Idx][5]; break;
+ }
// Storing an i1 requires special handling.
- if (VTIsi1) {
- MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(SrcReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ if (VTIsi1 && SrcReg != AArch64::WZR) {
+ unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
+ assert(ANDReg && "Unexpected AND instruction emission failure.");
SrcReg = ANDReg;
}
// Create the base instruction, then add the operands.
- MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(StrOpc)).addReg(SrcReg);
- AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
+ const MCInstrDesc &II = TII.get(Opc);
+ SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
+ addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
+
return true;
}
-bool AArch64FastISel::SelectStore(const Instruction *I) {
+bool AArch64FastISel::selectStore(const Instruction *I) {
MVT VT;
- Value *Op0 = I->getOperand(0);
+ const Value *Op0 = I->getOperand(0);
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
- if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
+ if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
cast<StoreInst>(I)->isAtomic())
return false;
- // Get the value to be stored into a register.
- unsigned SrcReg = getRegForValue(Op0);
- if (SrcReg == 0)
+ // Get the value to be stored into a register. Use the zero register directly
+ // when possible to avoid an unnecessary copy and a wasted register.
+ unsigned SrcReg = 0;
+ if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
+ if (CI->isZero())
+ SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ } else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
+ if (CF->isZero() && !CF->isNegative()) {
+ VT = MVT::getIntegerVT(VT.getSizeInBits());
+ SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ }
+ }
+
+ if (!SrcReg)
+ SrcReg = getRegForValue(Op0);
+
+ if (!SrcReg)
return false;
// See if we can handle this address.
Address Addr;
- if (!ComputeAddress(I->getOperand(1), Addr))
+ if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
return false;
- if (!EmitStore(VT, SrcReg, Addr))
+ if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
return false;
return true;
}
@@ -757,58 +2084,234 @@ static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
}
}
-bool AArch64FastISel::SelectBranch(const Instruction *I) {
+/// \brief Try to emit a combined compare-and-branch instruction.
+bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
+ assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
+ const CmpInst *CI = cast<CmpInst>(BI->getCondition());
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+ const Value *LHS = CI->getOperand(0);
+ const Value *RHS = CI->getOperand(1);
+
+ MVT VT;
+ if (!isTypeSupported(LHS->getType(), VT))
+ return false;
+
+ unsigned BW = VT.getSizeInBits();
+ if (BW > 64)
+ return false;
+
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Try to take advantage of fallthrough opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ int TestBit = -1;
+ bool IsCmpNE;
+ if ((Predicate == CmpInst::ICMP_EQ) || (Predicate == CmpInst::ICMP_NE)) {
+ if (const auto *C = dyn_cast<Constant>(LHS))
+ if (C->isNullValue())
+ std::swap(LHS, RHS);
+
+ if (!isa<Constant>(RHS))
+ return false;
+
+ if (!cast<Constant>(RHS)->isNullValue())
+ return false;
+
+ if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
+ if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
+ const Value *AndLHS = AI->getOperand(0);
+ const Value *AndRHS = AI->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(AndLHS, AndRHS);
+
+ if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
+ if (C->getValue().isPowerOf2()) {
+ TestBit = C->getValue().logBase2();
+ LHS = AndLHS;
+ }
+ }
+
+ if (VT == MVT::i1)
+ TestBit = 0;
+
+ IsCmpNE = Predicate == CmpInst::ICMP_NE;
+ } else if (Predicate == CmpInst::ICMP_SLT) {
+ if (!isa<Constant>(RHS))
+ return false;
+
+ if (!cast<Constant>(RHS)->isNullValue())
+ return false;
+
+ TestBit = BW - 1;
+ IsCmpNE = true;
+ } else if (Predicate == CmpInst::ICMP_SGT) {
+ if (!isa<ConstantInt>(RHS))
+ return false;
+
+ if (cast<ConstantInt>(RHS)->getValue() != -1)
+ return false;
+
+ TestBit = BW - 1;
+ IsCmpNE = false;
+ } else
+ return false;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { {AArch64::CBZW, AArch64::CBZX },
+ {AArch64::CBNZW, AArch64::CBNZX} },
+ { {AArch64::TBZW, AArch64::TBZX },
+ {AArch64::TBNZW, AArch64::TBNZX} }
+ };
+
+ bool IsBitTest = TestBit != -1;
+ bool Is64Bit = BW == 64;
+ if (TestBit < 32 && TestBit >= 0)
+ Is64Bit = false;
+
+ unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
+ const MCInstrDesc &II = TII.get(Opc);
+
+ unsigned SrcReg = getRegForValue(LHS);
+ if (!SrcReg)
+ return false;
+ bool SrcIsKill = hasTrivialKill(LHS);
+
+ if (BW == 64 && !Is64Bit)
+ SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
+ AArch64::sub_32);
+
+ if ((BW < 32) && !IsBitTest)
+ SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
+
+ // Emit the combined compare and branch instruction.
+ SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(SrcReg, getKillRegState(SrcIsKill));
+ if (IsBitTest)
+ MIB.addImm(TestBit);
+ MIB.addMBB(TBB);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+ fastEmitBranch(FBB, DbgLoc);
+
+ return true;
+}
+
+bool AArch64FastISel::selectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
+ if (BI->isUnconditional()) {
+ MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ fastEmitBranch(MSucc, BI->getDebugLoc());
+ return true;
+ }
+
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+ AArch64CC::CondCode CC = AArch64CC::NE;
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
- if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
- // We may not handle every CC for now.
- AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
- if (CC == AArch64CC::AL)
- return false;
+ if (CI->hasOneUse() && isValueAvailable(CI)) {
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_FALSE:
+ fastEmitBranch(FBB, DbgLoc);
+ return true;
+ case CmpInst::FCMP_TRUE:
+ fastEmitBranch(TBB, DbgLoc);
+ return true;
+ }
+
+ // Try to emit a combined compare-and-branch first.
+ if (emitCompareAndBranch(BI))
+ return true;
+
+ // Try to take advantage of fallthrough opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
// Emit the cmp.
- if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
+ // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
+ // instruction.
+ CC = getCompareCC(Predicate);
+ AArch64CC::CondCode ExtraCC = AArch64CC::AL;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_UEQ:
+ ExtraCC = AArch64CC::EQ;
+ CC = AArch64CC::VS;
+ break;
+ case CmpInst::FCMP_ONE:
+ ExtraCC = AArch64CC::MI;
+ CC = AArch64CC::GT;
+ break;
+ }
+ assert((CC != AArch64CC::AL) && "Unexpected condition code.");
+
+ // Emit the extra branch for FCMP_UEQ and FCMP_ONE.
+ if (ExtraCC != AArch64CC::AL) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(ExtraCC)
+ .addMBB(TBB);
+ }
+
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
- FuncInfo.MBB->addSuccessor(TBB);
- FastEmitBranch(FBB, DbgLoc);
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
MVT SrcVT;
- if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
- (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
+ if (TI->hasOneUse() && isValueAvailable(TI) &&
+ isTypeSupported(TI->getOperand(0)->getType(), SrcVT)) {
unsigned CondReg = getRegForValue(TI->getOperand(0));
- if (CondReg == 0)
+ if (!CondReg)
return false;
+ bool CondIsKill = hasTrivialKill(TI->getOperand(0));
// Issue an extract_subreg to get the lower 32-bits.
- if (SrcVT == MVT::i64)
- CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
+ if (SrcVT == MVT::i64) {
+ CondReg = fastEmitInst_extractsubreg(MVT::i32, CondReg, CondIsKill,
AArch64::sub_32);
+ CondIsKill = true;
+ }
- MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(AArch64::ANDWri), ANDReg)
- .addReg(CondReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(AArch64::SUBSWri))
- .addReg(ANDReg)
- .addReg(ANDReg)
- .addImm(0)
- .addImm(0);
+ unsigned ANDReg = emitAnd_ri(MVT::i32, CondReg, CondIsKill, 1);
+ assert(ANDReg && "Unexpected AND instruction emission failure.");
+ emitICmp_ri(MVT::i32, ANDReg, /*IsKill=*/true, 0);
- unsigned CC = AArch64CC::NE;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
@@ -816,23 +2319,57 @@ bool AArch64FastISel::SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
- FuncInfo.MBB->addSuccessor(TBB);
- FastEmitBranch(FBB, DbgLoc);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
- } else if (const ConstantInt *CI =
- dyn_cast<ConstantInt>(BI->getCondition())) {
+ } else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
.addMBB(Target);
- FuncInfo.MBB->addSuccessor(Target);
+
+ // Obtain the branch weight and add the target to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ Target->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(Target, BranchWeight);
+ return true;
+ } else if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
+ // Fake request the condition, otherwise the intrinsic might be completely
+ // optimized away.
+ unsigned CondReg = getRegForValue(BI->getCondition());
+ if (!CondReg)
+ return false;
+
+ // Emit the branch.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
unsigned CondReg = getRegForValue(BI->getCondition());
if (CondReg == 0)
return false;
+ bool CondRegIsKill = hasTrivialKill(BI->getCondition());
// We've been divorced from our compare! Our block was split, and
// now our compare lives in a predecessor block. We musn't
@@ -841,13 +2378,8 @@ bool AArch64FastISel::SelectBranch(const Instruction *I) {
// Regardless, the compare has been done in the predecessor block,
// and it left a value for us in a virtual register. Ergo, we test
// the one-bit value left in the virtual register.
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
- AArch64::WZR)
- .addReg(CondReg)
- .addImm(0)
- .addImm(0);
+ emitICmp_ri(MVT::i32, CondReg, CondRegIsKill, 0);
- unsigned CC = AArch64CC::NE;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
@@ -856,20 +2388,28 @@ bool AArch64FastISel::SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
- FuncInfo.MBB->addSuccessor(TBB);
- FastEmitBranch(FBB, DbgLoc);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
-bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
+bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
const IndirectBrInst *BI = cast<IndirectBrInst>(I);
unsigned AddrReg = getRegForValue(BI->getOperand(0));
if (AddrReg == 0)
return false;
// Emit the indirect branch.
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
- .addReg(AddrReg);
+ const MCInstrDesc &II = TII.get(AArch64::BR);
+ AddrReg = constrainOperandRegClass(II, AddrReg, II.getNumDefs());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
// Make sure the CFG is up-to-date.
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
@@ -878,211 +2418,271 @@ bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
return true;
}
-bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
- Type *Ty = Src1Value->getType();
- EVT SrcEVT = TLI.getValueType(Ty, true);
- if (!SrcEVT.isSimple())
- return false;
- MVT SrcVT = SrcEVT.getSimpleVT();
-
- // Check to see if the 2nd operand is a constant that we can encode directly
- // in the compare.
- uint64_t Imm;
- bool UseImm = false;
- bool isNegativeImm = false;
- if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
- if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
- SrcVT == MVT::i8 || SrcVT == MVT::i1) {
- const APInt &CIVal = ConstInt->getValue();
-
- Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
- if (CIVal.isNegative()) {
- isNegativeImm = true;
- Imm = -Imm;
- }
- // FIXME: We can handle more immediates using shifts.
- UseImm = ((Imm & 0xfff) == Imm);
- }
- } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
- if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
- if (ConstFP->isZero() && !ConstFP->isNegative())
- UseImm = true;
- }
+bool AArch64FastISel::selectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
- unsigned ZReg;
- unsigned CmpOpc;
- bool isICmp = true;
- bool needsExt = false;
- switch (SrcVT.SimpleTy) {
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ unsigned ResultReg = 0;
+ switch (Predicate) {
default:
- return false;
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- needsExt = true;
- // Intentional fall-through.
- case MVT::i32:
- ZReg = AArch64::WZR;
- if (UseImm)
- CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
- else
- CmpOpc = AArch64::SUBSWrr;
break;
- case MVT::i64:
- ZReg = AArch64::XZR;
- if (UseImm)
- CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
- else
- CmpOpc = AArch64::SUBSXrr;
- break;
- case MVT::f32:
- isICmp = false;
- CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
+ case CmpInst::FCMP_FALSE:
+ ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(AArch64::WZR, getKillRegState(true));
break;
- case MVT::f64:
- isICmp = false;
- CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
+ case CmpInst::FCMP_TRUE:
+ ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
break;
}
- unsigned SrcReg1 = getRegForValue(Src1Value);
- if (SrcReg1 == 0)
- return false;
-
- unsigned SrcReg2;
- if (!UseImm) {
- SrcReg2 = getRegForValue(Src2Value);
- if (SrcReg2 == 0)
- return false;
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
+ return true;
}
- // We have i1, i8, or i16, we need to either zero extend or sign extend.
- if (needsExt) {
- SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
- if (SrcReg1 == 0)
- return false;
- if (!UseImm) {
- SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
- if (SrcReg2 == 0)
- return false;
- }
- }
+ // Emit the cmp.
+ if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
- if (isICmp) {
- if (UseImm)
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(ZReg)
- .addReg(SrcReg1)
- .addImm(Imm)
- .addImm(0);
- else
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(ZReg)
- .addReg(SrcReg1)
- .addReg(SrcReg2);
- } else {
- if (UseImm)
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(SrcReg1);
- else
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(SrcReg1)
- .addReg(SrcReg2);
- }
- return true;
-}
+ ResultReg = createResultReg(&AArch64::GPR32RegClass);
-bool AArch64FastISel::SelectCmp(const Instruction *I) {
- const CmpInst *CI = cast<CmpInst>(I);
+ // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
+ // condition codes are inverted, because they are used by CSINC.
+ static unsigned CondCodeTable[2][2] = {
+ { AArch64CC::NE, AArch64CC::VC },
+ { AArch64CC::PL, AArch64CC::LE }
+ };
+ unsigned *CondCodes = nullptr;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_UEQ:
+ CondCodes = &CondCodeTable[0][0];
+ break;
+ case CmpInst::FCMP_ONE:
+ CondCodes = &CondCodeTable[1][0];
+ break;
+ }
- // We may not handle every CC for now.
- AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
- if (CC == AArch64CC::AL)
- return false;
+ if (CondCodes) {
+ unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
+ TmpReg1)
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addImm(CondCodes[0]);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
+ ResultReg)
+ .addReg(TmpReg1, getKillRegState(true))
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addImm(CondCodes[1]);
- // Emit the cmp.
- if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
- return false;
+ updateValueMap(I, ResultReg);
+ return true;
+ }
// Now set a register based on the comparison.
+ AArch64CC::CondCode CC = getCompareCC(Predicate);
+ assert((CC != AArch64CC::AL) && "Unexpected condition code.");
AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
- unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
- .addReg(AArch64::WZR)
- .addReg(AArch64::WZR)
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addReg(AArch64::WZR, getKillRegState(true))
.addImm(invertedCC);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectSelect(const Instruction *I) {
- const SelectInst *SI = cast<SelectInst>(I);
-
- EVT DestEVT = TLI.getValueType(SI->getType(), true);
- if (!DestEVT.isSimple())
+/// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
+/// value.
+bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
+ if (!SI->getType()->isIntegerTy(1))
return false;
- MVT DestVT = DestEVT.getSimpleVT();
- if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
- DestVT != MVT::f64)
- return false;
+ const Value *Src1Val, *Src2Val;
+ unsigned Opc = 0;
+ bool NeedExtraOp = false;
+ if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
+ if (CI->isOne()) {
+ Src1Val = SI->getCondition();
+ Src2Val = SI->getFalseValue();
+ Opc = AArch64::ORRWrr;
+ } else {
+ assert(CI->isZero());
+ Src1Val = SI->getFalseValue();
+ Src2Val = SI->getCondition();
+ Opc = AArch64::BICWrr;
+ }
+ } else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
+ if (CI->isOne()) {
+ Src1Val = SI->getCondition();
+ Src2Val = SI->getTrueValue();
+ Opc = AArch64::ORRWrr;
+ NeedExtraOp = true;
+ } else {
+ assert(CI->isZero());
+ Src1Val = SI->getCondition();
+ Src2Val = SI->getTrueValue();
+ Opc = AArch64::ANDWrr;
+ }
+ }
- unsigned CondReg = getRegForValue(SI->getCondition());
- if (CondReg == 0)
+ if (!Opc)
return false;
- unsigned TrueReg = getRegForValue(SI->getTrueValue());
- if (TrueReg == 0)
- return false;
- unsigned FalseReg = getRegForValue(SI->getFalseValue());
- if (FalseReg == 0)
+
+ unsigned Src1Reg = getRegForValue(Src1Val);
+ if (!Src1Reg)
return false;
+ bool Src1IsKill = hasTrivialKill(Src1Val);
+ unsigned Src2Reg = getRegForValue(Src2Val);
+ if (!Src2Reg)
+ return false;
+ bool Src2IsKill = hasTrivialKill(Src2Val);
- MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(CondReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ if (NeedExtraOp) {
+ Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
+ Src1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32spRegClass, Src1Reg,
+ Src1IsKill, Src2Reg, Src2IsKill);
+ updateValueMap(SI, ResultReg);
+ return true;
+}
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
- .addReg(ANDReg)
- .addReg(ANDReg)
- .addImm(0)
- .addImm(0);
+bool AArch64FastISel::selectSelect(const Instruction *I) {
+ assert(isa<SelectInst>(I) && "Expected a select instruction.");
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT))
+ return false;
- unsigned SelectOpc;
- switch (DestVT.SimpleTy) {
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ switch (VT.SimpleTy) {
default:
return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
case MVT::i32:
- SelectOpc = AArch64::CSELWr;
+ Opc = AArch64::CSELWr;
+ RC = &AArch64::GPR32RegClass;
break;
case MVT::i64:
- SelectOpc = AArch64::CSELXr;
+ Opc = AArch64::CSELXr;
+ RC = &AArch64::GPR64RegClass;
break;
case MVT::f32:
- SelectOpc = AArch64::FCSELSrrr;
+ Opc = AArch64::FCSELSrrr;
+ RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
- SelectOpc = AArch64::FCSELDrrr;
+ Opc = AArch64::FCSELDrrr;
+ RC = &AArch64::FPR64RegClass;
break;
}
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
- ResultReg)
- .addReg(TrueReg)
- .addReg(FalseReg)
- .addImm(AArch64CC::NE);
+ const SelectInst *SI = cast<SelectInst>(I);
+ const Value *Cond = SI->getCondition();
+ AArch64CC::CondCode CC = AArch64CC::NE;
+ AArch64CC::CondCode ExtraCC = AArch64CC::AL;
+
+ if (optimizeSelect(SI))
+ return true;
+
+ // Try to pickup the flags, so we don't have to emit another compare.
+ if (foldXALUIntrinsic(CC, I, Cond)) {
+ // Fake request the condition to force emission of the XALU intrinsic.
+ unsigned CondReg = getRegForValue(Cond);
+ if (!CondReg)
+ return false;
+ } else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
+ isValueAvailable(Cond)) {
+ const auto *Cmp = cast<CmpInst>(Cond);
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
+ const Value *FoldSelect = nullptr;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_FALSE:
+ FoldSelect = SI->getFalseValue();
+ break;
+ case CmpInst::FCMP_TRUE:
+ FoldSelect = SI->getTrueValue();
+ break;
+ }
- UpdateValueMap(I, ResultReg);
+ if (FoldSelect) {
+ unsigned SrcReg = getRegForValue(FoldSelect);
+ if (!SrcReg)
+ return false;
+ unsigned UseReg = lookUpRegForValue(SI);
+ if (UseReg)
+ MRI.clearKillFlags(UseReg);
+
+ updateValueMap(I, SrcReg);
+ return true;
+ }
+
+ // Emit the cmp.
+ if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
+ return false;
+
+ // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
+ CC = getCompareCC(Predicate);
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_UEQ:
+ ExtraCC = AArch64CC::EQ;
+ CC = AArch64CC::VS;
+ break;
+ case CmpInst::FCMP_ONE:
+ ExtraCC = AArch64CC::MI;
+ CC = AArch64CC::GT;
+ break;
+ }
+ assert((CC != AArch64CC::AL) && "Unexpected condition code.");
+ } else {
+ unsigned CondReg = getRegForValue(Cond);
+ if (!CondReg)
+ return false;
+ bool CondIsKill = hasTrivialKill(Cond);
+
+ // Emit a TST instruction (ANDS wzr, reg, #imm).
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDSWri),
+ AArch64::WZR)
+ .addReg(CondReg, getKillRegState(CondIsKill))
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ }
+
+ unsigned Src1Reg = getRegForValue(SI->getTrueValue());
+ bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
+
+ unsigned Src2Reg = getRegForValue(SI->getFalseValue());
+ bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
+
+ if (!Src1Reg || !Src2Reg)
+ return false;
+
+ if (ExtraCC != AArch64CC::AL) {
+ Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
+ Src2IsKill, ExtraCC);
+ Src2IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
+ Src2IsKill, CC);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectFPExt(const Instruction *I) {
+bool AArch64FastISel::selectFPExt(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
return false;
@@ -1094,11 +2694,11 @@ bool AArch64FastISel::SelectFPExt(const Instruction *I) {
unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
ResultReg).addReg(Op);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
+bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
return false;
@@ -1110,12 +2710,12 @@ bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
ResultReg).addReg(Op);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
// FPToUI and FPToSI
-bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
+bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
@@ -1144,11 +2744,11 @@ bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
+bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
@@ -1156,22 +2756,21 @@ bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
"Unexpected value type.");
unsigned SrcReg = getRegForValue(I->getOperand(0));
- if (SrcReg == 0)
+ if (!SrcReg)
return false;
+ bool SrcIsKill = hasTrivialKill(I->getOperand(0));
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
// Handle sign-extension.
if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
SrcReg =
- EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
- if (SrcReg == 0)
+ emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
+ if (!SrcReg)
return false;
+ SrcIsKill = true;
}
- MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
- : &AArch64::GPR32RegClass);
-
unsigned Opc;
if (SrcVT == MVT::i64) {
if (Signed)
@@ -1185,21 +2784,128 @@ bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
}
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addReg(SrcReg);
- UpdateValueMap(I, ResultReg);
+ unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
+ SrcIsKill);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::fastLowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const Function *F = FuncInfo.Fn;
+ if (F->isVarArg())
+ return false;
+
+ CallingConv::ID CC = F->getCallingConv();
+ if (CC != CallingConv::C)
+ return false;
+
+ // Only handle simple cases of up to 8 GPR and FPR each.
+ unsigned GPRCnt = 0;
+ unsigned FPRCnt = 0;
+ unsigned Idx = 0;
+ for (auto const &Arg : F->args()) {
+ // The first argument is at index 1.
+ ++Idx;
+ if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::Nest))
+ return false;
+
+ Type *ArgTy = Arg.getType();
+ if (ArgTy->isStructTy() || ArgTy->isArrayTy())
+ return false;
+
+ EVT ArgVT = TLI.getValueType(ArgTy);
+ if (!ArgVT.isSimple())
+ return false;
+
+ MVT VT = ArgVT.getSimpleVT().SimpleTy;
+ if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
+ return false;
+
+ if (VT.isVector() &&
+ (!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
+ return false;
+
+ if (VT >= MVT::i1 && VT <= MVT::i64)
+ ++GPRCnt;
+ else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
+ VT.is128BitVector())
+ ++FPRCnt;
+ else
+ return false;
+
+ if (GPRCnt > 8 || FPRCnt > 8)
+ return false;
+ }
+
+ static const MCPhysReg Registers[6][8] = {
+ { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
+ AArch64::W5, AArch64::W6, AArch64::W7 },
+ { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
+ AArch64::X5, AArch64::X6, AArch64::X7 },
+ { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
+ AArch64::H5, AArch64::H6, AArch64::H7 },
+ { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
+ AArch64::S5, AArch64::S6, AArch64::S7 },
+ { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
+ AArch64::D5, AArch64::D6, AArch64::D7 },
+ { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
+ AArch64::Q5, AArch64::Q6, AArch64::Q7 }
+ };
+
+ unsigned GPRIdx = 0;
+ unsigned FPRIdx = 0;
+ for (auto const &Arg : F->args()) {
+ MVT VT = TLI.getSimpleValueType(Arg.getType());
+ unsigned SrcReg;
+ const TargetRegisterClass *RC;
+ if (VT >= MVT::i1 && VT <= MVT::i32) {
+ SrcReg = Registers[0][GPRIdx++];
+ RC = &AArch64::GPR32RegClass;
+ VT = MVT::i32;
+ } else if (VT == MVT::i64) {
+ SrcReg = Registers[1][GPRIdx++];
+ RC = &AArch64::GPR64RegClass;
+ } else if (VT == MVT::f16) {
+ SrcReg = Registers[2][FPRIdx++];
+ RC = &AArch64::FPR16RegClass;
+ } else if (VT == MVT::f32) {
+ SrcReg = Registers[3][FPRIdx++];
+ RC = &AArch64::FPR32RegClass;
+ } else if ((VT == MVT::f64) || VT.is64BitVector()) {
+ SrcReg = Registers[4][FPRIdx++];
+ RC = &AArch64::FPR64RegClass;
+ } else if (VT.is128BitVector()) {
+ SrcReg = Registers[5][FPRIdx++];
+ RC = &AArch64::FPR128RegClass;
+ } else
+ llvm_unreachable("Unexpected value type.");
+
+ unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+ // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+ // Without this, EmitLiveInCopies may eliminate the livein if its only
+ // use is a bitcast (which isn't turned into an instruction).
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(DstReg, getKillRegState(true));
+ updateValueMap(&Arg, ResultReg);
+ }
return true;
}
-bool AArch64FastISel::ProcessCallArgs(
- SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs,
- SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
- SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
- unsigned &NumBytes) {
+bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
+ SmallVectorImpl<MVT> &OutVTs,
+ unsigned &NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
- CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
+ CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
@@ -1207,13 +2913,17 @@ bool AArch64FastISel::ProcessCallArgs(
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
- .addImm(NumBytes);
+ .addImm(NumBytes);
// Process the args.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
- unsigned Arg = ArgRegs[VA.getValNo()];
- MVT ArgVT = ArgVTs[VA.getValNo()];
+ const Value *ArgVal = CLI.OutVals[VA.getValNo()];
+ MVT ArgVT = OutVTs[VA.getValNo()];
+
+ unsigned ArgReg = getRegForValue(ArgVal);
+ if (!ArgReg)
+ return false;
// Handle arg promotion: SExt, ZExt, AExt.
switch (VA.getLocInfo()) {
@@ -1222,8 +2932,8 @@ bool AArch64FastISel::ProcessCallArgs(
case CCValAssign::SExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
- Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
- if (Arg == 0)
+ ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
+ if (!ArgReg)
return false;
break;
}
@@ -1232,8 +2942,8 @@ bool AArch64FastISel::ProcessCallArgs(
case CCValAssign::ZExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
- Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
- if (Arg == 0)
+ ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
+ if (!ArgReg)
return false;
break;
}
@@ -1244,14 +2954,18 @@ bool AArch64FastISel::ProcessCallArgs(
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
- RegArgs.push_back(VA.getLocReg());
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
+ CLI.OutRegs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
// FIXME: Handle custom args.
return false;
} else {
assert(VA.isMemLoc() && "Assuming store on stack.");
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
// Need to store on the stack.
unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
@@ -1264,26 +2978,31 @@ bool AArch64FastISel::ProcessCallArgs(
Addr.setReg(AArch64::SP);
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
- if (!EmitStore(ArgVT, Arg, Addr))
+ unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getStack(Addr.getOffset()),
+ MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
+
+ if (!emitStore(ArgVT, ArgReg, Addr, MMO))
return false;
}
}
return true;
}
-bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
- const Instruction *I, CallingConv::ID CC,
- unsigned &NumBytes) {
+bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
+ unsigned NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
+
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
- .addImm(NumBytes)
- .addImm(0);
+ .addImm(NumBytes).addImm(0);
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
// Only handle a single return value.
@@ -1294,147 +3013,147 @@ bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
MVT CopyVT = RVLocs[0].getValVT();
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY),
- ResultReg).addReg(RVLocs[0].getLocReg());
- UsedRegs.push_back(RVLocs[0].getLocReg());
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(RVLocs[0].getLocReg());
+ CLI.InRegs.push_back(RVLocs[0].getLocReg());
- // Finally update the result.
- UpdateValueMap(I, ResultReg);
+ CLI.ResultReg = ResultReg;
+ CLI.NumResultRegs = 1;
}
return true;
}
-bool AArch64FastISel::SelectCall(const Instruction *I,
- const char *IntrMemName = nullptr) {
- const CallInst *CI = cast<CallInst>(I);
- const Value *Callee = CI->getCalledValue();
+bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
+ CallingConv::ID CC = CLI.CallConv;
+ bool IsTailCall = CLI.IsTailCall;
+ bool IsVarArg = CLI.IsVarArg;
+ const Value *Callee = CLI.Callee;
+ const char *SymName = CLI.SymName;
- // Don't handle inline asm or intrinsics.
- if (isa<InlineAsm>(Callee))
+ if (!Callee && !SymName)
return false;
- // Only handle global variable Callees.
- const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
- if (!GV)
+ // Allow SelectionDAG isel to handle tail calls.
+ if (IsTailCall)
return false;
- // Check the calling convention.
- ImmutableCallSite CS(CI);
- CallingConv::ID CC = CS.getCallingConv();
+ CodeModel::Model CM = TM.getCodeModel();
+ // Only support the small and large code model.
+ if (CM != CodeModel::Small && CM != CodeModel::Large)
+ return false;
+
+ // FIXME: Add large code model support for ELF.
+ if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
+ return false;
// Let SDISel handle vararg functions.
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- if (FTy->isVarArg())
+ if (IsVarArg)
return false;
- // Handle *simple* calls for now.
+ // FIXME: Only handle *simple* calls for now.
MVT RetVT;
- Type *RetTy = I->getType();
- if (RetTy->isVoidTy())
+ if (CLI.RetTy->isVoidTy())
RetVT = MVT::isVoid;
- else if (!isTypeLegal(RetTy, RetVT))
+ else if (!isTypeLegal(CLI.RetTy, RetVT))
return false;
- // Set up the argument vectors.
- SmallVector<Value *, 8> Args;
- SmallVector<unsigned, 8> ArgRegs;
- SmallVector<MVT, 8> ArgVTs;
- SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
- Args.reserve(CS.arg_size());
- ArgRegs.reserve(CS.arg_size());
- ArgVTs.reserve(CS.arg_size());
- ArgFlags.reserve(CS.arg_size());
-
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- // If we're lowering a memory intrinsic instead of a regular call, skip the
- // last two arguments, which shouldn't be passed to the underlying function.
- if (IntrMemName && e - i <= 2)
- break;
-
- unsigned Arg = getRegForValue(*i);
- if (Arg == 0)
+ for (auto Flag : CLI.OutFlags)
+ if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
return false;
- ISD::ArgFlagsTy Flags;
- unsigned AttrInd = i - CS.arg_begin() + 1;
- if (CS.paramHasAttr(AttrInd, Attribute::SExt))
- Flags.setSExt();
- if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
- Flags.setZExt();
-
- // FIXME: Only handle *easy* calls for now.
- if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
- CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
- CS.paramHasAttr(AttrInd, Attribute::Nest) ||
- CS.paramHasAttr(AttrInd, Attribute::ByVal))
- return false;
+ // Set up the argument vectors.
+ SmallVector<MVT, 16> OutVTs;
+ OutVTs.reserve(CLI.OutVals.size());
- MVT ArgVT;
- Type *ArgTy = (*i)->getType();
- if (!isTypeLegal(ArgTy, ArgVT) &&
- !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
+ for (auto *Val : CLI.OutVals) {
+ MVT VT;
+ if (!isTypeLegal(Val->getType(), VT) &&
+ !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
return false;
// We don't handle vector parameters yet.
- if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+ if (VT.isVector() || VT.getSizeInBits() > 64)
return false;
- unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
- Flags.setOrigAlign(OriginalAlignment);
-
- Args.push_back(*i);
- ArgRegs.push_back(Arg);
- ArgVTs.push_back(ArgVT);
- ArgFlags.push_back(Flags);
+ OutVTs.push_back(VT);
}
+ Address Addr;
+ if (Callee && !computeCallAddress(Callee, Addr))
+ return false;
+
// Handle the arguments now that we've gotten them.
- SmallVector<unsigned, 4> RegArgs;
unsigned NumBytes;
- if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
+ if (!processCallArgs(CLI, OutVTs, NumBytes))
return false;
// Issue the call.
MachineInstrBuilder MIB;
- MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL));
- if (!IntrMemName)
- MIB.addGlobalAddress(GV, 0, 0);
- else
- MIB.addExternalSymbol(IntrMemName, 0);
+ if (CM == CodeModel::Small) {
+ const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
+ if (SymName)
+ MIB.addExternalSymbol(SymName, 0);
+ else if (Addr.getGlobalValue())
+ MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
+ else if (Addr.getReg()) {
+ unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
+ MIB.addReg(Reg);
+ } else
+ return false;
+ } else {
+ unsigned CallReg = 0;
+ if (SymName) {
+ unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg)
+ .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE);
+
+ CallReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
+ CallReg)
+ .addReg(ADRPReg)
+ .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ } else if (Addr.getGlobalValue())
+ CallReg = materializeGV(Addr.getGlobalValue());
+ else if (Addr.getReg())
+ CallReg = Addr.getReg();
+
+ if (!CallReg)
+ return false;
+
+ const MCInstrDesc &II = TII.get(AArch64::BLR);
+ CallReg = constrainOperandRegClass(II, CallReg, 0);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
+ }
// Add implicit physical register uses to the call.
- for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
- MIB.addReg(RegArgs[i], RegState::Implicit);
+ for (auto Reg : CLI.OutRegs)
+ MIB.addReg(Reg, RegState::Implicit);
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
- MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
- // Finish off the call including any return values.
- SmallVector<unsigned, 4> UsedRegs;
- if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
- return false;
-
- // Set all unused physreg defs as dead.
- static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+ CLI.Call = MIB;
- return true;
+ // Finish off the call including any return values.
+ return finishCall(CLI, RetVT, NumBytes);
}
-bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
+bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
if (Alignment)
return Len / Alignment <= 4;
else
return Len < 32;
}
-bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
+bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
uint64_t Len, unsigned Alignment) {
// Make sure we don't bloat code by inlining very large memcpy's.
- if (!IsMemCpySmall(Len, Alignment))
+ if (!isMemCpySmall(Len, Alignment))
return false;
int64_t UnscaledOffset = 0;
@@ -1464,14 +3183,11 @@ bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
}
}
- bool RV;
- unsigned ResultReg;
- RV = EmitLoad(VT, ResultReg, Src);
- if (!RV)
+ unsigned ResultReg = emitLoad(VT, VT, Src);
+ if (!ResultReg)
return false;
- RV = EmitStore(VT, ResultReg, Dest);
- if (!RV)
+ if (!emitStore(VT, ResultReg, Dest))
return false;
int64_t Size = VT.getSizeInBits() / 8;
@@ -1486,73 +3202,430 @@ bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
return true;
}
-bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
- // FIXME: Handle more intrinsics.
- switch (I.getIntrinsicID()) {
+/// \brief Check if it is possible to fold the condition from the XALU intrinsic
+/// into the user. The condition code will only be updated on success.
+bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
+ const Instruction *I,
+ const Value *Cond) {
+ if (!isa<ExtractValueInst>(Cond))
+ return false;
+
+ const auto *EV = cast<ExtractValueInst>(Cond);
+ if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
+ return false;
+
+ const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
+ MVT RetVT;
+ const Function *Callee = II->getCalledFunction();
+ Type *RetTy =
+ cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
+ if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return false;
+
+ const Value *LHS = II->getArgOperand(0);
+ const Value *RHS = II->getArgOperand(1);
+
+ // Canonicalize immediate to the RHS.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+ isCommutativeIntrinsic(II))
+ std::swap(LHS, RHS);
+
+ // Simplify multiplies.
+ unsigned IID = II->getIntrinsicID();
+ switch (IID) {
default:
+ break;
+ case Intrinsic::smul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2)
+ IID = Intrinsic::sadd_with_overflow;
+ break;
+ case Intrinsic::umul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2)
+ IID = Intrinsic::uadd_with_overflow;
+ break;
+ }
+
+ AArch64CC::CondCode TmpCC;
+ switch (IID) {
+ default:
+ return false;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ TmpCC = AArch64CC::VS;
+ break;
+ case Intrinsic::uadd_with_overflow:
+ TmpCC = AArch64CC::HS;
+ break;
+ case Intrinsic::usub_with_overflow:
+ TmpCC = AArch64CC::LO;
+ break;
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ TmpCC = AArch64CC::NE;
+ break;
+ }
+
+ // Check if both instructions are in the same basic block.
+ if (!isValueAvailable(II))
return false;
+
+ // Make sure nothing is in the way
+ BasicBlock::const_iterator Start = I;
+ BasicBlock::const_iterator End = II;
+ for (auto Itr = std::prev(Start); Itr != End; --Itr) {
+ // We only expect extractvalue instructions between the intrinsic and the
+ // instruction to be selected.
+ if (!isa<ExtractValueInst>(Itr))
+ return false;
+
+ // Check that the extractvalue operand comes from the intrinsic.
+ const auto *EVI = cast<ExtractValueInst>(Itr);
+ if (EVI->getAggregateOperand() != II)
+ return false;
+ }
+
+ CC = TmpCC;
+ return true;
+}
+
+bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
+ // FIXME: Handle more intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::frameaddress: {
+ MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ const AArch64RegisterInfo *RegInfo =
+ static_cast<const AArch64RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
+ unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
+ // Recursively load frame address
+ // ldr x0, [fp]
+ // ldr x0, [x0]
+ // ldr x0, [x0]
+ // ...
+ unsigned DestReg;
+ unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
+ while (Depth--) {
+ DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
+ SrcReg, /*IsKill=*/true, 0);
+ assert(DestReg && "Unexpected LDR instruction emission failure.");
+ SrcReg = DestReg;
+ }
+
+ updateValueMap(II, SrcReg);
+ return true;
+ }
case Intrinsic::memcpy:
case Intrinsic::memmove: {
- const MemTransferInst &MTI = cast<MemTransferInst>(I);
+ const auto *MTI = cast<MemTransferInst>(II);
// Don't handle volatile.
- if (MTI.isVolatile())
+ if (MTI->isVolatile())
return false;
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
// we would emit dead code because we don't currently handle memmoves.
- bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
- if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+ bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
+ if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
// Small memcpy's are common enough that we want to do them without a call
// if possible.
- uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
- unsigned Alignment = MTI.getAlignment();
- if (IsMemCpySmall(Len, Alignment)) {
+ uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
+ unsigned Alignment = MTI->getAlignment();
+ if (isMemCpySmall(Len, Alignment)) {
Address Dest, Src;
- if (!ComputeAddress(MTI.getRawDest(), Dest) ||
- !ComputeAddress(MTI.getRawSource(), Src))
+ if (!computeAddress(MTI->getRawDest(), Dest) ||
+ !computeAddress(MTI->getRawSource(), Src))
return false;
- if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+ if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
return true;
}
}
- if (!MTI.getLength()->getType()->isIntegerTy(64))
+ if (!MTI->getLength()->getType()->isIntegerTy(64))
return false;
- if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+ if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
- const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
- return SelectCall(&I, IntrMemName);
+ const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
+ return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
}
case Intrinsic::memset: {
- const MemSetInst &MSI = cast<MemSetInst>(I);
+ const MemSetInst *MSI = cast<MemSetInst>(II);
// Don't handle volatile.
- if (MSI.isVolatile())
+ if (MSI->isVolatile())
return false;
- if (!MSI.getLength()->getType()->isIntegerTy(64))
+ if (!MSI->getLength()->getType()->isIntegerTy(64))
return false;
- if (MSI.getDestAddressSpace() > 255)
+ if (MSI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
- return SelectCall(&I, "memset");
+ return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+ }
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::pow: {
+ MVT RetVT;
+ if (!isTypeLegal(II->getType(), RetVT))
+ return false;
+
+ if (RetVT != MVT::f32 && RetVT != MVT::f64)
+ return false;
+
+ static const RTLIB::Libcall LibCallTable[3][2] = {
+ { RTLIB::SIN_F32, RTLIB::SIN_F64 },
+ { RTLIB::COS_F32, RTLIB::COS_F64 },
+ { RTLIB::POW_F32, RTLIB::POW_F64 }
+ };
+ RTLIB::Libcall LC;
+ bool Is64Bit = RetVT == MVT::f64;
+ switch (II->getIntrinsicID()) {
+ default:
+ llvm_unreachable("Unexpected intrinsic.");
+ case Intrinsic::sin:
+ LC = LibCallTable[0][Is64Bit];
+ break;
+ case Intrinsic::cos:
+ LC = LibCallTable[1][Is64Bit];
+ break;
+ case Intrinsic::pow:
+ LC = LibCallTable[2][Is64Bit];
+ break;
+ }
+
+ ArgListTy Args;
+ Args.reserve(II->getNumArgOperands());
+
+ // Populate the argument list.
+ for (auto &Arg : II->arg_operands()) {
+ ArgListEntry Entry;
+ Entry.Val = Arg;
+ Entry.Ty = Arg->getType();
+ Args.push_back(Entry);
+ }
+
+ CallLoweringInfo CLI;
+ CLI.setCallee(TLI.getLibcallCallingConv(LC), II->getType(),
+ TLI.getLibcallName(LC), std::move(Args));
+ if (!lowerCallTo(CLI))
+ return false;
+ updateValueMap(II, CLI.ResultReg);
+ return true;
+ }
+ case Intrinsic::fabs: {
+ MVT VT;
+ if (!isTypeLegal(II->getType(), VT))
+ return false;
+
+ unsigned Opc;
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::f32:
+ Opc = AArch64::FABSSr;
+ break;
+ case MVT::f64:
+ Opc = AArch64::FABSDr;
+ break;
+ }
+ unsigned SrcReg = getRegForValue(II->getOperand(0));
+ if (!SrcReg)
+ return false;
+ bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg, getKillRegState(SrcRegIsKill));
+ updateValueMap(II, ResultReg);
+ return true;
}
case Intrinsic::trap: {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
.addImm(1);
return true;
}
+ case Intrinsic::sqrt: {
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ unsigned Op0Reg = getRegForValue(II->getOperand(0));
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(II->getOperand(0));
+
+ unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(II, ResultReg);
+ return true;
+ }
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ // This implements the basic lowering of the xalu with overflow intrinsics.
+ const Function *Callee = II->getCalledFunction();
+ auto *Ty = cast<StructType>(Callee->getReturnType());
+ Type *RetTy = Ty->getTypeAtIndex(0U);
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return false;
+
+ const Value *LHS = II->getArgOperand(0);
+ const Value *RHS = II->getArgOperand(1);
+ // Canonicalize immediate to the RHS.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+ isCommutativeIntrinsic(II))
+ std::swap(LHS, RHS);
+
+ // Simplify multiplies.
+ unsigned IID = II->getIntrinsicID();
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::smul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2) {
+ IID = Intrinsic::sadd_with_overflow;
+ RHS = LHS;
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2) {
+ IID = Intrinsic::uadd_with_overflow;
+ RHS = LHS;
+ }
+ break;
+ }
+
+ unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
+ AArch64CC::CondCode CC = AArch64CC::Invalid;
+ switch (IID) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::sadd_with_overflow:
+ ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::VS;
+ break;
+ case Intrinsic::uadd_with_overflow:
+ ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::HS;
+ break;
+ case Intrinsic::ssub_with_overflow:
+ ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::VS;
+ break;
+ case Intrinsic::usub_with_overflow:
+ ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::LO;
+ break;
+ case Intrinsic::smul_with_overflow: {
+ CC = AArch64CC::NE;
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return false;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (VT == MVT::i32) {
+ MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
+ /*IsKill=*/false, 32);
+ MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
+ AArch64::sub_32);
+ ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
+ AArch64::sub_32);
+ emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
+ AArch64_AM::ASR, 31, /*WantResult=*/false);
+ } else {
+ assert(VT == MVT::i64 && "Unexpected value type.");
+ MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
+ RHSReg, RHSIsKill);
+ emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
+ AArch64_AM::ASR, 63, /*WantResult=*/false);
+ }
+ break;
+ }
+ case Intrinsic::umul_with_overflow: {
+ CC = AArch64CC::NE;
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return false;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (VT == MVT::i32) {
+ MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
+ /*IsKill=*/false, AArch64_AM::LSR, 32,
+ /*WantResult=*/false);
+ MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
+ AArch64::sub_32);
+ } else {
+ assert(VT == MVT::i64 && "Unexpected value type.");
+ MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
+ RHSReg, RHSIsKill);
+ emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
+ /*IsKill=*/false, /*WantResult=*/false);
+ }
+ break;
+ }
+ }
+
+ if (MulReg) {
+ ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
+ }
+
+ ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
+ AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
+ /*IsKill=*/true, getInvertedCondCode(CC));
+ (void)ResultReg2;
+ assert((ResultReg1 + 1) == ResultReg2 &&
+ "Nonconsecutive result registers.");
+ updateValueMap(II, ResultReg1, 2);
+ return true;
+ }
}
return false;
}
-bool AArch64FastISel::SelectRet(const Instruction *I) {
+bool AArch64FastISel::selectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
@@ -1572,8 +3645,7 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
- CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
- I->getContext());
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
CCInfo.AnalyzeReturn(Outs, RetCC);
@@ -1586,11 +3658,14 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
const Value *RV = Ret->getOperand(0);
// Don't bother handling odd stuff for now.
- if (VA.getLocInfo() != CCValAssign::Full)
+ if ((VA.getLocInfo() != CCValAssign::Full) &&
+ (VA.getLocInfo() != CCValAssign::BCvt))
return false;
+
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
+
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
@@ -1606,12 +3681,14 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
return false;
// Vectors (of > 1 lane) in big endian need tricky handling.
- if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
+ if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
+ !Subtarget->isLittleEndian())
return false;
MVT RVVT = RVEVT.getSimpleVT();
if (RVVT == MVT::f128)
return false;
+
MVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
@@ -1621,8 +3698,8 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
- bool isZExt = Outs[0].Flags.isZExt();
- SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
+ bool IsZExt = Outs[0].Flags.isZExt();
+ SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
if (SrcReg == 0)
return false;
}
@@ -1642,7 +3719,7 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
return true;
}
-bool AArch64FastISel::SelectTrunc(const Instruction *I) {
+bool AArch64FastISel::selectTrunc(const Instruction *I) {
Type *DestTy = I->getType();
Value *Op = I->getOperand(0);
Type *SrcTy = Op->getType();
@@ -1667,10 +3744,14 @@ bool AArch64FastISel::SelectTrunc(const Instruction *I) {
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg)
return false;
+ bool SrcIsKill = hasTrivialKill(Op);
// If we're truncating from i64 to a smaller non-legal type then generate an
- // AND. Otherwise, we know the high bits are undefined and a truncate doesn't
- // generate any code.
+ // AND. Otherwise, we know the high bits are undefined and a truncate only
+ // generate a COPY. We cannot mark the source register also as result
+ // register, because this can incorrectly transfer the kill flag onto the
+ // source register.
+ unsigned ResultReg;
if (SrcVT == MVT::i64) {
uint64_t Mask = 0;
switch (DestVT.SimpleTy) {
@@ -1688,23 +3769,23 @@ bool AArch64FastISel::SelectTrunc(const Instruction *I) {
break;
}
// Issue an extract_subreg to get the lower 32-bits.
- unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
+ unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
AArch64::sub_32);
- MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
// Create the AND instruction which performs the actual truncation.
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(Reg32)
- .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
- SrcReg = ANDReg;
+ ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
+ assert(ResultReg && "Unexpected AND instruction emission failure.");
+ } else {
+ ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(SrcReg, getKillRegState(SrcIsKill));
}
- UpdateValueMap(I, SrcReg);
+ updateValueMap(I, ResultReg);
return true;
}
-unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
+unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
DestVT == MVT::i64) &&
"Unexpected value type.");
@@ -1712,14 +3793,9 @@ unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
- if (isZExt) {
- MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
- unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ResultReg)
- .addReg(SrcReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
-
+ if (IsZExt) {
+ unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
+ assert(ResultReg && "Unexpected AND instruction emission failure.");
if (DestVT == MVT::i64) {
// We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
// upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
@@ -1737,18 +3813,389 @@ unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
// FIXME: We're SExt i1 to i64.
return 0;
}
- unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
- ResultReg)
- .addReg(SrcReg)
+ return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
+ /*TODO:IsKill=*/false, 0, 0);
+ }
+}
+
+unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ unsigned Opc, ZReg;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ RetVT = MVT::i32;
+ Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
+ case MVT::i64:
+ Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
+ /*IsKill=*/ZReg, true);
+}
+
+unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ if (RetVT != MVT::i64)
+ return 0;
+
+ return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
+ Op0, Op0IsKill, Op1, Op1IsKill,
+ AArch64::XZR, /*IsKill=*/true);
+}
+
+unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ if (RetVT != MVT::i64)
+ return 0;
+
+ return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
+ Op0, Op0IsKill, Op1, Op1IsKill,
+ AArch64::XZR, /*IsKill=*/true);
+}
+
+unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill) {
+ unsigned Opc = 0;
+ bool NeedTrunc = false;
+ uint64_t Mask = 0;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break;
+ case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
+ case MVT::i32: Opc = AArch64::LSLVWr; break;
+ case MVT::i64: Opc = AArch64::LSLVXr; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ if (NeedTrunc) {
+ Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
+ Op1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
+ Op1IsKill);
+ if (NeedTrunc)
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
+ bool Op0IsKill, uint64_t Shift,
+ bool IsZExt) {
+ assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
+ "Unexpected source/return type pair.");
+ assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
+ "Unexpected source value type.");
+ assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
+ RetVT == MVT::i64) && "Unexpected return value type.");
+
+ bool Is64Bit = (RetVT == MVT::i64);
+ unsigned RegSize = Is64Bit ? 64 : 32;
+ unsigned DstBits = RetVT.getSizeInBits();
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ // Just emit a copy for "zero" shifts.
+ if (Shift == 0) {
+ if (RetVT == SrcVT) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(Op0, getKillRegState(Op0IsKill));
+ return ResultReg;
+ } else
+ return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ }
+
+ // Don't deal with undefined shifts.
+ if (Shift >= DstBits)
+ return 0;
+
+ // For immediate shifts we can fold the zero-/sign-extension into the shift.
+ // {S|U}BFM Wd, Wn, #r, #s
+ // Wd<32+s-r,32-r> = Wn<s:0> when r > s
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = shl i16 %1, 4
+ // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
+ // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
+ // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
+ // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = shl i16 %1, 8
+ // Wd<32+7-24,32-24> = Wn<7:0>
+ // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
+ // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
+ // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = shl i16 %1, 12
+ // Wd<32+3-20,32-20> = Wn<3:0>
+ // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
+ // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
+
+ unsigned ImmR = RegSize - Shift;
+ // Limit the width to the length of the source type.
+ unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
+ static const unsigned OpcTable[2][2] = {
+ {AArch64::SBFMWri, AArch64::SBFMXri},
+ {AArch64::UBFMWri, AArch64::UBFMXri}
+ };
+ unsigned Opc = OpcTable[IsZExt][Is64Bit];
+ if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
+ unsigned TmpReg = MRI.createVirtualRegister(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
- .addImm(0);
- return ResultReg;
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(AArch64::sub_32);
+ Op0 = TmpReg;
+ Op0IsKill = true;
+ }
+ return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
+}
+
+unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill) {
+ unsigned Opc = 0;
+ bool NeedTrunc = false;
+ uint64_t Mask = 0;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break;
+ case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
+ case MVT::i32: Opc = AArch64::LSRVWr; break;
+ case MVT::i64: Opc = AArch64::LSRVXr; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ if (NeedTrunc) {
+ Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
+ Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
+ Op0IsKill = Op1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
+ Op1IsKill);
+ if (NeedTrunc)
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
+ bool Op0IsKill, uint64_t Shift,
+ bool IsZExt) {
+ assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
+ "Unexpected source/return type pair.");
+ assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
+ "Unexpected source value type.");
+ assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
+ RetVT == MVT::i64) && "Unexpected return value type.");
+
+ bool Is64Bit = (RetVT == MVT::i64);
+ unsigned RegSize = Is64Bit ? 64 : 32;
+ unsigned DstBits = RetVT.getSizeInBits();
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ // Just emit a copy for "zero" shifts.
+ if (Shift == 0) {
+ if (RetVT == SrcVT) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(Op0, getKillRegState(Op0IsKill));
+ return ResultReg;
+ } else
+ return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ }
+
+ // Don't deal with undefined shifts.
+ if (Shift >= DstBits)
+ return 0;
+
+ // For immediate shifts we can fold the zero-/sign-extension into the shift.
+ // {S|U}BFM Wd, Wn, #r, #s
+ // Wd<s-r:0> = Wn<s:r> when r <= s
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = lshr i16 %1, 4
+ // Wd<7-4:0> = Wn<7:4>
+ // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
+ // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = lshr i16 %1, 8
+ // Wd<7-7,0> = Wn<7:7>
+ // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = lshr i16 %1, 12
+ // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
+ // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ if (Shift >= SrcBits && IsZExt)
+ return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
+
+ // It is not possible to fold a sign-extend into the LShr instruction. In this
+ // case emit a sign-extend.
+ if (!IsZExt) {
+ Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ if (!Op0)
+ return 0;
+ Op0IsKill = true;
+ SrcVT = RetVT;
+ SrcBits = SrcVT.getSizeInBits();
+ IsZExt = true;
+ }
+
+ unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
+ unsigned ImmS = SrcBits - 1;
+ static const unsigned OpcTable[2][2] = {
+ {AArch64::SBFMWri, AArch64::SBFMXri},
+ {AArch64::UBFMWri, AArch64::UBFMXri}
+ };
+ unsigned Opc = OpcTable[IsZExt][Is64Bit];
+ if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
+ unsigned TmpReg = MRI.createVirtualRegister(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), TmpReg)
+ .addImm(0)
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(AArch64::sub_32);
+ Op0 = TmpReg;
+ Op0IsKill = true;
+ }
+ return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
+}
+
+unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill) {
+ unsigned Opc = 0;
+ bool NeedTrunc = false;
+ uint64_t Mask = 0;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break;
+ case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
+ case MVT::i32: Opc = AArch64::ASRVWr; break;
+ case MVT::i64: Opc = AArch64::ASRVXr; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ if (NeedTrunc) {
+ Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*IsZExt=*/false);
+ Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
+ Op0IsKill = Op1IsKill = true;
}
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
+ Op1IsKill);
+ if (NeedTrunc)
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ return ResultReg;
}
-unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
- bool isZExt) {
+unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
+ bool Op0IsKill, uint64_t Shift,
+ bool IsZExt) {
+ assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
+ "Unexpected source/return type pair.");
+ assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
+ "Unexpected source value type.");
+ assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
+ RetVT == MVT::i64) && "Unexpected return value type.");
+
+ bool Is64Bit = (RetVT == MVT::i64);
+ unsigned RegSize = Is64Bit ? 64 : 32;
+ unsigned DstBits = RetVT.getSizeInBits();
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ // Just emit a copy for "zero" shifts.
+ if (Shift == 0) {
+ if (RetVT == SrcVT) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(Op0, getKillRegState(Op0IsKill));
+ return ResultReg;
+ } else
+ return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ }
+
+ // Don't deal with undefined shifts.
+ if (Shift >= DstBits)
+ return 0;
+
+ // For immediate shifts we can fold the zero-/sign-extension into the shift.
+ // {S|U}BFM Wd, Wn, #r, #s
+ // Wd<s-r:0> = Wn<s:r> when r <= s
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = ashr i16 %1, 4
+ // Wd<7-4:0> = Wn<7:4>
+ // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
+ // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = ashr i16 %1, 8
+ // Wd<7-7,0> = Wn<7:7>
+ // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = ashr i16 %1, 12
+ // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
+ // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ if (Shift >= SrcBits && IsZExt)
+ return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
+
+ unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
+ unsigned ImmS = SrcBits - 1;
+ static const unsigned OpcTable[2][2] = {
+ {AArch64::SBFMWri, AArch64::SBFMXri},
+ {AArch64::UBFMWri, AArch64::UBFMXri}
+ };
+ unsigned Opc = OpcTable[IsZExt][Is64Bit];
+ if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
+ unsigned TmpReg = MRI.createVirtualRegister(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), TmpReg)
+ .addImm(0)
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(AArch64::sub_32);
+ Op0 = TmpReg;
+ Op0IsKill = true;
+ }
+ return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
+}
+
+unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool IsZExt) {
assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
// FastISel does not have plumbing to deal with extensions where the SrcVT or
@@ -1768,24 +4215,24 @@ unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
default:
return 0;
case MVT::i1:
- return Emiti1Ext(SrcReg, DestVT, isZExt);
+ return emiti1Ext(SrcReg, DestVT, IsZExt);
case MVT::i8:
if (DestVT == MVT::i64)
- Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
- Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 7;
break;
case MVT::i16:
if (DestVT == MVT::i64)
- Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
- Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 15;
break;
case MVT::i32:
assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
- Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
Imm = 31;
break;
}
@@ -1803,45 +4250,167 @@ unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
SrcReg = Src64;
}
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addReg(SrcReg)
- .addImm(0)
- .addImm(Imm);
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
+}
- return ResultReg;
+static bool isZExtLoad(const MachineInstr *LI) {
+ switch (LI->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDURBBi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURWi:
+ case AArch64::LDRBBui:
+ case AArch64::LDRHHui:
+ case AArch64::LDRWui:
+ case AArch64::LDRBBroX:
+ case AArch64::LDRHHroX:
+ case AArch64::LDRWroX:
+ case AArch64::LDRBBroW:
+ case AArch64::LDRHHroW:
+ case AArch64::LDRWroW:
+ return true;
+ }
}
-bool AArch64FastISel::SelectIntExt(const Instruction *I) {
- // On ARM, in general, integer casts don't involve legal types; this code
- // handles promotable integers. The high bits for a type smaller than
- // the register size are assumed to be undefined.
- Type *DestTy = I->getType();
- Value *Src = I->getOperand(0);
- Type *SrcTy = Src->getType();
+static bool isSExtLoad(const MachineInstr *LI) {
+ switch (LI->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDURSBWi:
+ case AArch64::LDURSHWi:
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSWi:
+ case AArch64::LDRSBWui:
+ case AArch64::LDRSHWui:
+ case AArch64::LDRSBXui:
+ case AArch64::LDRSHXui:
+ case AArch64::LDRSWui:
+ case AArch64::LDRSBWroX:
+ case AArch64::LDRSHWroX:
+ case AArch64::LDRSBXroX:
+ case AArch64::LDRSHXroX:
+ case AArch64::LDRSWroX:
+ case AArch64::LDRSBWroW:
+ case AArch64::LDRSHWroW:
+ case AArch64::LDRSBXroW:
+ case AArch64::LDRSHXroW:
+ case AArch64::LDRSWroW:
+ return true;
+ }
+}
- bool isZExt = isa<ZExtInst>(I);
- unsigned SrcReg = getRegForValue(Src);
- if (!SrcReg)
+bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
+ MVT SrcVT) {
+ const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
+ if (!LI || !LI->hasOneUse())
return false;
- EVT SrcEVT = TLI.getValueType(SrcTy, true);
- EVT DestEVT = TLI.getValueType(DestTy, true);
- if (!SrcEVT.isSimple())
+ // Check if the load instruction has already been selected.
+ unsigned Reg = lookUpRegForValue(LI);
+ if (!Reg)
return false;
- if (!DestEVT.isSimple())
+
+ MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
+ if (!MI)
return false;
- MVT SrcVT = SrcEVT.getSimpleVT();
- MVT DestVT = DestEVT.getSimpleVT();
- unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
- if (ResultReg == 0)
+ // Check if the correct load instruction has been emitted - SelectionDAG might
+ // have emitted a zero-extending load, but we need a sign-extending load.
+ bool IsZExt = isa<ZExtInst>(I);
+ const auto *LoadMI = MI;
+ if (LoadMI->getOpcode() == TargetOpcode::COPY &&
+ LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
+ unsigned LoadReg = MI->getOperand(1).getReg();
+ LoadMI = MRI.getUniqueVRegDef(LoadReg);
+ assert(LoadMI && "Expected valid instruction");
+ }
+ if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
+ return false;
+
+ // Nothing to be done.
+ if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
+ updateValueMap(I, Reg);
+ return true;
+ }
+
+ if (IsZExt) {
+ unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Reg64)
+ .addImm(0)
+ .addReg(Reg, getKillRegState(true))
+ .addImm(AArch64::sub_32);
+ Reg = Reg64;
+ } else {
+ assert((MI->getOpcode() == TargetOpcode::COPY &&
+ MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
+ "Expected copy instruction");
+ Reg = MI->getOperand(1).getReg();
+ MI->eraseFromParent();
+ }
+ updateValueMap(I, Reg);
+ return true;
+}
+
+bool AArch64FastISel::selectIntExt(const Instruction *I) {
+ assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ "Unexpected integer extend instruction.");
+ MVT RetVT;
+ MVT SrcVT;
+ if (!isTypeSupported(I->getType(), RetVT))
+ return false;
+
+ if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
+ return false;
+
+ // Try to optimize already sign-/zero-extended values from load instructions.
+ if (optimizeIntExtLoad(I, RetVT, SrcVT))
+ return true;
+
+ unsigned SrcReg = getRegForValue(I->getOperand(0));
+ if (!SrcReg)
+ return false;
+ bool SrcIsKill = hasTrivialKill(I->getOperand(0));
+
+ // Try to optimize already sign-/zero-extended values from function arguments.
+ bool IsZExt = isa<ZExtInst>(I);
+ if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
+ if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
+ if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), ResultReg)
+ .addImm(0)
+ .addReg(SrcReg, getKillRegState(SrcIsKill))
+ .addImm(AArch64::sub_32);
+ SrcReg = ResultReg;
+ }
+ // Conservatively clear all kill flags from all uses, because we are
+ // replacing a sign-/zero-extend instruction at IR level with a nop at MI
+ // level. The result of the instruction at IR level might have been
+ // trivially dead, which is now not longer true.
+ unsigned UseReg = lookUpRegForValue(I);
+ if (UseReg)
+ MRI.clearKillFlags(UseReg);
+
+ updateValueMap(I, SrcReg);
+ return true;
+ }
+ }
+
+ unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
+ if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
+bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
EVT DestEVT = TLI.getValueType(I->getType(), true);
if (!DestEVT.isSimple())
return false;
@@ -1851,144 +4420,529 @@ bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
return false;
unsigned DivOpc;
- bool is64bit = (DestVT == MVT::i64);
+ bool Is64bit = (DestVT == MVT::i64);
switch (ISDOpcode) {
default:
return false;
case ISD::SREM:
- DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
+ DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
break;
case ISD::UREM:
- DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
+ DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
break;
}
- unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
+ unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
+ bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
+ bool Src1IsKill = hasTrivialKill(I->getOperand(1));
- unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
- .addReg(Src0Reg)
- .addReg(Src1Reg);
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
+ Src1Reg, /*IsKill=*/false);
+ assert(QuotReg && "Unexpected DIV instruction emission failure.");
// The remainder is computed as numerator - (quotient * denominator) using the
// MSUB instruction.
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
- .addReg(QuotReg)
- .addReg(Src1Reg)
- .addReg(Src0Reg);
- UpdateValueMap(I, ResultReg);
+ unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
+ Src1Reg, Src1IsKill, Src0Reg,
+ Src0IsKill);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectMul(const Instruction *I) {
- EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
- if (!SrcEVT.isSimple())
+bool AArch64FastISel::selectMul(const Instruction *I) {
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
- MVT SrcVT = SrcEVT.getSimpleVT();
- // Must be simple value type. Don't handle vectors.
- if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
- SrcVT != MVT::i8)
+ if (VT.isVector())
+ return selectBinaryOp(I, ISD::MUL);
+
+ const Value *Src0 = I->getOperand(0);
+ const Value *Src1 = I->getOperand(1);
+ if (const auto *C = dyn_cast<ConstantInt>(Src0))
+ if (C->getValue().isPowerOf2())
+ std::swap(Src0, Src1);
+
+ // Try to simplify to a shift instruction.
+ if (const auto *C = dyn_cast<ConstantInt>(Src1))
+ if (C->getValue().isPowerOf2()) {
+ uint64_t ShiftVal = C->getValue().logBase2();
+ MVT SrcVT = VT;
+ bool IsZExt = true;
+ if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
+ if (!isIntExtFree(ZExt)) {
+ MVT VT;
+ if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
+ SrcVT = VT;
+ IsZExt = true;
+ Src0 = ZExt->getOperand(0);
+ }
+ }
+ } else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
+ if (!isIntExtFree(SExt)) {
+ MVT VT;
+ if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
+ SrcVT = VT;
+ IsZExt = false;
+ Src0 = SExt->getOperand(0);
+ }
+ }
+ }
+
+ unsigned Src0Reg = getRegForValue(Src0);
+ if (!Src0Reg)
+ return false;
+ bool Src0IsKill = hasTrivialKill(Src0);
+
+ unsigned ResultReg =
+ emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
+
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ unsigned Src0Reg = getRegForValue(I->getOperand(0));
+ if (!Src0Reg)
+ return false;
+ bool Src0IsKill = hasTrivialKill(I->getOperand(0));
+
+ unsigned Src1Reg = getRegForValue(I->getOperand(1));
+ if (!Src1Reg)
+ return false;
+ bool Src1IsKill = hasTrivialKill(I->getOperand(1));
+
+ unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectShift(const Instruction *I) {
+ MVT RetVT;
+ if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
+ return false;
+
+ if (RetVT.isVector())
+ return selectOperator(I, I->getOpcode());
+
+ if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ unsigned ResultReg = 0;
+ uint64_t ShiftVal = C->getZExtValue();
+ MVT SrcVT = RetVT;
+ bool IsZExt = (I->getOpcode() == Instruction::AShr) ? false : true;
+ const Value *Op0 = I->getOperand(0);
+ if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
+ if (!isIntExtFree(ZExt)) {
+ MVT TmpVT;
+ if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
+ SrcVT = TmpVT;
+ IsZExt = true;
+ Op0 = ZExt->getOperand(0);
+ }
+ }
+ } else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
+ if (!isIntExtFree(SExt)) {
+ MVT TmpVT;
+ if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
+ SrcVT = TmpVT;
+ IsZExt = false;
+ Op0 = SExt->getOperand(0);
+ }
+ }
+ }
+
+ unsigned Op0Reg = getRegForValue(Op0);
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(Op0);
+
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unexpected instruction.");
+ case Instruction::Shl:
+ ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
+ break;
+ case Instruction::AShr:
+ ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
+ break;
+ case Instruction::LShr:
+ ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
+ break;
+ }
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(I->getOperand(0));
+
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (!Op1Reg)
+ return false;
+ bool Op1IsKill = hasTrivialKill(I->getOperand(1));
+
+ unsigned ResultReg = 0;
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unexpected instruction.");
+ case Instruction::Shl:
+ ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
+ break;
+ case Instruction::AShr:
+ ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
+ break;
+ case Instruction::LShr:
+ ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
+ break;
+ }
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectBitCast(const Instruction *I) {
+ MVT RetVT, SrcVT;
+
+ if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
+ return false;
+ if (!isTypeLegal(I->getType(), RetVT))
return false;
unsigned Opc;
- unsigned ZReg;
- switch (SrcVT.SimpleTy) {
+ if (RetVT == MVT::f32 && SrcVT == MVT::i32)
+ Opc = AArch64::FMOVWSr;
+ else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
+ Opc = AArch64::FMOVXDr;
+ else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
+ Opc = AArch64::FMOVSWr;
+ else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
+ Opc = AArch64::FMOVDXr;
+ else
+ return false;
+
+ const TargetRegisterClass *RC = nullptr;
+ switch (RetVT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type.");
+ case MVT::i32: RC = &AArch64::GPR32RegClass; break;
+ case MVT::i64: RC = &AArch64::GPR64RegClass; break;
+ case MVT::f32: RC = &AArch64::FPR32RegClass; break;
+ case MVT::f64: RC = &AArch64::FPR64RegClass; break;
+ }
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(I->getOperand(0));
+ unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectFRem(const Instruction *I) {
+ MVT RetVT;
+ if (!isTypeLegal(I->getType(), RetVT))
+ return false;
+
+ RTLIB::Libcall LC;
+ switch (RetVT.SimpleTy) {
default:
return false;
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- ZReg = AArch64::WZR;
- Opc = AArch64::MADDWrrr;
- SrcVT = MVT::i32;
+ case MVT::f32:
+ LC = RTLIB::REM_F32;
break;
- case MVT::i64:
- ZReg = AArch64::XZR;
- Opc = AArch64::MADDXrrr;
+ case MVT::f64:
+ LC = RTLIB::REM_F64;
break;
}
+ ArgListTy Args;
+ Args.reserve(I->getNumOperands());
+
+ // Populate the argument list.
+ for (auto &Arg : I->operands()) {
+ ArgListEntry Entry;
+ Entry.Val = Arg;
+ Entry.Ty = Arg->getType();
+ Args.push_back(Entry);
+ }
+
+ CallLoweringInfo CLI;
+ CLI.setCallee(TLI.getLibcallCallingConv(LC), I->getType(),
+ TLI.getLibcallName(LC), std::move(Args));
+ if (!lowerCallTo(CLI))
+ return false;
+ updateValueMap(I, CLI.ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectSDiv(const Instruction *I) {
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ if (!isa<ConstantInt>(I->getOperand(1)))
+ return selectBinaryOp(I, ISD::SDIV);
+
+ const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
+ if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
+ !(C.isPowerOf2() || (-C).isPowerOf2()))
+ return selectBinaryOp(I, ISD::SDIV);
+
+ unsigned Lg2 = C.countTrailingZeros();
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
+ bool Src0IsKill = hasTrivialKill(I->getOperand(0));
- unsigned Src1Reg = getRegForValue(I->getOperand(1));
- if (!Src1Reg)
+ if (cast<BinaryOperator>(I)->isExact()) {
+ unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
+ if (!ResultReg)
+ return false;
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
+ unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
+ if (!AddReg)
return false;
- // Create the base instruction, then add the operands.
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addReg(Src0Reg)
- .addReg(Src1Reg)
- .addReg(ZReg);
- UpdateValueMap(I, ResultReg);
+ // (Src0 < 0) ? Pow2 - 1 : 0;
+ if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
+ return false;
+
+ unsigned SelectOpc;
+ const TargetRegisterClass *RC;
+ if (VT == MVT::i64) {
+ SelectOpc = AArch64::CSELXr;
+ RC = &AArch64::GPR64RegClass;
+ } else {
+ SelectOpc = AArch64::CSELWr;
+ RC = &AArch64::GPR32RegClass;
+ }
+ unsigned SelectReg =
+ fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
+ Src0IsKill, AArch64CC::LT);
+ if (!SelectReg)
+ return false;
+
+ // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
+ // negate the result.
+ unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ unsigned ResultReg;
+ if (C.isNegative())
+ ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
+ SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
+ else
+ ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
+/// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
+/// have to duplicate it for AArch64, because otherwise we would fail during the
+/// sign-extend emission.
+std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
+ unsigned IdxN = getRegForValue(Idx);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return std::pair<unsigned, bool>(0, false);
+
+ bool IdxNIsKill = hasTrivialKill(Idx);
+
+ // If the index is smaller or larger than intptr_t, truncate or extend it.
+ MVT PtrVT = TLI.getPointerTy();
+ EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
+ if (IdxVT.bitsLT(PtrVT)) {
+ IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*IsZExt=*/false);
+ IdxNIsKill = true;
+ } else if (IdxVT.bitsGT(PtrVT))
+ llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
+ return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
+}
+
+/// This is mostly a copy of the existing FastISel GEP code, but we have to
+/// duplicate it for AArch64, because otherwise we would bail out even for
+/// simple cases. This is because the standard fastEmit functions don't cover
+/// MUL at all and ADD is lowered very inefficientily.
+bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
+ unsigned N = getRegForValue(I->getOperand(0));
+ if (!N)
+ return false;
+ bool NIsKill = hasTrivialKill(I->getOperand(0));
+
+ // Keep a running tab of the total offset to coalesce multiple N = N + Offset
+ // into a single N = N + TotalOffset.
+ uint64_t TotalOffs = 0;
+ Type *Ty = I->getOperand(0)->getType();
+ MVT VT = TLI.getPointerTy();
+ for (auto OI = std::next(I->op_begin()), E = I->op_end(); OI != E; ++OI) {
+ const Value *Idx = *OI;
+ if (auto *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ // N = N + Offset
+ if (Field)
+ TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+ // If this is a constant subscript, handle it quickly.
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->isZero())
+ continue;
+ // N = N + Offset
+ TotalOffs +=
+ DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
+ continue;
+ }
+ if (TotalOffs) {
+ N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
+ if (!N)
+ return false;
+ NIsKill = true;
+ TotalOffs = 0;
+ }
+
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = DL.getTypeAllocSize(Ty);
+ std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
+ unsigned IdxN = Pair.first;
+ bool IdxNIsKill = Pair.second;
+ if (!IdxN)
+ return false;
+
+ if (ElementSize != 1) {
+ unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
+ if (!C)
+ return false;
+ IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
+ if (!IdxN)
+ return false;
+ IdxNIsKill = true;
+ }
+ N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
+ if (!N)
+ return false;
+ }
+ }
+ if (TotalOffs) {
+ N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
+ if (!N)
+ return false;
+ }
+ updateValueMap(I, N);
+ return true;
+}
+
+bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
default:
break;
- case Instruction::Load:
- return SelectLoad(I);
- case Instruction::Store:
- return SelectStore(I);
+ case Instruction::Add:
+ case Instruction::Sub:
+ return selectAddSub(I);
+ case Instruction::Mul:
+ return selectMul(I);
+ case Instruction::SDiv:
+ return selectSDiv(I);
+ case Instruction::SRem:
+ if (!selectBinaryOp(I, ISD::SREM))
+ return selectRem(I, ISD::SREM);
+ return true;
+ case Instruction::URem:
+ if (!selectBinaryOp(I, ISD::UREM))
+ return selectRem(I, ISD::UREM);
+ return true;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return selectShift(I);
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return selectLogicalOp(I);
case Instruction::Br:
- return SelectBranch(I);
+ return selectBranch(I);
case Instruction::IndirectBr:
- return SelectIndirectBr(I);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return SelectCmp(I);
- case Instruction::Select:
- return SelectSelect(I);
- case Instruction::FPExt:
- return SelectFPExt(I);
- case Instruction::FPTrunc:
- return SelectFPTrunc(I);
+ return selectIndirectBr(I);
+ case Instruction::BitCast:
+ if (!FastISel::selectBitCast(I))
+ return selectBitCast(I);
+ return true;
case Instruction::FPToSI:
- return SelectFPToInt(I, /*Signed=*/true);
+ if (!selectCast(I, ISD::FP_TO_SINT))
+ return selectFPToInt(I, /*Signed=*/true);
+ return true;
case Instruction::FPToUI:
- return SelectFPToInt(I, /*Signed=*/false);
+ return selectFPToInt(I, /*Signed=*/false);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return selectIntExt(I);
+ case Instruction::Trunc:
+ if (!selectCast(I, ISD::TRUNCATE))
+ return selectTrunc(I);
+ return true;
+ case Instruction::FPExt:
+ return selectFPExt(I);
+ case Instruction::FPTrunc:
+ return selectFPTrunc(I);
case Instruction::SIToFP:
- return SelectIntToFP(I, /*Signed=*/true);
+ if (!selectCast(I, ISD::SINT_TO_FP))
+ return selectIntToFP(I, /*Signed=*/true);
+ return true;
case Instruction::UIToFP:
- return SelectIntToFP(I, /*Signed=*/false);
- case Instruction::SRem:
- return SelectRem(I, ISD::SREM);
- case Instruction::URem:
- return SelectRem(I, ISD::UREM);
- case Instruction::Call:
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- return SelectIntrinsicCall(*II);
- return SelectCall(I);
+ return selectIntToFP(I, /*Signed=*/false);
+ case Instruction::Load:
+ return selectLoad(I);
+ case Instruction::Store:
+ return selectStore(I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return selectCmp(I);
+ case Instruction::Select:
+ return selectSelect(I);
case Instruction::Ret:
- return SelectRet(I);
- case Instruction::Trunc:
- return SelectTrunc(I);
- case Instruction::ZExt:
- case Instruction::SExt:
- return SelectIntExt(I);
- case Instruction::Mul:
- // FIXME: This really should be handled by the target-independent selector.
- return SelectMul(I);
+ return selectRet(I);
+ case Instruction::FRem:
+ return selectFRem(I);
+ case Instruction::GetElementPtr:
+ return selectGetElementPtr(I);
}
- return false;
+
+ // fall-back to target-independent instruction selection.
+ return selectOperator(I, I->getOpcode());
// Silence warnings.
(void)&CC_AArch64_DarwinPCS_VarArg;
}
namespace llvm {
-llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo) {
- return new AArch64FastISel(funcInfo, libInfo);
+llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo) {
+ return new AArch64FastISel(FuncInfo, LibInfo);
}
}