aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64FastISel.cpp')
-rw-r--r--lib/Target/AArch64/AArch64FastISel.cpp1981
1 files changed, 1981 insertions, 0 deletions
diff --git a/lib/Target/AArch64/AArch64FastISel.cpp b/lib/Target/AArch64/AArch64FastISel.cpp
new file mode 100644
index 0000000..c3b5369
--- /dev/null
+++ b/lib/Target/AArch64/AArch64FastISel.cpp
@@ -0,0 +1,1981 @@
+//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the AArch64-specific support for the FastISel class. Some
+// of the target-specific code is generated by tablegen in the file
+// AArch64GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64TargetMachine.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+namespace {
+
+class AArch64FastISel : public FastISel {
+
+ class Address {
+ public:
+ typedef enum {
+ RegBase,
+ FrameIndexBase
+ } BaseKind;
+
+ private:
+ BaseKind Kind;
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
+ int64_t Offset;
+
+ public:
+ Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
+ void setKind(BaseKind K) { Kind = K; }
+ BaseKind getKind() const { return Kind; }
+ bool isRegBase() const { return Kind == RegBase; }
+ bool isFIBase() const { return Kind == FrameIndexBase; }
+ void setReg(unsigned Reg) {
+ assert(isRegBase() && "Invalid base register access!");
+ Base.Reg = Reg;
+ }
+ unsigned getReg() const {
+ assert(isRegBase() && "Invalid base register access!");
+ return Base.Reg;
+ }
+ void setFI(unsigned FI) {
+ assert(isFIBase() && "Invalid base frame index access!");
+ Base.FI = FI;
+ }
+ unsigned getFI() const {
+ assert(isFIBase() && "Invalid base frame index access!");
+ return Base.FI;
+ }
+ void setOffset(int64_t O) { Offset = O; }
+ int64_t getOffset() { return Offset; }
+
+ bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
+ };
+
+ /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const AArch64Subtarget *Subtarget;
+ LLVMContext *Context;
+
+private:
+ // Selection routines.
+ bool SelectLoad(const Instruction *I);
+ bool SelectStore(const Instruction *I);
+ bool SelectBranch(const Instruction *I);
+ bool SelectIndirectBr(const Instruction *I);
+ bool SelectCmp(const Instruction *I);
+ bool SelectSelect(const Instruction *I);
+ bool SelectFPExt(const Instruction *I);
+ bool SelectFPTrunc(const Instruction *I);
+ bool SelectFPToInt(const Instruction *I, bool Signed);
+ bool SelectIntToFP(const Instruction *I, bool Signed);
+ bool SelectRem(const Instruction *I, unsigned ISDOpcode);
+ bool SelectCall(const Instruction *I, const char *IntrMemName);
+ bool SelectIntrinsicCall(const IntrinsicInst &I);
+ bool SelectRet(const Instruction *I);
+ bool SelectTrunc(const Instruction *I);
+ bool SelectIntExt(const Instruction *I);
+ bool SelectMul(const Instruction *I);
+
+ // Utility helper routines.
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
+ bool ComputeAddress(const Value *Obj, Address &Addr);
+ bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
+ bool UseUnscaled);
+ void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
+ unsigned Flags, bool UseUnscaled);
+ bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
+ bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+ unsigned Alignment);
+ // Emit functions.
+ bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
+ bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
+ bool UseUnscaled = false);
+ bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
+ bool UseUnscaled = false);
+ unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+
+ unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned AArch64MaterializeGV(const GlobalValue *GV);
+
+ // Call handling routines.
+private:
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
+ bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
+ SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+ unsigned &NumBytes);
+ bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
+
+public:
+ // Backend specific FastISel code.
+ unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
+ unsigned TargetMaterializeConstant(const Constant *C) override;
+
+ explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo) {
+ Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+ Context = &funcInfo.Fn->getContext();
+ }
+
+ bool TargetSelectInstruction(const Instruction *I) override;
+
+#include "AArch64GenFastISel.inc"
+};
+
+} // end anonymous namespace
+
+#include "AArch64GenCallingConv.inc"
+
+CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
+ if (CC == CallingConv::WebKit_JS)
+ return CC_AArch64_WebKit_JS;
+ return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
+}
+
+unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+ assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
+ "Alloca should always return a pointer.");
+
+ // Don't handle dynamic allocas.
+ if (!FuncInfo.StaticAllocaMap.count(AI))
+ return 0;
+
+ DenseMap<const AllocaInst *, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
+ ResultReg)
+ .addFrameIndex(SI->second)
+ .addImm(0)
+ .addImm(0);
+ return ResultReg;
+ }
+
+ return 0;
+}
+
+unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return 0;
+
+ const APFloat Val = CFP->getValueAPF();
+ bool is64bit = (VT == MVT::f64);
+
+ // This checks to see if we can use FMOV instructions to materialize
+ // a constant, otherwise we have to materialize via the constant pool.
+ if (TLI.isFPImmLegal(Val, VT)) {
+ int Imm;
+ unsigned Opc;
+ if (is64bit) {
+ Imm = AArch64_AM::getFP64Imm(Val);
+ Opc = AArch64::FMOVDi;
+ } else {
+ Imm = AArch64_AM::getFP32Imm(Val);
+ Opc = AArch64::FMOVSi;
+ }
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addImm(Imm);
+ return ResultReg;
+ }
+
+ // Materialize via constant pool. MachineConstantPool wants an explicit
+ // alignment.
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+ if (Align == 0)
+ Align = DL.getTypeAllocSize(CFP->getType());
+
+ unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE);
+
+ unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui;
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(ADRPReg)
+ .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
+ // We can't handle thread-local variables quickly yet. Unfortunately we have
+ // to peer through any aliases to find out if that rule applies.
+ const GlobalValue *TLSGV = GV;
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+ TLSGV = GA->getAliasee();
+
+ // MachO still uses GOT for large code-model accesses, but ELF requires
+ // movz/movk sequences, which FastISel doesn't handle yet.
+ if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
+ return 0;
+
+ if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(TLSGV))
+ if (GVar->isThreadLocal())
+ return 0;
+
+ unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+ EVT DestEVT = TLI.getValueType(GV->getType(), true);
+ if (!DestEVT.isSimple())
+ return 0;
+
+ unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
+ unsigned ResultReg;
+
+ if (OpFlags & AArch64II::MO_GOT) {
+ // ADRP + LDRX
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
+
+ ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
+ ResultReg)
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ } else {
+ // ADRP + ADDX
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
+
+ ResultReg = createResultReg(&AArch64::GPR64spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
+ ResultReg)
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
+ .addImm(0);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple())
+ return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ // FIXME: Handle ConstantInt.
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return AArch64MaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return AArch64MaterializeGV(GV);
+
+ return 0;
+}
+
+// Computes the address to get to an object.
+bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
+ // Don't walk into other basic blocks unless the object is an alloca from
+ // another block, otherwise it may not have a virtual register assigned.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::BitCast: {
+ // Look through bitcasts.
+ return ComputeAddress(U->getOperand(0), Addr);
+ }
+ case Instruction::IntToPtr: {
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return ComputeAddress(U->getOperand(0), Addr);
+ break;
+ }
+ case Instruction::PtrToInt: {
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return ComputeAddress(U->getOperand(0), Addr);
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ Address SavedAddr = Addr;
+ uint64_t TmpOffset = Addr.getOffset();
+
+ // Iterate through the GEP folding the constants into offsets where
+ // we can.
+ gep_type_iterator GTI = gep_type_begin(U);
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
+ ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
+ TmpOffset += SL->getElementOffset(Idx);
+ } else {
+ uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ TmpOffset += CI->getSExtValue() * S;
+ break;
+ }
+ if (canFoldAddIntoGEP(U, Op)) {
+ // A compatible add with a constant operand. Fold the constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ TmpOffset += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ // Unsupported
+ goto unsupported_gep;
+ }
+ }
+ }
+
+ // Try to grab the base operand now.
+ Addr.setOffset(TmpOffset);
+ if (ComputeAddress(U->getOperand(0), Addr))
+ return true;
+
+ // We failed, restore everything and try the other options.
+ Addr = SavedAddr;
+
+ unsupported_gep:
+ break;
+ }
+ case Instruction::Alloca: {
+ const AllocaInst *AI = cast<AllocaInst>(Obj);
+ DenseMap<const AllocaInst *, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ Addr.setKind(Address::FrameIndexBase);
+ Addr.setFI(SI->second);
+ return true;
+ }
+ break;
+ }
+ }
+
+ // Try to get this in a register if nothing else has worked.
+ if (!Addr.isValid())
+ Addr.setReg(getRegForValue(Obj));
+ return Addr.isValid();
+}
+
+bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
+ EVT evt = TLI.getValueType(Ty, true);
+
+ // Only handle simple types.
+ if (evt == MVT::Other || !evt.isSimple())
+ return false;
+ VT = evt.getSimpleVT();
+
+ // This is a legal type, but it's not something we handle in fast-isel.
+ if (VT == MVT::f128)
+ return false;
+
+ // Handle all other legal types, i.e. a register that will directly hold this
+ // value.
+ return TLI.isTypeLegal(VT);
+}
+
+bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
+ if (isTypeLegal(Ty, VT))
+ return true;
+
+ // If this is a type than can be sign or zero-extended to a basic operation
+ // go ahead and accept it now. For stores, this reflects truncation.
+ if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
+ return true;
+
+ return false;
+}
+
+bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
+ int64_t ScaleFactor, bool UseUnscaled) {
+ bool needsLowering = false;
+ int64_t Offset = Addr.getOffset();
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f32:
+ case MVT::f64:
+ if (!UseUnscaled)
+ // Using scaled, 12-bit, unsigned immediate offsets.
+ needsLowering = ((Offset & 0xfff) != Offset);
+ else
+ // Using unscaled, 9-bit, signed immediate offsets.
+ needsLowering = (Offset > 256 || Offset < -256);
+ break;
+ }
+
+ // FIXME: If this is a stack pointer and the offset needs to be simplified
+ // then put the alloca address into a register, set the base type back to
+ // register and continue. This should almost never happen.
+ if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
+ return false;
+ }
+
+ // Since the offset is too large for the load/store instruction get the
+ // reg+offset into a register.
+ if (needsLowering) {
+ uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
+ unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
+ UnscaledOffset, MVT::i64);
+ if (ResultReg == 0)
+ return false;
+ Addr.setReg(ResultReg);
+ Addr.setOffset(0);
+ }
+ return true;
+}
+
+void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
+ const MachineInstrBuilder &MIB,
+ unsigned Flags, bool UseUnscaled) {
+ int64_t Offset = Addr.getOffset();
+ // Frame base works a bit differently. Handle it separately.
+ if (Addr.getKind() == Address::FrameIndexBase) {
+ int FI = Addr.getFI();
+ // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
+ // and alignment should be based on the VT.
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI, Offset), Flags,
+ MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
+ // Now add the rest of the operands.
+ MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
+ } else {
+ // Now add the rest of the operands.
+ MIB.addReg(Addr.getReg());
+ MIB.addImm(Offset);
+ }
+}
+
+bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
+ bool UseUnscaled) {
+ // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+ // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+ if (!UseUnscaled && Addr.getOffset() < 0)
+ UseUnscaled = true;
+
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ bool VTIsi1 = false;
+ int64_t ScaleFactor = 0;
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ VTIsi1 = true;
+ // Intentional fall-through.
+ case MVT::i8:
+ Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
+ RC = &AArch64::GPR32RegClass;
+ ScaleFactor = 1;
+ break;
+ case MVT::i16:
+ Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
+ RC = &AArch64::GPR32RegClass;
+ ScaleFactor = 2;
+ break;
+ case MVT::i32:
+ Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
+ RC = &AArch64::GPR32RegClass;
+ ScaleFactor = 4;
+ break;
+ case MVT::i64:
+ Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
+ RC = &AArch64::GPR64RegClass;
+ ScaleFactor = 8;
+ break;
+ case MVT::f32:
+ Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
+ RC = TLI.getRegClassFor(VT);
+ ScaleFactor = 4;
+ break;
+ case MVT::f64:
+ Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
+ RC = TLI.getRegClassFor(VT);
+ ScaleFactor = 8;
+ break;
+ }
+ // Scale the offset.
+ if (!UseUnscaled) {
+ int64_t Offset = Addr.getOffset();
+ if (Offset & (ScaleFactor - 1))
+ // Retry using an unscaled, 9-bit, signed immediate offset.
+ return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
+
+ Addr.setOffset(Offset / ScaleFactor);
+ }
+
+ // Simplify this down to something we can handle.
+ if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
+ return false;
+
+ // Create the base instruction, then add the operands.
+ ResultReg = createResultReg(RC);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg);
+ AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
+
+ // Loading an i1 requires special handling.
+ if (VTIsi1) {
+ MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(ResultReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ ResultReg = ANDReg;
+ }
+ return true;
+}
+
+bool AArch64FastISel::SelectLoad(const Instruction *I) {
+ MVT VT;
+ // Verify we have a legal type before going any further. Currently, we handle
+ // simple types that will directly fit in a register (i32/f32/i64/f64) or
+ // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
+ if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ComputeAddress(I->getOperand(0), Addr))
+ return false;
+
+ unsigned ResultReg;
+ if (!EmitLoad(VT, ResultReg, Addr))
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
+ bool UseUnscaled) {
+ // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+ // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+ if (!UseUnscaled && Addr.getOffset() < 0)
+ UseUnscaled = true;
+
+ unsigned StrOpc;
+ bool VTIsi1 = false;
+ int64_t ScaleFactor = 0;
+ // Using scaled, 12-bit, unsigned immediate offsets.
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ VTIsi1 = true;
+ case MVT::i8:
+ StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
+ ScaleFactor = 1;
+ break;
+ case MVT::i16:
+ StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
+ ScaleFactor = 2;
+ break;
+ case MVT::i32:
+ StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
+ ScaleFactor = 4;
+ break;
+ case MVT::i64:
+ StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
+ ScaleFactor = 8;
+ break;
+ case MVT::f32:
+ StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
+ ScaleFactor = 4;
+ break;
+ case MVT::f64:
+ StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
+ ScaleFactor = 8;
+ break;
+ }
+ // Scale the offset.
+ if (!UseUnscaled) {
+ int64_t Offset = Addr.getOffset();
+ if (Offset & (ScaleFactor - 1))
+ // Retry using an unscaled, 9-bit, signed immediate offset.
+ return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
+
+ Addr.setOffset(Offset / ScaleFactor);
+ }
+
+ // Simplify this down to something we can handle.
+ if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
+ return false;
+
+ // Storing an i1 requires special handling.
+ if (VTIsi1) {
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(SrcReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ SrcReg = ANDReg;
+ }
+ // Create the base instruction, then add the operands.
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(StrOpc)).addReg(SrcReg);
+ AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
+ return true;
+}
+
+bool AArch64FastISel::SelectStore(const Instruction *I) {
+ MVT VT;
+ Value *Op0 = I->getOperand(0);
+ // Verify we have a legal type before going any further. Currently, we handle
+ // simple types that will directly fit in a register (i32/f32/i64/f64) or
+ // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
+ if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
+ cast<StoreInst>(I)->isAtomic())
+ return false;
+
+ // Get the value to be stored into a register.
+ unsigned SrcReg = getRegForValue(Op0);
+ if (SrcReg == 0)
+ return false;
+
+ // See if we can handle this address.
+ Address Addr;
+ if (!ComputeAddress(I->getOperand(1), Addr))
+ return false;
+
+ if (!EmitStore(VT, SrcReg, Addr))
+ return false;
+ return true;
+}
+
+static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
+ switch (Pred) {
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UEQ:
+ default:
+ // AL is our "false" for now. The other two need more compares.
+ return AArch64CC::AL;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::FCMP_OEQ:
+ return AArch64CC::EQ;
+ case CmpInst::ICMP_SGT:
+ case CmpInst::FCMP_OGT:
+ return AArch64CC::GT;
+ case CmpInst::ICMP_SGE:
+ case CmpInst::FCMP_OGE:
+ return AArch64CC::GE;
+ case CmpInst::ICMP_UGT:
+ case CmpInst::FCMP_UGT:
+ return AArch64CC::HI;
+ case CmpInst::FCMP_OLT:
+ return AArch64CC::MI;
+ case CmpInst::ICMP_ULE:
+ case CmpInst::FCMP_OLE:
+ return AArch64CC::LS;
+ case CmpInst::FCMP_ORD:
+ return AArch64CC::VC;
+ case CmpInst::FCMP_UNO:
+ return AArch64CC::VS;
+ case CmpInst::FCMP_UGE:
+ return AArch64CC::PL;
+ case CmpInst::ICMP_SLT:
+ case CmpInst::FCMP_ULT:
+ return AArch64CC::LT;
+ case CmpInst::ICMP_SLE:
+ case CmpInst::FCMP_ULE:
+ return AArch64CC::LE;
+ case CmpInst::FCMP_UNE:
+ case CmpInst::ICMP_NE:
+ return AArch64CC::NE;
+ case CmpInst::ICMP_UGE:
+ return AArch64CC::HS;
+ case CmpInst::ICMP_ULT:
+ return AArch64CC::LO;
+ }
+}
+
+bool AArch64FastISel::SelectBranch(const Instruction *I) {
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
+ // We may not handle every CC for now.
+ AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
+ if (CC == AArch64CC::AL)
+ return false;
+
+ // Emit the cmp.
+ if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
+
+ // Emit the branch.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+ FuncInfo.MBB->addSuccessor(TBB);
+
+ FastEmitBranch(FBB, DbgLoc);
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ MVT SrcVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
+ unsigned CondReg = getRegForValue(TI->getOperand(0));
+ if (CondReg == 0)
+ return false;
+
+ // Issue an extract_subreg to get the lower 32-bits.
+ if (SrcVT == MVT::i64)
+ CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
+ AArch64::sub_32);
+
+ MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::ANDWri), ANDReg)
+ .addReg(CondReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBSWri))
+ .addReg(ANDReg)
+ .addReg(ANDReg)
+ .addImm(0)
+ .addImm(0);
+
+ unsigned CC = AArch64CC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CC = AArch64CC::EQ;
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+ FuncInfo.MBB->addSuccessor(TBB);
+ FastEmitBranch(FBB, DbgLoc);
+ return true;
+ }
+ } else if (const ConstantInt *CI =
+ dyn_cast<ConstantInt>(BI->getCondition())) {
+ uint64_t Imm = CI->getZExtValue();
+ MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
+ .addMBB(Target);
+ FuncInfo.MBB->addSuccessor(Target);
+ return true;
+ }
+
+ unsigned CondReg = getRegForValue(BI->getCondition());
+ if (CondReg == 0)
+ return false;
+
+ // We've been divorced from our compare! Our block was split, and
+ // now our compare lives in a predecessor block. We musn't
+ // re-compare here, as the children of the compare aren't guaranteed
+ // live across the block boundary (we *could* check for this).
+ // Regardless, the compare has been done in the predecessor block,
+ // and it left a value for us in a virtual register. Ergo, we test
+ // the one-bit value left in the virtual register.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
+ AArch64::WZR)
+ .addReg(CondReg)
+ .addImm(0)
+ .addImm(0);
+
+ unsigned CC = AArch64CC::NE;
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ CC = AArch64CC::EQ;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+ FuncInfo.MBB->addSuccessor(TBB);
+ FastEmitBranch(FBB, DbgLoc);
+ return true;
+}
+
+bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
+ const IndirectBrInst *BI = cast<IndirectBrInst>(I);
+ unsigned AddrReg = getRegForValue(BI->getOperand(0));
+ if (AddrReg == 0)
+ return false;
+
+ // Emit the indirect branch.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
+ .addReg(AddrReg);
+
+ // Make sure the CFG is up-to-date.
+ for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
+ FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
+
+ return true;
+}
+
+bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
+ Type *Ty = Src1Value->getType();
+ EVT SrcEVT = TLI.getValueType(Ty, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ // Check to see if the 2nd operand is a constant that we can encode directly
+ // in the compare.
+ uint64_t Imm;
+ bool UseImm = false;
+ bool isNegativeImm = false;
+ if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
+ if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+ const APInt &CIVal = ConstInt->getValue();
+
+ Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
+ if (CIVal.isNegative()) {
+ isNegativeImm = true;
+ Imm = -Imm;
+ }
+ // FIXME: We can handle more immediates using shifts.
+ UseImm = ((Imm & 0xfff) == Imm);
+ }
+ } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
+ if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
+ if (ConstFP->isZero() && !ConstFP->isNegative())
+ UseImm = true;
+ }
+
+ unsigned ZReg;
+ unsigned CmpOpc;
+ bool isICmp = true;
+ bool needsExt = false;
+ switch (SrcVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ needsExt = true;
+ // Intentional fall-through.
+ case MVT::i32:
+ ZReg = AArch64::WZR;
+ if (UseImm)
+ CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
+ else
+ CmpOpc = AArch64::SUBSWrr;
+ break;
+ case MVT::i64:
+ ZReg = AArch64::XZR;
+ if (UseImm)
+ CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
+ else
+ CmpOpc = AArch64::SUBSXrr;
+ break;
+ case MVT::f32:
+ isICmp = false;
+ CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
+ break;
+ case MVT::f64:
+ isICmp = false;
+ CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
+ break;
+ }
+
+ unsigned SrcReg1 = getRegForValue(Src1Value);
+ if (SrcReg1 == 0)
+ return false;
+
+ unsigned SrcReg2;
+ if (!UseImm) {
+ SrcReg2 = getRegForValue(Src2Value);
+ if (SrcReg2 == 0)
+ return false;
+ }
+
+ // We have i1, i8, or i16, we need to either zero extend or sign extend.
+ if (needsExt) {
+ SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
+ if (SrcReg1 == 0)
+ return false;
+ if (!UseImm) {
+ SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
+ if (SrcReg2 == 0)
+ return false;
+ }
+ }
+
+ if (isICmp) {
+ if (UseImm)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(ZReg)
+ .addReg(SrcReg1)
+ .addImm(Imm)
+ .addImm(0);
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(ZReg)
+ .addReg(SrcReg1)
+ .addReg(SrcReg2);
+ } else {
+ if (UseImm)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(SrcReg1);
+ else
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+ .addReg(SrcReg1)
+ .addReg(SrcReg2);
+ }
+ return true;
+}
+
+bool AArch64FastISel::SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ // We may not handle every CC for now.
+ AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
+ if (CC == AArch64CC::AL)
+ return false;
+
+ // Emit the cmp.
+ if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
+
+ // Now set a register based on the comparison.
+ AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
+ unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
+ ResultReg)
+ .addReg(AArch64::WZR)
+ .addReg(AArch64::WZR)
+ .addImm(invertedCC);
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectSelect(const Instruction *I) {
+ const SelectInst *SI = cast<SelectInst>(I);
+
+ EVT DestEVT = TLI.getValueType(SI->getType(), true);
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT DestVT = DestEVT.getSimpleVT();
+ if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
+ DestVT != MVT::f64)
+ return false;
+
+ unsigned CondReg = getRegForValue(SI->getCondition());
+ if (CondReg == 0)
+ return false;
+ unsigned TrueReg = getRegForValue(SI->getTrueValue());
+ if (TrueReg == 0)
+ return false;
+ unsigned FalseReg = getRegForValue(SI->getFalseValue());
+ if (FalseReg == 0)
+ return false;
+
+
+ MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(CondReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
+ .addReg(ANDReg)
+ .addReg(ANDReg)
+ .addImm(0)
+ .addImm(0);
+
+ unsigned SelectOpc;
+ switch (DestVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i32:
+ SelectOpc = AArch64::CSELWr;
+ break;
+ case MVT::i64:
+ SelectOpc = AArch64::CSELXr;
+ break;
+ case MVT::f32:
+ SelectOpc = AArch64::FCSELSrrr;
+ break;
+ case MVT::f64:
+ SelectOpc = AArch64::FCSELDrrr;
+ break;
+ }
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
+ ResultReg)
+ .addReg(TrueReg)
+ .addReg(FalseReg)
+ .addImm(AArch64CC::NE);
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectFPExt(const Instruction *I) {
+ Value *V = I->getOperand(0);
+ if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
+ return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0)
+ return false;
+
+ unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
+ ResultReg).addReg(Op);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
+ Value *V = I->getOperand(0);
+ if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
+ return false;
+
+ unsigned Op = getRegForValue(V);
+ if (Op == 0)
+ return false;
+
+ unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
+ ResultReg).addReg(Op);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+// FPToUI and FPToSI
+bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
+ MVT DestVT;
+ if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
+ return false;
+
+ unsigned SrcReg = getRegForValue(I->getOperand(0));
+ if (SrcReg == 0)
+ return false;
+
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+ if (SrcVT == MVT::f128)
+ return false;
+
+ unsigned Opc;
+ if (SrcVT == MVT::f64) {
+ if (Signed)
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
+ else
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
+ } else {
+ if (Signed)
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
+ else
+ Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
+ }
+ unsigned ResultReg = createResultReg(
+ DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
+ MVT DestVT;
+ if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
+ return false;
+ assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
+ "Unexpected value type.");
+
+ unsigned SrcReg = getRegForValue(I->getOperand(0));
+ if (SrcReg == 0)
+ return false;
+
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+
+ // Handle sign-extension.
+ if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+ SrcReg =
+ EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
+ if (SrcReg == 0)
+ return false;
+ }
+
+ MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
+ : &AArch64::GPR32RegClass);
+
+ unsigned Opc;
+ if (SrcVT == MVT::i64) {
+ if (Signed)
+ Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
+ else
+ Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
+ } else {
+ if (Signed)
+ Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
+ else
+ Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
+ }
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::ProcessCallArgs(
+ SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs,
+ SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+ SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+ unsigned &NumBytes) {
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
+ .addImm(NumBytes);
+
+ // Process the args.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ unsigned Arg = ArgRegs[VA.getValNo()];
+ MVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // Handle arg promotion: SExt, ZExt, AExt.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt: {
+ MVT DestVT = VA.getLocVT();
+ MVT SrcVT = ArgVT;
+ Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
+ if (Arg == 0)
+ return false;
+ ArgVT = DestVT;
+ break;
+ }
+ case CCValAssign::AExt:
+ // Intentional fall-through.
+ case CCValAssign::ZExt: {
+ MVT DestVT = VA.getLocVT();
+ MVT SrcVT = ArgVT;
+ Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
+ if (Arg == 0)
+ return false;
+ ArgVT = DestVT;
+ break;
+ }
+ default:
+ llvm_unreachable("Unknown arg promotion!");
+ }
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
+ RegArgs.push_back(VA.getLocReg());
+ } else if (VA.needsCustom()) {
+ // FIXME: Handle custom args.
+ return false;
+ } else {
+ assert(VA.isMemLoc() && "Assuming store on stack.");
+
+ // Need to store on the stack.
+ unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
+
+ unsigned BEAlign = 0;
+ if (ArgSize < 8 && !Subtarget->isLittleEndian())
+ BEAlign = 8 - ArgSize;
+
+ Address Addr;
+ Addr.setKind(Address::RegBase);
+ Addr.setReg(AArch64::SP);
+ Addr.setOffset(VA.getLocMemOffset() + BEAlign);
+
+ if (!EmitStore(ArgVT, Arg, Addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+ const Instruction *I, CallingConv::ID CC,
+ unsigned &NumBytes) {
+ // Issue CALLSEQ_END
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
+ .addImm(NumBytes)
+ .addImm(0);
+
+ // Now the return value.
+ if (RetVT != MVT::isVoid) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
+
+ // Only handle a single return value.
+ if (RVLocs.size() != 1)
+ return false;
+
+ // Copy all of the result registers out of their specified physreg.
+ MVT CopyVT = RVLocs[0].getValVT();
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(RVLocs[0].getLocReg());
+ UsedRegs.push_back(RVLocs[0].getLocReg());
+
+ // Finally update the result.
+ UpdateValueMap(I, ResultReg);
+ }
+
+ return true;
+}
+
+bool AArch64FastISel::SelectCall(const Instruction *I,
+ const char *IntrMemName = nullptr) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Don't handle inline asm or intrinsics.
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // Only handle global variable Callees.
+ const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
+ if (!GV)
+ return false;
+
+ // Check the calling convention.
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CC = CS.getCallingConv();
+
+ // Let SDISel handle vararg functions.
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ if (FTy->isVarArg())
+ return false;
+
+ // Handle *simple* calls for now.
+ MVT RetVT;
+ Type *RetTy = I->getType();
+ if (RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ // Set up the argument vectors.
+ SmallVector<Value *, 8> Args;
+ SmallVector<unsigned, 8> ArgRegs;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ Args.reserve(CS.arg_size());
+ ArgRegs.reserve(CS.arg_size());
+ ArgVTs.reserve(CS.arg_size());
+ ArgFlags.reserve(CS.arg_size());
+
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ // If we're lowering a memory intrinsic instead of a regular call, skip the
+ // last two arguments, which shouldn't be passed to the underlying function.
+ if (IntrMemName && e - i <= 2)
+ break;
+
+ unsigned Arg = getRegForValue(*i);
+ if (Arg == 0)
+ return false;
+
+ ISD::ArgFlagsTy Flags;
+ unsigned AttrInd = i - CS.arg_begin() + 1;
+ if (CS.paramHasAttr(AttrInd, Attribute::SExt))
+ Flags.setSExt();
+ if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
+ Flags.setZExt();
+
+ // FIXME: Only handle *easy* calls for now.
+ if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
+ CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
+ CS.paramHasAttr(AttrInd, Attribute::Nest) ||
+ CS.paramHasAttr(AttrInd, Attribute::ByVal))
+ return false;
+
+ MVT ArgVT;
+ Type *ArgTy = (*i)->getType();
+ if (!isTypeLegal(ArgTy, ArgVT) &&
+ !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
+ return false;
+
+ // We don't handle vector parameters yet.
+ if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+ return false;
+
+ unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(*i);
+ ArgRegs.push_back(Arg);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Handle the arguments now that we've gotten them.
+ SmallVector<unsigned, 4> RegArgs;
+ unsigned NumBytes;
+ if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
+ return false;
+
+ // Issue the call.
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL));
+ if (!IntrMemName)
+ MIB.addGlobalAddress(GV, 0, 0);
+ else
+ MIB.addExternalSymbol(IntrMemName, 0);
+
+ // Add implicit physical register uses to the call.
+ for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+ MIB.addReg(RegArgs[i], RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
+
+ // Finish off the call including any return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
+ return false;
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
+ if (Alignment)
+ return Len / Alignment <= 4;
+ else
+ return Len < 32;
+}
+
+bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
+ uint64_t Len, unsigned Alignment) {
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!IsMemCpySmall(Len, Alignment))
+ return false;
+
+ int64_t UnscaledOffset = 0;
+ Address OrigDest = Dest;
+ Address OrigSrc = Src;
+
+ while (Len) {
+ MVT VT;
+ if (!Alignment || Alignment >= 8) {
+ if (Len >= 8)
+ VT = MVT::i64;
+ else if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+ } else {
+ // Bound based on alignment.
+ if (Len >= 4 && Alignment == 4)
+ VT = MVT::i32;
+ else if (Len >= 2 && Alignment == 2)
+ VT = MVT::i16;
+ else {
+ VT = MVT::i8;
+ }
+ }
+
+ bool RV;
+ unsigned ResultReg;
+ RV = EmitLoad(VT, ResultReg, Src);
+ assert(RV == true && "Should be able to handle this load.");
+ RV = EmitStore(VT, ResultReg, Dest);
+ assert(RV == true && "Should be able to handle this store.");
+ (void)RV;
+
+ int64_t Size = VT.getSizeInBits() / 8;
+ Len -= Size;
+ UnscaledOffset += Size;
+
+ // We need to recompute the unscaled offset for each iteration.
+ Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
+ Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
+ }
+
+ return true;
+}
+
+bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
+ // FIXME: Handle more intrinsics.
+ switch (I.getIntrinsicID()) {
+ default:
+ return false;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ const MemTransferInst &MTI = cast<MemTransferInst>(I);
+ // Don't handle volatile.
+ if (MTI.isVolatile())
+ return false;
+
+ // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
+ // we would emit dead code because we don't currently handle memmoves.
+ bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
+ if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+ // Small memcpy's are common enough that we want to do them without a call
+ // if possible.
+ uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
+ unsigned Alignment = MTI.getAlignment();
+ if (IsMemCpySmall(Len, Alignment)) {
+ Address Dest, Src;
+ if (!ComputeAddress(MTI.getRawDest(), Dest) ||
+ !ComputeAddress(MTI.getRawSource(), Src))
+ return false;
+ if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+ return true;
+ }
+ }
+
+ if (!MTI.getLength()->getType()->isIntegerTy(64))
+ return false;
+
+ if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
+ return SelectCall(&I, IntrMemName);
+ }
+ case Intrinsic::memset: {
+ const MemSetInst &MSI = cast<MemSetInst>(I);
+ // Don't handle volatile.
+ if (MSI.isVolatile())
+ return false;
+
+ if (!MSI.getLength()->getType()->isIntegerTy(64))
+ return false;
+
+ if (MSI.getDestAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ return SelectCall(&I, "memset");
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
+ .addImm(1);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool AArch64FastISel::SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ if (F.isVarArg())
+ return false;
+
+ // Build a list of return value registers.
+ SmallVector<unsigned, 4> RetRegs;
+
+ if (Ret->getNumOperands() > 0) {
+ CallingConv::ID CC = F.getCallingConv();
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
+ I->getContext());
+ CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ CCInfo.AnalyzeReturn(Outs, RetCC);
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+ const Value *RV = Ret->getOperand(0);
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ unsigned DestReg = VA.getLocReg();
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!MRI.getRegClass(SrcReg)->contains(DestReg))
+ return false;
+
+ EVT RVEVT = TLI.getValueType(RV->getType());
+ if (!RVEVT.isSimple())
+ return false;
+
+ // Vectors (of > 1 lane) in big endian need tricky handling.
+ if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
+ return false;
+
+ MVT RVVT = RVEVT.getSimpleVT();
+ if (RVVT == MVT::f128)
+ return false;
+ MVT DestVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (RVVT != DestVT) {
+ if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
+ return false;
+
+ if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+ return false;
+
+ bool isZExt = Outs[0].Flags.isZExt();
+ SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
+ if (SrcReg == 0)
+ return false;
+ }
+
+ // Make the copy.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
+
+ // Add register to return instruction.
+ RetRegs.push_back(VA.getLocReg());
+ }
+
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::RET_ReallyLR));
+ for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+ MIB.addReg(RetRegs[i], RegState::Implicit);
+ return true;
+}
+
+bool AArch64FastISel::SelectTrunc(const Instruction *I) {
+ Type *DestTy = I->getType();
+ Value *Op = I->getOperand(0);
+ Type *SrcTy = Op->getType();
+
+ EVT SrcEVT = TLI.getValueType(SrcTy, true);
+ EVT DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+
+ if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
+ SrcVT != MVT::i8)
+ return false;
+ if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
+ DestVT != MVT::i1)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Op);
+ if (!SrcReg)
+ return false;
+
+ // If we're truncating from i64 to a smaller non-legal type then generate an
+ // AND. Otherwise, we know the high bits are undefined and a truncate doesn't
+ // generate any code.
+ if (SrcVT == MVT::i64) {
+ uint64_t Mask = 0;
+ switch (DestVT.SimpleTy) {
+ default:
+ // Trunc i64 to i32 is handled by the target-independent fast-isel.
+ return false;
+ case MVT::i1:
+ Mask = 0x1;
+ break;
+ case MVT::i8:
+ Mask = 0xff;
+ break;
+ case MVT::i16:
+ Mask = 0xffff;
+ break;
+ }
+ // Issue an extract_subreg to get the lower 32-bits.
+ unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
+ AArch64::sub_32);
+ MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
+ // Create the AND instruction which performs the actual truncation.
+ unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ANDReg)
+ .addReg(Reg32)
+ .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
+ SrcReg = ANDReg;
+ }
+
+ UpdateValueMap(I, SrcReg);
+ return true;
+}
+
+unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
+ assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
+ DestVT == MVT::i64) &&
+ "Unexpected value type.");
+ // Handle i8 and i16 as i32.
+ if (DestVT == MVT::i8 || DestVT == MVT::i16)
+ DestVT = MVT::i32;
+
+ if (isZExt) {
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
+ unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
+ ResultReg)
+ .addReg(SrcReg)
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+
+ if (DestVT == MVT::i64) {
+ // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
+ // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
+ unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Reg64)
+ .addImm(0)
+ .addReg(ResultReg)
+ .addImm(AArch64::sub_32);
+ ResultReg = Reg64;
+ }
+ return ResultReg;
+ } else {
+ if (DestVT == MVT::i64) {
+ // FIXME: We're SExt i1 to i64.
+ return 0;
+ }
+ unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
+ ResultReg)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(0);
+ return ResultReg;
+ }
+}
+
+unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool isZExt) {
+ assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
+ unsigned Opc;
+ unsigned Imm = 0;
+
+ switch (SrcVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ return Emiti1Ext(SrcReg, DestVT, isZExt);
+ case MVT::i8:
+ if (DestVT == MVT::i64)
+ Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ else
+ Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Imm = 7;
+ break;
+ case MVT::i16:
+ if (DestVT == MVT::i64)
+ Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ else
+ Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Imm = 15;
+ break;
+ case MVT::i32:
+ assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
+ Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Imm = 31;
+ break;
+ }
+
+ // Handle i8 and i16 as i32.
+ if (DestVT == MVT::i8 || DestVT == MVT::i16)
+ DestVT = MVT::i32;
+ else if (DestVT == MVT::i64) {
+ unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Src64)
+ .addImm(0)
+ .addReg(SrcReg)
+ .addImm(AArch64::sub_32);
+ SrcReg = Src64;
+ }
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(Imm);
+
+ return ResultReg;
+}
+
+bool AArch64FastISel::SelectIntExt(const Instruction *I) {
+ // On ARM, in general, integer casts don't involve legal types; this code
+ // handles promotable integers. The high bits for a type smaller than
+ // the register size are assumed to be undefined.
+ Type *DestTy = I->getType();
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+
+ bool isZExt = isa<ZExtInst>(I);
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ EVT SrcEVT = TLI.getValueType(SrcTy, true);
+ EVT DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+ unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
+ if (ResultReg == 0)
+ return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
+ EVT DestEVT = TLI.getValueType(I->getType(), true);
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT DestVT = DestEVT.getSimpleVT();
+ if (DestVT != MVT::i64 && DestVT != MVT::i32)
+ return false;
+
+ unsigned DivOpc;
+ bool is64bit = (DestVT == MVT::i64);
+ switch (ISDOpcode) {
+ default:
+ return false;
+ case ISD::SREM:
+ DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
+ break;
+ case ISD::UREM:
+ DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
+ break;
+ }
+ unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
+ unsigned Src0Reg = getRegForValue(I->getOperand(0));
+ if (!Src0Reg)
+ return false;
+
+ unsigned Src1Reg = getRegForValue(I->getOperand(1));
+ if (!Src1Reg)
+ return false;
+
+ unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
+ .addReg(Src0Reg)
+ .addReg(Src1Reg);
+ // The remainder is computed as numerator - (quotient * denominator) using the
+ // MSUB instruction.
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
+ .addReg(QuotReg)
+ .addReg(Src1Reg)
+ .addReg(Src0Reg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::SelectMul(const Instruction *I) {
+ EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+ if (!SrcEVT.isSimple())
+ return false;
+ MVT SrcVT = SrcEVT.getSimpleVT();
+
+ // Must be simple value type. Don't handle vectors.
+ if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
+ SrcVT != MVT::i8)
+ return false;
+
+ unsigned Opc;
+ unsigned ZReg;
+ switch (SrcVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ ZReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ break;
+ case MVT::i64:
+ ZReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ break;
+ }
+
+ unsigned Src0Reg = getRegForValue(I->getOperand(0));
+ if (!Src0Reg)
+ return false;
+
+ unsigned Src1Reg = getRegForValue(I->getOperand(1));
+ if (!Src1Reg)
+ return false;
+
+ // Create the base instruction, then add the operands.
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(Src0Reg)
+ .addReg(Src1Reg)
+ .addReg(ZReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
+ switch (I->getOpcode()) {
+ default:
+ break;
+ case Instruction::Load:
+ return SelectLoad(I);
+ case Instruction::Store:
+ return SelectStore(I);
+ case Instruction::Br:
+ return SelectBranch(I);
+ case Instruction::IndirectBr:
+ return SelectIndirectBr(I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return SelectCmp(I);
+ case Instruction::Select:
+ return SelectSelect(I);
+ case Instruction::FPExt:
+ return SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return SelectFPTrunc(I);
+ case Instruction::FPToSI:
+ return SelectFPToInt(I, /*Signed=*/true);
+ case Instruction::FPToUI:
+ return SelectFPToInt(I, /*Signed=*/false);
+ case Instruction::SIToFP:
+ return SelectIntToFP(I, /*Signed=*/true);
+ case Instruction::UIToFP:
+ return SelectIntToFP(I, /*Signed=*/false);
+ case Instruction::SRem:
+ return SelectRem(I, ISD::SREM);
+ case Instruction::URem:
+ return SelectRem(I, ISD::UREM);
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ return SelectIntrinsicCall(*II);
+ return SelectCall(I);
+ case Instruction::Ret:
+ return SelectRet(I);
+ case Instruction::Trunc:
+ return SelectTrunc(I);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return SelectIntExt(I);
+ case Instruction::Mul:
+ // FIXME: This really should be handled by the target-independent selector.
+ return SelectMul(I);
+ }
+ return false;
+ // Silence warnings.
+ (void)&CC_AArch64_DarwinPCS_VarArg;
+}
+
+namespace llvm {
+llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) {
+ return new AArch64FastISel(funcInfo, libInfo);
+}
+}