aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64ISelDAGToDAG.cpp')
-rw-r--r--lib/Target/AArch64/AArch64ISelDAGToDAG.cpp4068
1 files changed, 2763 insertions, 1305 deletions
diff --git a/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp b/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
index dac4b32..7007ffc 100644
--- a/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
+++ b/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
@@ -11,118 +11,119 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "aarch64-isel"
-#include "AArch64.h"
-#include "AArch64InstrInfo.h"
-#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
-#include "Utils/AArch64BaseInfo.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Function.h" // To access function attributes.
#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+#define DEBUG_TYPE "aarch64-isel"
+
//===--------------------------------------------------------------------===//
-/// AArch64 specific code to select AArch64 machine instructions for
-/// SelectionDAG operations.
+/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
+/// instructions for SelectionDAG operations.
///
namespace {
class AArch64DAGToDAGISel : public SelectionDAGISel {
AArch64TargetMachine &TM;
- /// Keep a pointer to the AArch64Subtarget around so that we can
+ /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
+ bool ForCodeSize;
+
public:
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
CodeGenOpt::Level OptLevel)
- : SelectionDAGISel(tm, OptLevel), TM(tm),
- Subtarget(&TM.getSubtarget<AArch64Subtarget>()) {
- }
+ : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(nullptr),
+ ForCodeSize(false) {}
- virtual const char *getPassName() const {
+ const char *getPassName() const override {
return "AArch64 Instruction Selection";
}
- // Include the pieces autogenerated from the target description.
-#include "AArch64GenDAGISel.inc"
-
- template<unsigned MemSize>
- bool SelectOffsetUImm12(SDValue N, SDValue &UImm12) {
- const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
- if (!CN || CN->getZExtValue() % MemSize != 0
- || CN->getZExtValue() / MemSize > 0xfff)
- return false;
-
- UImm12 = CurDAG->getTargetConstant(CN->getZExtValue() / MemSize, MVT::i64);
- return true;
- }
-
- template<unsigned RegWidth>
- bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
- return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
- }
-
- /// Used for pre-lowered address-reference nodes, so we already know
- /// the fields match. This operand's job is simply to add an
- /// appropriate shift operand to the MOVZ/MOVK instruction.
- template<unsigned LogShift>
- bool SelectMOVWAddressRef(SDValue N, SDValue &Imm, SDValue &Shift) {
- Imm = N;
- Shift = CurDAG->getTargetConstant(LogShift, MVT::i32);
- return true;
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ ForCodeSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+ return SelectionDAGISel::runOnMachineFunction(MF);
}
- bool SelectFPZeroOperand(SDValue N, SDValue &Dummy);
-
- bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
- unsigned RegWidth);
+ SDNode *Select(SDNode *Node) override;
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
- std::vector<SDValue> &OutOps);
-
- bool SelectLogicalImm(SDValue N, SDValue &Imm);
-
- template<unsigned RegWidth>
- bool SelectTSTBOperand(SDValue N, SDValue &FixedPos) {
- return SelectTSTBOperand(N, FixedPos, RegWidth);
+ std::vector<SDValue> &OutOps) override;
+
+ SDNode *SelectMLAV64LaneV128(SDNode *N);
+ SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
+ bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
+ bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
+ bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
+ bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
+ return SelectShiftedRegister(N, false, Reg, Shift);
+ }
+ bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
+ return SelectShiftedRegister(N, true, Reg, Shift);
+ }
+ bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 1, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 2, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 4, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 8, Base, OffImm);
+ }
+ bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeIndexed(N, 16, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 1, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 2, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 4, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 8, Base, OffImm);
+ }
+ bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
+ return SelectAddrModeUnscaled(N, 16, Base, OffImm);
}
- bool SelectTSTBOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth);
-
- SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32,
- unsigned Op64);
-
- /// Put the given constant into a pool and return a DAG which will give its
- /// address.
- SDValue getConstantPoolItemAddress(SDLoc DL, const Constant *CV);
-
- SDNode *TrySelectToMoveImm(SDNode *N);
- SDNode *LowerToFPLitPool(SDNode *Node);
- SDNode *SelectToLitPool(SDNode *N);
-
- SDNode* Select(SDNode*);
-private:
- /// Get the opcode for table lookup instruction
- unsigned getTBLOpc(bool IsExt, bool Is64Bit, unsigned NumOfVec);
-
- /// Select NEON table lookup intrinsics. NumVecs should be 1, 2, 3 or 4.
- /// IsExt is to indicate if the result will be extended with an argument.
- SDNode *SelectVTBL(SDNode *N, unsigned NumVecs, bool IsExt);
+ template<int Width>
+ bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend, SDValue &DoShift) {
+ return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
+ }
- /// Select NEON load intrinsics. NumVecs should be 1, 2, 3 or 4.
- SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
- const uint16_t *Opcode);
+ template<int Width>
+ bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend, SDValue &DoShift) {
+ return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
+ }
- /// Select NEON store intrinsics. NumVecs should be 1, 2, 3 or 4.
- SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
- const uint16_t *Opcodes);
/// Form sequences of consecutive 64/128-bit registers for use in NEON
/// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
@@ -136,315 +137,713 @@ private:
SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
unsigned SubRegs[]);
- /// Select NEON load-duplicate intrinsics. NumVecs should be 2, 3 or 4.
- /// The opcode array specifies the instructions used for load.
- SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
- const uint16_t *Opcodes);
+ SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
+
+ SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
+
+ SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
+ unsigned SubRegIdx);
+ SDNode *SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
+ unsigned SubRegIdx);
+ SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+
+ SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+ SDNode *SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
+
+ SDNode *SelectSIMDAddSubNarrowing(unsigned IntNo, SDNode *Node);
+ SDNode *SelectSIMDXtnNarrowing(unsigned IntNo, SDNode *Node);
+
+ SDNode *SelectBitfieldExtractOp(SDNode *N);
+ SDNode *SelectBitfieldInsertOp(SDNode *N);
+
+ SDNode *SelectLIBM(SDNode *N);
+
+// Include the pieces autogenerated from the target description.
+#include "AArch64GenDAGISel.inc"
+
+private:
+ bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
+ SDValue &Shift);
+ bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &Offset, SDValue &SignExtend,
+ SDValue &DoShift);
+ bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
+ SDValue &Offset, SDValue &SignExtend,
+ SDValue &DoShift);
+ bool isWorthFolding(SDValue V) const;
+ bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
+ SDValue &Offset, SDValue &SignExtend);
- /// Select NEON load/store lane intrinsics. NumVecs should be 2, 3 or 4.
- /// The opcode arrays specify the instructions used for load/store.
- SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
- unsigned NumVecs, const uint16_t *Opcodes);
+ template<unsigned RegWidth>
+ bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
+ return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
+ }
- SDValue getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
- SDValue Operand);
+ bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
};
+} // end anonymous namespace
+
+/// isIntImmediate - This method tests to see if the node is a constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
+ if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
+ Imm = C->getZExtValue();
+ return true;
+ }
+ return false;
}
-bool
-AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
- unsigned RegWidth) {
- const ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
- if (!CN) return false;
+// isIntImmediate - This method tests to see if a constant operand.
+// If so Imm will receive the value.
+static bool isIntImmediate(SDValue N, uint64_t &Imm) {
+ return isIntImmediate(N.getNode(), Imm);
+}
- // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
- // is between 1 and 32 for a destination w-register, or 1 and 64 for an
- // x-register.
- //
- // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
- // want THIS_NODE to be 2^fbits. This is much easier to deal with using
- // integers.
- bool IsExact;
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
+ uint64_t &Imm) {
+ return N->getOpcode() == Opc &&
+ isIntImmediate(N->getOperand(1).getNode(), Imm);
+}
- // fbits is between 1 and 64 in the worst-case, which means the fmul
- // could have 2^64 as an actual operand. Need 65 bits of precision.
- APSInt IntVal(65, true);
- CN->getValueAPF().convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
+bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
+ const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ // Require the address to be in a register. That is safe for all AArch64
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
+ return false;
+}
- // N.b. isPowerOf2 also checks for > 0.
- if (!IsExact || !IntVal.isPowerOf2()) return false;
- unsigned FBits = IntVal.logBase2();
+/// SelectArithImmed - Select an immediate value that can be represented as
+/// a 12-bit value shifted left by either 0 or 12. If so, return true with
+/// Val set to the 12-bit value and Shift set to the shifter operand.
+bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
+ SDValue &Shift) {
+ // This function is called from the addsub_shifted_imm ComplexPattern,
+ // which lists [imm] as the list of opcode it's interested in, however
+ // we still need to check whether the operand is actually an immediate
+ // here because the ComplexPattern opcode list is only used in
+ // root-level opcode matching.
+ if (!isa<ConstantSDNode>(N.getNode()))
+ return false;
- // Checks above should have guaranteed that we haven't lost information in
- // finding FBits, but it must still be in range.
- if (FBits == 0 || FBits > RegWidth) return false;
+ uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
+ unsigned ShiftAmt;
- FixedPos = CurDAG->getTargetConstant(64 - FBits, MVT::i32);
+ if (Immed >> 12 == 0) {
+ ShiftAmt = 0;
+ } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
+ ShiftAmt = 12;
+ Immed = Immed >> 12;
+ } else
+ return false;
+
+ unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
+ Val = CurDAG->getTargetConstant(Immed, MVT::i32);
+ Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
return true;
}
-bool
-AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
- char ConstraintCode,
- std::vector<SDValue> &OutOps) {
- switch (ConstraintCode) {
- default: llvm_unreachable("Unrecognised AArch64 memory constraint");
- case 'm':
- // FIXME: more freedom is actually permitted for 'm'. We can go
- // hunting for a base and an offset if we want. Of course, since
- // we don't really know how the operand is going to be used we're
- // probably restricted to the load/store pair's simm7 as an offset
- // range anyway.
- case 'Q':
- OutOps.push_back(Op);
+/// SelectNegArithImmed - As above, but negates the value before trying to
+/// select it.
+bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
+ SDValue &Shift) {
+ // This function is called from the addsub_shifted_imm ComplexPattern,
+ // which lists [imm] as the list of opcode it's interested in, however
+ // we still need to check whether the operand is actually an immediate
+ // here because the ComplexPattern opcode list is only used in
+ // root-level opcode matching.
+ if (!isa<ConstantSDNode>(N.getNode()))
+ return false;
+
+ // The immediate operand must be a 24-bit zero-extended immediate.
+ uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
+
+ // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
+ // have the opposite effect on the C flag, so this pattern mustn't match under
+ // those circumstances.
+ if (Immed == 0)
+ return false;
+
+ if (N.getValueType() == MVT::i32)
+ Immed = ~((uint32_t)Immed) + 1;
+ else
+ Immed = ~Immed + 1ULL;
+ if (Immed & 0xFFFFFFFFFF000000ULL)
+ return false;
+
+ Immed &= 0xFFFFFFULL;
+ return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
+}
+
+/// getShiftTypeForNode - Translate a shift node to the corresponding
+/// ShiftType value.
+static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
+ switch (N.getOpcode()) {
+ default:
+ return AArch64_AM::InvalidShiftExtend;
+ case ISD::SHL:
+ return AArch64_AM::LSL;
+ case ISD::SRL:
+ return AArch64_AM::LSR;
+ case ISD::SRA:
+ return AArch64_AM::ASR;
+ case ISD::ROTR:
+ return AArch64_AM::ROR;
}
+}
+/// \brief Determine wether it is worth to fold V into an extended register.
+bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
+ // it hurts if the a value is used at least twice, unless we are optimizing
+ // for code size.
+ if (ForCodeSize || V.hasOneUse())
+ return true;
return false;
}
-bool
-AArch64DAGToDAGISel::SelectFPZeroOperand(SDValue N, SDValue &Dummy) {
- ConstantFPSDNode *Imm = dyn_cast<ConstantFPSDNode>(N);
- if (!Imm || !Imm->getValueAPF().isPosZero())
+/// SelectShiftedRegister - Select a "shifted register" operand. If the value
+/// is not shifted, set the Shift operand to default of "LSL 0". The logical
+/// instructions allow the shifted register to be rotated, but the arithmetic
+/// instructions do not. The AllowROR parameter specifies whether ROR is
+/// supported.
+bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
+ SDValue &Reg, SDValue &Shift) {
+ AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
+ if (ShType == AArch64_AM::InvalidShiftExtend)
+ return false;
+ if (!AllowROR && ShType == AArch64_AM::ROR)
return false;
- // Doesn't actually carry any information, but keeps TableGen quiet.
- Dummy = CurDAG->getTargetConstant(0, MVT::i32);
- return true;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ unsigned BitSize = N.getValueType().getSizeInBits();
+ unsigned Val = RHS->getZExtValue() & (BitSize - 1);
+ unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
+
+ Reg = N.getOperand(0);
+ Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
+ return isWorthFolding(N);
+ }
+
+ return false;
}
-bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) {
- uint32_t Bits;
- uint32_t RegWidth = N.getValueType().getSizeInBits();
+/// getExtendTypeForNode - Translate an extend node to the corresponding
+/// ExtendType value.
+static AArch64_AM::ShiftExtendType
+getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
+ if (N.getOpcode() == ISD::SIGN_EXTEND ||
+ N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ EVT SrcVT;
+ if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
+ SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
+ else
+ SrcVT = N.getOperand(0).getValueType();
+
+ if (!IsLoadStore && SrcVT == MVT::i8)
+ return AArch64_AM::SXTB;
+ else if (!IsLoadStore && SrcVT == MVT::i16)
+ return AArch64_AM::SXTH;
+ else if (SrcVT == MVT::i32)
+ return AArch64_AM::SXTW;
+ assert(SrcVT != MVT::i64 && "extend from 64-bits?");
+
+ return AArch64_AM::InvalidShiftExtend;
+ } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
+ N.getOpcode() == ISD::ANY_EXTEND) {
+ EVT SrcVT = N.getOperand(0).getValueType();
+ if (!IsLoadStore && SrcVT == MVT::i8)
+ return AArch64_AM::UXTB;
+ else if (!IsLoadStore && SrcVT == MVT::i16)
+ return AArch64_AM::UXTH;
+ else if (SrcVT == MVT::i32)
+ return AArch64_AM::UXTW;
+ assert(SrcVT != MVT::i64 && "extend from 64-bits?");
+
+ return AArch64_AM::InvalidShiftExtend;
+ } else if (N.getOpcode() == ISD::AND) {
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD)
+ return AArch64_AM::InvalidShiftExtend;
+ uint64_t AndMask = CSD->getZExtValue();
+
+ switch (AndMask) {
+ default:
+ return AArch64_AM::InvalidShiftExtend;
+ case 0xFF:
+ return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
+ case 0xFFFF:
+ return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
+ case 0xFFFFFFFF:
+ return AArch64_AM::UXTW;
+ }
+ }
- ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
- if (!CN) return false;
+ return AArch64_AM::InvalidShiftExtend;
+}
+
+// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
+static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
+ if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
+ DL->getOpcode() != AArch64ISD::DUPLANE32)
+ return false;
- if (!A64Imms::isLogicalImm(RegWidth, CN->getZExtValue(), Bits))
+ SDValue SV = DL->getOperand(0);
+ if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
return false;
- Imm = CurDAG->getTargetConstant(Bits, MVT::i32);
+ SDValue EV = SV.getOperand(1);
+ if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
+ return false;
+
+ ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
+ ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
+ LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
+ LaneOp = EV.getOperand(0);
+
return true;
}
-SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) {
- SDNode *ResNode;
- SDLoc dl(Node);
- EVT DestType = Node->getValueType(0);
- unsigned DestWidth = DestType.getSizeInBits();
-
- unsigned MOVOpcode;
- EVT MOVType;
- int UImm16, Shift;
- uint32_t LogicalBits;
-
- uint64_t BitPat = cast<ConstantSDNode>(Node)->getZExtValue();
- if (A64Imms::isMOVZImm(DestWidth, BitPat, UImm16, Shift)) {
- MOVType = DestType;
- MOVOpcode = DestWidth == 64 ? AArch64::MOVZxii : AArch64::MOVZwii;
- } else if (A64Imms::isMOVNImm(DestWidth, BitPat, UImm16, Shift)) {
- MOVType = DestType;
- MOVOpcode = DestWidth == 64 ? AArch64::MOVNxii : AArch64::MOVNwii;
- } else if (DestWidth == 64 && A64Imms::isMOVNImm(32, BitPat, UImm16, Shift)) {
- // To get something like 0x0000_0000_ffff_1234 into a 64-bit register we can
- // use a 32-bit instruction: "movn w0, 0xedbc".
- MOVType = MVT::i32;
- MOVOpcode = AArch64::MOVNwii;
- } else if (A64Imms::isLogicalImm(DestWidth, BitPat, LogicalBits)) {
- MOVOpcode = DestWidth == 64 ? AArch64::ORRxxi : AArch64::ORRwwi;
- uint16_t ZR = DestWidth == 64 ? AArch64::XZR : AArch64::WZR;
-
- return CurDAG->getMachineNode(MOVOpcode, dl, DestType,
- CurDAG->getRegister(ZR, DestType),
- CurDAG->getTargetConstant(LogicalBits, MVT::i32));
- } else {
- // Can't handle it in one instruction. There's scope for permitting two (or
- // more) instructions, but that'll need more thought.
- return NULL;
+// Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
+// high lane extract.
+static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
+ SDValue &LaneOp, int &LaneIdx) {
+
+ if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
+ std::swap(Op0, Op1);
+ if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
+ return false;
+ }
+ StdOp = Op1;
+ return true;
+}
+
+/// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
+/// is a lane in the upper half of a 128-bit vector. Recognize and select this
+/// so that we don't emit unnecessary lane extracts.
+SDNode *AArch64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
+ SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
+ int LaneIdx = -1; // Will hold the lane index.
+
+ if (Op1.getOpcode() != ISD::MUL ||
+ !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
+ LaneIdx)) {
+ std::swap(Op0, Op1);
+ if (Op1.getOpcode() != ISD::MUL ||
+ !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
+ LaneIdx))
+ return nullptr;
}
- ResNode = CurDAG->getMachineNode(MOVOpcode, dl, MOVType,
- CurDAG->getTargetConstant(UImm16, MVT::i32),
- CurDAG->getTargetConstant(Shift, MVT::i32));
+ SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
+
+ SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
+
+ unsigned MLAOpc = ~0U;
- if (MOVType != DestType) {
- ResNode = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
- MVT::i64, MVT::i32, MVT::Other,
- CurDAG->getTargetConstant(0, MVT::i64),
- SDValue(ResNode, 0),
- CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32));
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized MLA.");
+ case MVT::v4i16:
+ MLAOpc = AArch64::MLAv4i16_indexed;
+ break;
+ case MVT::v8i16:
+ MLAOpc = AArch64::MLAv8i16_indexed;
+ break;
+ case MVT::v2i32:
+ MLAOpc = AArch64::MLAv2i32_indexed;
+ break;
+ case MVT::v4i32:
+ MLAOpc = AArch64::MLAv4i32_indexed;
+ break;
}
- return ResNode;
+ return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
+ SDValue SMULLOp0;
+ SDValue SMULLOp1;
+ int LaneIdx;
+
+ if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
+ LaneIdx))
+ return nullptr;
+
+ SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
+
+ SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
+
+ unsigned SMULLOpc = ~0U;
+
+ if (IntNo == Intrinsic::aarch64_neon_smull) {
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized SMULL.");
+ case MVT::v4i32:
+ SMULLOpc = AArch64::SMULLv4i16_indexed;
+ break;
+ case MVT::v2i64:
+ SMULLOpc = AArch64::SMULLv2i32_indexed;
+ break;
+ }
+ } else if (IntNo == Intrinsic::aarch64_neon_umull) {
+ switch (N->getSimpleValueType(0).SimpleTy) {
+ default:
+ llvm_unreachable("Unrecognized SMULL.");
+ case MVT::v4i32:
+ SMULLOpc = AArch64::UMULLv4i16_indexed;
+ break;
+ case MVT::v2i64:
+ SMULLOpc = AArch64::UMULLv2i32_indexed;
+ break;
+ }
+ } else
+ llvm_unreachable("Unrecognized intrinsic.");
+
+ return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
+}
+
+/// Instructions that accept extend modifiers like UXTW expect the register
+/// being extended to be a GPR32, but the incoming DAG might be acting on a
+/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
+/// this is the case.
+static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
+ if (N.getValueType() == MVT::i32)
+ return N;
+
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
+ SDLoc(N), MVT::i32, N, SubReg);
+ return SDValue(Node, 0);
+}
+
+
+/// SelectArithExtendedRegister - Select a "extended register" operand. This
+/// operand folds in an extend followed by an optional left shift.
+bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
+ SDValue &Shift) {
+ unsigned ShiftVal = 0;
+ AArch64_AM::ShiftExtendType Ext;
+
+ if (N.getOpcode() == ISD::SHL) {
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD)
+ return false;
+ ShiftVal = CSD->getZExtValue();
+ if (ShiftVal > 4)
+ return false;
+
+ Ext = getExtendTypeForNode(N.getOperand(0));
+ if (Ext == AArch64_AM::InvalidShiftExtend)
+ return false;
+
+ Reg = N.getOperand(0).getOperand(0);
+ } else {
+ Ext = getExtendTypeForNode(N);
+ if (Ext == AArch64_AM::InvalidShiftExtend)
+ return false;
+
+ Reg = N.getOperand(0);
+ }
+
+ // AArch64 mandates that the RHS of the operation must use the smallest
+ // register classs that could contain the size being extended from. Thus,
+ // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
+ // there might not be an actual 32-bit value in the program. We can
+ // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
+ assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
+ Reg = narrowIfNeeded(CurDAG, Reg);
+ Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
+ return isWorthFolding(N);
}
-SDValue
-AArch64DAGToDAGISel::getConstantPoolItemAddress(SDLoc DL,
- const Constant *CV) {
- EVT PtrVT = getTargetLowering()->getPointerTy();
-
- switch (getTargetLowering()->getTargetMachine().getCodeModel()) {
- case CodeModel::Small: {
- unsigned Alignment =
- getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
- return CurDAG->getNode(
- AArch64ISD::WrapperSmall, DL, PtrVT,
- CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG),
- CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_LO12),
- CurDAG->getConstant(Alignment, MVT::i32));
- }
- case CodeModel::Large: {
- SDNode *LitAddr;
- LitAddr = CurDAG->getMachineNode(
- AArch64::MOVZxii, DL, PtrVT,
- CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
- CurDAG->getTargetConstant(3, MVT::i32));
- LitAddr = CurDAG->getMachineNode(
- AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
- CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
- CurDAG->getTargetConstant(2, MVT::i32));
- LitAddr = CurDAG->getMachineNode(
- AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
- CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
- CurDAG->getTargetConstant(1, MVT::i32));
- LitAddr = CurDAG->getMachineNode(
- AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
- CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC),
- CurDAG->getTargetConstant(0, MVT::i32));
- return SDValue(LitAddr, 0);
+/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
+/// immediate" address. The "Size" argument is the size in bytes of the memory
+/// reference, which determines the scale.
+bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &OffImm) {
+ const TargetLowering *TLI = getTargetLowering();
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i64);
+ return true;
}
- default:
- llvm_unreachable("Only small and large code models supported now");
+
+ if (N.getOpcode() == AArch64ISD::ADDlow) {
+ GlobalAddressSDNode *GAN =
+ dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
+ Base = N.getOperand(0);
+ OffImm = N.getOperand(1);
+ if (!GAN)
+ return true;
+
+ const GlobalValue *GV = GAN->getGlobal();
+ unsigned Alignment = GV->getAlignment();
+ const DataLayout *DL = TLI->getDataLayout();
+ if (Alignment == 0 && !Subtarget->isTargetDarwin())
+ Alignment = DL->getABITypeAlignment(GV->getType()->getElementType());
+
+ if (Alignment >= Size)
+ return true;
}
+
+ if (CurDAG->isBaseWithConstantOffset(N)) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int64_t RHSC = (int64_t)RHS->getZExtValue();
+ unsigned Scale = Log2_32(Size);
+ if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
+ return true;
+ }
+ }
+ }
+
+ // Before falling back to our general case, check if the unscaled
+ // instructions can handle this. If so, that's preferable.
+ if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
+ return false;
+
+ // Base only. The address will be materialized into a register before
+ // the memory is accessed.
+ // add x0, Xbase, #offset
+ // ldr x0, [x0]
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i64);
+ return true;
}
-SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
- SDLoc DL(Node);
- uint64_t UnsignedVal = cast<ConstantSDNode>(Node)->getZExtValue();
- int64_t SignedVal = cast<ConstantSDNode>(Node)->getSExtValue();
- EVT DestType = Node->getValueType(0);
-
- // Since we may end up loading a 64-bit constant from a 32-bit entry the
- // constant in the pool may have a different type to the eventual node.
- ISD::LoadExtType Extension;
- EVT MemType;
-
- assert((DestType == MVT::i64 || DestType == MVT::i32)
- && "Only expect integer constants at the moment");
-
- if (DestType == MVT::i32) {
- Extension = ISD::NON_EXTLOAD;
- MemType = MVT::i32;
- } else if (UnsignedVal <= UINT32_MAX) {
- Extension = ISD::ZEXTLOAD;
- MemType = MVT::i32;
- } else if (SignedVal >= INT32_MIN && SignedVal <= INT32_MAX) {
- Extension = ISD::SEXTLOAD;
- MemType = MVT::i32;
- } else {
- Extension = ISD::NON_EXTLOAD;
- MemType = MVT::i64;
- }
-
- Constant *CV = ConstantInt::get(Type::getIntNTy(*CurDAG->getContext(),
- MemType.getSizeInBits()),
- UnsignedVal);
- SDValue PoolAddr = getConstantPoolItemAddress(DL, CV);
- unsigned Alignment =
- getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
-
- return CurDAG->getExtLoad(Extension, DL, DestType, CurDAG->getEntryNode(),
- PoolAddr,
- MachinePointerInfo::getConstantPool(), MemType,
- /* isVolatile = */ false,
- /* isNonTemporal = */ false,
- Alignment).getNode();
+/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
+/// immediate" address. This should only match when there is an offset that
+/// is not valid for a scaled immediate addressing mode. The "Size" argument
+/// is the size in bytes of the memory reference, which is needed here to know
+/// what is valid for a scaled immediate.
+bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
+ SDValue &Base,
+ SDValue &OffImm) {
+ if (!CurDAG->isBaseWithConstantOffset(N))
+ return false;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int64_t RHSC = RHS->getSExtValue();
+ // If the offset is valid as a scaled immediate, don't match here.
+ if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
+ RHSC < (0x1000 << Log2_32(Size)))
+ return false;
+ if (RHSC >= -256 && RHSC < 256) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ const TargetLowering *TLI = getTargetLowering();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
+ return true;
+ }
+ }
+ return false;
}
-SDNode *AArch64DAGToDAGISel::LowerToFPLitPool(SDNode *Node) {
- SDLoc DL(Node);
- const ConstantFP *FV = cast<ConstantFPSDNode>(Node)->getConstantFPValue();
- EVT DestType = Node->getValueType(0);
-
- unsigned Alignment =
- getTargetLowering()->getDataLayout()->getABITypeAlignment(FV->getType());
- SDValue PoolAddr = getConstantPoolItemAddress(DL, FV);
-
- return CurDAG->getLoad(DestType, DL, CurDAG->getEntryNode(), PoolAddr,
- MachinePointerInfo::getConstantPool(),
- /* isVolatile = */ false,
- /* isNonTemporal = */ false,
- /* isInvariant = */ true,
- Alignment).getNode();
+static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ SDValue ImpDef = SDValue(
+ CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
+ 0);
+ MachineSDNode *Node = CurDAG->getMachineNode(
+ TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
+ return SDValue(Node, 0);
}
-bool
-AArch64DAGToDAGISel::SelectTSTBOperand(SDValue N, SDValue &FixedPos,
- unsigned RegWidth) {
- const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
- if (!CN) return false;
+/// \brief Check if the given SHL node (\p N), can be used to form an
+/// extended register for an addressing mode.
+bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
+ bool WantExtend, SDValue &Offset,
+ SDValue &SignExtend) {
+ assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
+ ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
+ return false;
- uint64_t Val = CN->getZExtValue();
+ if (WantExtend) {
+ AArch64_AM::ShiftExtendType Ext =
+ getExtendTypeForNode(N.getOperand(0), true);
+ if (Ext == AArch64_AM::InvalidShiftExtend)
+ return false;
- if (!isPowerOf2_64(Val)) return false;
+ Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
+ SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
+ } else {
+ Offset = N.getOperand(0);
+ SignExtend = CurDAG->getTargetConstant(0, MVT::i32);
+ }
- unsigned TestedBit = Log2_64(Val);
- // Checks above should have guaranteed that we haven't lost information in
- // finding TestedBit, but it must still be in range.
- if (TestedBit >= RegWidth) return false;
+ unsigned LegalShiftVal = Log2_32(Size);
+ unsigned ShiftVal = CSD->getZExtValue();
- FixedPos = CurDAG->getTargetConstant(TestedBit, MVT::i64);
- return true;
+ if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
+ return false;
+
+ if (isWorthFolding(N))
+ return true;
+
+ return false;
}
-SDNode *AArch64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
- unsigned Op16,unsigned Op32,
- unsigned Op64) {
- // Mostly direct translation to the given operations, except that we preserve
- // the AtomicOrdering for use later on.
- AtomicSDNode *AN = cast<AtomicSDNode>(Node);
- EVT VT = AN->getMemoryVT();
-
- unsigned Op;
- if (VT == MVT::i8)
- Op = Op8;
- else if (VT == MVT::i16)
- Op = Op16;
- else if (VT == MVT::i32)
- Op = Op32;
- else if (VT == MVT::i64)
- Op = Op64;
- else
- llvm_unreachable("Unexpected atomic operation");
+bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend,
+ SDValue &DoShift) {
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+ SDValue LHS = N.getOperand(0);
+ SDValue RHS = N.getOperand(1);
- SmallVector<SDValue, 4> Ops;
- for (unsigned i = 1; i < AN->getNumOperands(); ++i)
- Ops.push_back(AN->getOperand(i));
+ // We don't want to match immediate adds here, because they are better lowered
+ // to the register-immediate addressing modes.
+ if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
+ return false;
- Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
- Ops.push_back(AN->getOperand(0)); // Chain moves to the end
+ // Check if this particular node is reused in any non-memory related
+ // operation. If yes, do not try to fold this node into the address
+ // computation, since the computation will be kept.
+ const SDNode *Node = N.getNode();
+ for (SDNode *UI : Node->uses()) {
+ if (!isa<MemSDNode>(*UI))
+ return false;
+ }
+
+ // Remember if it is worth folding N when it produces extended register.
+ bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
+
+ // Try to match a shifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
+ Base = LHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // Try to match a shifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
+ Base = RHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // There was no shift, whatever else we find.
+ DoShift = CurDAG->getTargetConstant(false, MVT::i32);
+
+ AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
+ // Try to match an unshifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding &&
+ (Ext = getExtendTypeForNode(LHS, true)) !=
+ AArch64_AM::InvalidShiftExtend) {
+ Base = RHS;
+ Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
+ SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
+ if (isWorthFolding(LHS))
+ return true;
+ }
+
+ // Try to match an unshifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding &&
+ (Ext = getExtendTypeForNode(RHS, true)) !=
+ AArch64_AM::InvalidShiftExtend) {
+ Base = LHS;
+ Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
+ SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
+ if (isWorthFolding(RHS))
+ return true;
+ }
- return CurDAG->SelectNodeTo(Node, Op,
- AN->getValueType(0), MVT::Other,
- &Ops[0], Ops.size());
+ return false;
+}
+
+bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
+ SDValue &Base, SDValue &Offset,
+ SDValue &SignExtend,
+ SDValue &DoShift) {
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+ SDValue LHS = N.getOperand(0);
+ SDValue RHS = N.getOperand(1);
+
+ // We don't want to match immediate adds here, because they are better lowered
+ // to the register-immediate addressing modes.
+ if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
+ return false;
+
+ // Check if this particular node is reused in any non-memory related
+ // operation. If yes, do not try to fold this node into the address
+ // computation, since the computation will be kept.
+ const SDNode *Node = N.getNode();
+ for (SDNode *UI : Node->uses()) {
+ if (!isa<MemSDNode>(*UI))
+ return false;
+ }
+
+ // Remember if it is worth folding N when it produces extended register.
+ bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
+
+ // Try to match a shifted extend on the RHS.
+ if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
+ Base = LHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // Try to match a shifted extend on the LHS.
+ if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
+ SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
+ Base = RHS;
+ DoShift = CurDAG->getTargetConstant(true, MVT::i32);
+ return true;
+ }
+
+ // Match any non-shifted, non-extend, non-immediate add expression.
+ Base = LHS;
+ Offset = RHS;
+ SignExtend = CurDAG->getTargetConstant(false, MVT::i32);
+ DoShift = CurDAG->getTargetConstant(false, MVT::i32);
+ // Reg1 + Reg2 is free: no check needed.
+ return true;
}
SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
- static unsigned RegClassIDs[] = { AArch64::DPairRegClassID,
- AArch64::DTripleRegClassID,
- AArch64::DQuadRegClassID };
- static unsigned SubRegs[] = { AArch64::dsub_0, AArch64::dsub_1,
- AArch64::dsub_2, AArch64::dsub_3 };
+ static unsigned RegClassIDs[] = {
+ AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
+ static unsigned SubRegs[] = { AArch64::dsub0, AArch64::dsub1,
+ AArch64::dsub2, AArch64::dsub3 };
return createTuple(Regs, RegClassIDs, SubRegs);
}
SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
- static unsigned RegClassIDs[] = { AArch64::QPairRegClassID,
- AArch64::QTripleRegClassID,
- AArch64::QQuadRegClassID };
- static unsigned SubRegs[] = { AArch64::qsub_0, AArch64::qsub_1,
- AArch64::qsub_2, AArch64::qsub_3 };
+ static unsigned RegClassIDs[] = {
+ AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
+ static unsigned SubRegs[] = { AArch64::qsub0, AArch64::qsub1,
+ AArch64::qsub2, AArch64::qsub3 };
return createTuple(Regs, RegClassIDs, SubRegs);
}
@@ -478,1100 +877,2159 @@ SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
return SDValue(N, 0);
}
+SDNode *AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
+ unsigned Opc, bool isExt) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ unsigned ExtOff = isExt;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ unsigned Vec0Off = ExtOff + 1;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
+ N->op_begin() + Vec0Off + NumVecs);
+ SDValue RegSeq = createQTuple(Regs);
-// Get the register stride update opcode of a VLD/VST instruction that
-// is otherwise equivalent to the given fixed stride updating instruction.
-static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
- switch (Opc) {
- default: break;
- case AArch64::LD1WB_8B_fixed: return AArch64::LD1WB_8B_register;
- case AArch64::LD1WB_4H_fixed: return AArch64::LD1WB_4H_register;
- case AArch64::LD1WB_2S_fixed: return AArch64::LD1WB_2S_register;
- case AArch64::LD1WB_1D_fixed: return AArch64::LD1WB_1D_register;
- case AArch64::LD1WB_16B_fixed: return AArch64::LD1WB_16B_register;
- case AArch64::LD1WB_8H_fixed: return AArch64::LD1WB_8H_register;
- case AArch64::LD1WB_4S_fixed: return AArch64::LD1WB_4S_register;
- case AArch64::LD1WB_2D_fixed: return AArch64::LD1WB_2D_register;
-
- case AArch64::LD2WB_8B_fixed: return AArch64::LD2WB_8B_register;
- case AArch64::LD2WB_4H_fixed: return AArch64::LD2WB_4H_register;
- case AArch64::LD2WB_2S_fixed: return AArch64::LD2WB_2S_register;
- case AArch64::LD2WB_16B_fixed: return AArch64::LD2WB_16B_register;
- case AArch64::LD2WB_8H_fixed: return AArch64::LD2WB_8H_register;
- case AArch64::LD2WB_4S_fixed: return AArch64::LD2WB_4S_register;
- case AArch64::LD2WB_2D_fixed: return AArch64::LD2WB_2D_register;
-
- case AArch64::LD3WB_8B_fixed: return AArch64::LD3WB_8B_register;
- case AArch64::LD3WB_4H_fixed: return AArch64::LD3WB_4H_register;
- case AArch64::LD3WB_2S_fixed: return AArch64::LD3WB_2S_register;
- case AArch64::LD3WB_16B_fixed: return AArch64::LD3WB_16B_register;
- case AArch64::LD3WB_8H_fixed: return AArch64::LD3WB_8H_register;
- case AArch64::LD3WB_4S_fixed: return AArch64::LD3WB_4S_register;
- case AArch64::LD3WB_2D_fixed: return AArch64::LD3WB_2D_register;
-
- case AArch64::LD4WB_8B_fixed: return AArch64::LD4WB_8B_register;
- case AArch64::LD4WB_4H_fixed: return AArch64::LD4WB_4H_register;
- case AArch64::LD4WB_2S_fixed: return AArch64::LD4WB_2S_register;
- case AArch64::LD4WB_16B_fixed: return AArch64::LD4WB_16B_register;
- case AArch64::LD4WB_8H_fixed: return AArch64::LD4WB_8H_register;
- case AArch64::LD4WB_4S_fixed: return AArch64::LD4WB_4S_register;
- case AArch64::LD4WB_2D_fixed: return AArch64::LD4WB_2D_register;
-
- case AArch64::LD1x2WB_8B_fixed: return AArch64::LD1x2WB_8B_register;
- case AArch64::LD1x2WB_4H_fixed: return AArch64::LD1x2WB_4H_register;
- case AArch64::LD1x2WB_2S_fixed: return AArch64::LD1x2WB_2S_register;
- case AArch64::LD1x2WB_1D_fixed: return AArch64::LD1x2WB_1D_register;
- case AArch64::LD1x2WB_16B_fixed: return AArch64::LD1x2WB_16B_register;
- case AArch64::LD1x2WB_8H_fixed: return AArch64::LD1x2WB_8H_register;
- case AArch64::LD1x2WB_4S_fixed: return AArch64::LD1x2WB_4S_register;
- case AArch64::LD1x2WB_2D_fixed: return AArch64::LD1x2WB_2D_register;
-
- case AArch64::LD1x3WB_8B_fixed: return AArch64::LD1x3WB_8B_register;
- case AArch64::LD1x3WB_4H_fixed: return AArch64::LD1x3WB_4H_register;
- case AArch64::LD1x3WB_2S_fixed: return AArch64::LD1x3WB_2S_register;
- case AArch64::LD1x3WB_1D_fixed: return AArch64::LD1x3WB_1D_register;
- case AArch64::LD1x3WB_16B_fixed: return AArch64::LD1x3WB_16B_register;
- case AArch64::LD1x3WB_8H_fixed: return AArch64::LD1x3WB_8H_register;
- case AArch64::LD1x3WB_4S_fixed: return AArch64::LD1x3WB_4S_register;
- case AArch64::LD1x3WB_2D_fixed: return AArch64::LD1x3WB_2D_register;
-
- case AArch64::LD1x4WB_8B_fixed: return AArch64::LD1x4WB_8B_register;
- case AArch64::LD1x4WB_4H_fixed: return AArch64::LD1x4WB_4H_register;
- case AArch64::LD1x4WB_2S_fixed: return AArch64::LD1x4WB_2S_register;
- case AArch64::LD1x4WB_1D_fixed: return AArch64::LD1x4WB_1D_register;
- case AArch64::LD1x4WB_16B_fixed: return AArch64::LD1x4WB_16B_register;
- case AArch64::LD1x4WB_8H_fixed: return AArch64::LD1x4WB_8H_register;
- case AArch64::LD1x4WB_4S_fixed: return AArch64::LD1x4WB_4S_register;
- case AArch64::LD1x4WB_2D_fixed: return AArch64::LD1x4WB_2D_register;
-
- case AArch64::ST1WB_8B_fixed: return AArch64::ST1WB_8B_register;
- case AArch64::ST1WB_4H_fixed: return AArch64::ST1WB_4H_register;
- case AArch64::ST1WB_2S_fixed: return AArch64::ST1WB_2S_register;
- case AArch64::ST1WB_1D_fixed: return AArch64::ST1WB_1D_register;
- case AArch64::ST1WB_16B_fixed: return AArch64::ST1WB_16B_register;
- case AArch64::ST1WB_8H_fixed: return AArch64::ST1WB_8H_register;
- case AArch64::ST1WB_4S_fixed: return AArch64::ST1WB_4S_register;
- case AArch64::ST1WB_2D_fixed: return AArch64::ST1WB_2D_register;
-
- case AArch64::ST2WB_8B_fixed: return AArch64::ST2WB_8B_register;
- case AArch64::ST2WB_4H_fixed: return AArch64::ST2WB_4H_register;
- case AArch64::ST2WB_2S_fixed: return AArch64::ST2WB_2S_register;
- case AArch64::ST2WB_16B_fixed: return AArch64::ST2WB_16B_register;
- case AArch64::ST2WB_8H_fixed: return AArch64::ST2WB_8H_register;
- case AArch64::ST2WB_4S_fixed: return AArch64::ST2WB_4S_register;
- case AArch64::ST2WB_2D_fixed: return AArch64::ST2WB_2D_register;
-
- case AArch64::ST3WB_8B_fixed: return AArch64::ST3WB_8B_register;
- case AArch64::ST3WB_4H_fixed: return AArch64::ST3WB_4H_register;
- case AArch64::ST3WB_2S_fixed: return AArch64::ST3WB_2S_register;
- case AArch64::ST3WB_16B_fixed: return AArch64::ST3WB_16B_register;
- case AArch64::ST3WB_8H_fixed: return AArch64::ST3WB_8H_register;
- case AArch64::ST3WB_4S_fixed: return AArch64::ST3WB_4S_register;
- case AArch64::ST3WB_2D_fixed: return AArch64::ST3WB_2D_register;
-
- case AArch64::ST4WB_8B_fixed: return AArch64::ST4WB_8B_register;
- case AArch64::ST4WB_4H_fixed: return AArch64::ST4WB_4H_register;
- case AArch64::ST4WB_2S_fixed: return AArch64::ST4WB_2S_register;
- case AArch64::ST4WB_16B_fixed: return AArch64::ST4WB_16B_register;
- case AArch64::ST4WB_8H_fixed: return AArch64::ST4WB_8H_register;
- case AArch64::ST4WB_4S_fixed: return AArch64::ST4WB_4S_register;
- case AArch64::ST4WB_2D_fixed: return AArch64::ST4WB_2D_register;
-
- case AArch64::ST1x2WB_8B_fixed: return AArch64::ST1x2WB_8B_register;
- case AArch64::ST1x2WB_4H_fixed: return AArch64::ST1x2WB_4H_register;
- case AArch64::ST1x2WB_2S_fixed: return AArch64::ST1x2WB_2S_register;
- case AArch64::ST1x2WB_1D_fixed: return AArch64::ST1x2WB_1D_register;
- case AArch64::ST1x2WB_16B_fixed: return AArch64::ST1x2WB_16B_register;
- case AArch64::ST1x2WB_8H_fixed: return AArch64::ST1x2WB_8H_register;
- case AArch64::ST1x2WB_4S_fixed: return AArch64::ST1x2WB_4S_register;
- case AArch64::ST1x2WB_2D_fixed: return AArch64::ST1x2WB_2D_register;
-
- case AArch64::ST1x3WB_8B_fixed: return AArch64::ST1x3WB_8B_register;
- case AArch64::ST1x3WB_4H_fixed: return AArch64::ST1x3WB_4H_register;
- case AArch64::ST1x3WB_2S_fixed: return AArch64::ST1x3WB_2S_register;
- case AArch64::ST1x3WB_1D_fixed: return AArch64::ST1x3WB_1D_register;
- case AArch64::ST1x3WB_16B_fixed: return AArch64::ST1x3WB_16B_register;
- case AArch64::ST1x3WB_8H_fixed: return AArch64::ST1x3WB_8H_register;
- case AArch64::ST1x3WB_4S_fixed: return AArch64::ST1x3WB_4S_register;
- case AArch64::ST1x3WB_2D_fixed: return AArch64::ST1x3WB_2D_register;
-
- case AArch64::ST1x4WB_8B_fixed: return AArch64::ST1x4WB_8B_register;
- case AArch64::ST1x4WB_4H_fixed: return AArch64::ST1x4WB_4H_register;
- case AArch64::ST1x4WB_2S_fixed: return AArch64::ST1x4WB_2S_register;
- case AArch64::ST1x4WB_1D_fixed: return AArch64::ST1x4WB_1D_register;
- case AArch64::ST1x4WB_16B_fixed: return AArch64::ST1x4WB_16B_register;
- case AArch64::ST1x4WB_8H_fixed: return AArch64::ST1x4WB_8H_register;
- case AArch64::ST1x4WB_4S_fixed: return AArch64::ST1x4WB_4S_register;
- case AArch64::ST1x4WB_2D_fixed: return AArch64::ST1x4WB_2D_register;
-
- // Post-index of duplicate loads
- case AArch64::LD2R_WB_8B_fixed: return AArch64::LD2R_WB_8B_register;
- case AArch64::LD2R_WB_4H_fixed: return AArch64::LD2R_WB_4H_register;
- case AArch64::LD2R_WB_2S_fixed: return AArch64::LD2R_WB_2S_register;
- case AArch64::LD2R_WB_1D_fixed: return AArch64::LD2R_WB_1D_register;
- case AArch64::LD2R_WB_16B_fixed: return AArch64::LD2R_WB_16B_register;
- case AArch64::LD2R_WB_8H_fixed: return AArch64::LD2R_WB_8H_register;
- case AArch64::LD2R_WB_4S_fixed: return AArch64::LD2R_WB_4S_register;
- case AArch64::LD2R_WB_2D_fixed: return AArch64::LD2R_WB_2D_register;
-
- case AArch64::LD3R_WB_8B_fixed: return AArch64::LD3R_WB_8B_register;
- case AArch64::LD3R_WB_4H_fixed: return AArch64::LD3R_WB_4H_register;
- case AArch64::LD3R_WB_2S_fixed: return AArch64::LD3R_WB_2S_register;
- case AArch64::LD3R_WB_1D_fixed: return AArch64::LD3R_WB_1D_register;
- case AArch64::LD3R_WB_16B_fixed: return AArch64::LD3R_WB_16B_register;
- case AArch64::LD3R_WB_8H_fixed: return AArch64::LD3R_WB_8H_register;
- case AArch64::LD3R_WB_4S_fixed: return AArch64::LD3R_WB_4S_register;
- case AArch64::LD3R_WB_2D_fixed: return AArch64::LD3R_WB_2D_register;
-
- case AArch64::LD4R_WB_8B_fixed: return AArch64::LD4R_WB_8B_register;
- case AArch64::LD4R_WB_4H_fixed: return AArch64::LD4R_WB_4H_register;
- case AArch64::LD4R_WB_2S_fixed: return AArch64::LD4R_WB_2S_register;
- case AArch64::LD4R_WB_1D_fixed: return AArch64::LD4R_WB_1D_register;
- case AArch64::LD4R_WB_16B_fixed: return AArch64::LD4R_WB_16B_register;
- case AArch64::LD4R_WB_8H_fixed: return AArch64::LD4R_WB_8H_register;
- case AArch64::LD4R_WB_4S_fixed: return AArch64::LD4R_WB_4S_register;
- case AArch64::LD4R_WB_2D_fixed: return AArch64::LD4R_WB_2D_register;
-
- // Post-index of lane loads
- case AArch64::LD2LN_WB_B_fixed: return AArch64::LD2LN_WB_B_register;
- case AArch64::LD2LN_WB_H_fixed: return AArch64::LD2LN_WB_H_register;
- case AArch64::LD2LN_WB_S_fixed: return AArch64::LD2LN_WB_S_register;
- case AArch64::LD2LN_WB_D_fixed: return AArch64::LD2LN_WB_D_register;
-
- case AArch64::LD3LN_WB_B_fixed: return AArch64::LD3LN_WB_B_register;
- case AArch64::LD3LN_WB_H_fixed: return AArch64::LD3LN_WB_H_register;
- case AArch64::LD3LN_WB_S_fixed: return AArch64::LD3LN_WB_S_register;
- case AArch64::LD3LN_WB_D_fixed: return AArch64::LD3LN_WB_D_register;
-
- case AArch64::LD4LN_WB_B_fixed: return AArch64::LD4LN_WB_B_register;
- case AArch64::LD4LN_WB_H_fixed: return AArch64::LD4LN_WB_H_register;
- case AArch64::LD4LN_WB_S_fixed: return AArch64::LD4LN_WB_S_register;
- case AArch64::LD4LN_WB_D_fixed: return AArch64::LD4LN_WB_D_register;
-
- // Post-index of lane stores
- case AArch64::ST2LN_WB_B_fixed: return AArch64::ST2LN_WB_B_register;
- case AArch64::ST2LN_WB_H_fixed: return AArch64::ST2LN_WB_H_register;
- case AArch64::ST2LN_WB_S_fixed: return AArch64::ST2LN_WB_S_register;
- case AArch64::ST2LN_WB_D_fixed: return AArch64::ST2LN_WB_D_register;
-
- case AArch64::ST3LN_WB_B_fixed: return AArch64::ST3LN_WB_B_register;
- case AArch64::ST3LN_WB_H_fixed: return AArch64::ST3LN_WB_H_register;
- case AArch64::ST3LN_WB_S_fixed: return AArch64::ST3LN_WB_S_register;
- case AArch64::ST3LN_WB_D_fixed: return AArch64::ST3LN_WB_D_register;
-
- case AArch64::ST4LN_WB_B_fixed: return AArch64::ST4LN_WB_B_register;
- case AArch64::ST4LN_WB_H_fixed: return AArch64::ST4LN_WB_H_register;
- case AArch64::ST4LN_WB_S_fixed: return AArch64::ST4LN_WB_S_register;
- case AArch64::ST4LN_WB_D_fixed: return AArch64::ST4LN_WB_D_register;
- }
- return Opc; // If not one we handle, return it unchanged.
+ SmallVector<SDValue, 6> Ops;
+ if (isExt)
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
}
-SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating,
- unsigned NumVecs,
- const uint16_t *Opcodes) {
- assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
+SDNode *AArch64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (LD->isUnindexed())
+ return nullptr;
+ EVT VT = LD->getMemoryVT();
+ EVT DstVT = N->getValueType(0);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
+
+ // We're not doing validity checking here. That was done when checking
+ // if we should mark the load as indexed or not. We're just selecting
+ // the right instruction.
+ unsigned Opcode = 0;
+
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ bool InsertTo64 = false;
+ if (VT == MVT::i64)
+ Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
+ else if (VT == MVT::i32) {
+ if (ExtType == ISD::NON_EXTLOAD)
+ Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
+ else if (ExtType == ISD::SEXTLOAD)
+ Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
+ else {
+ Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
+ InsertTo64 = true;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::i16) {
+ if (ExtType == ISD::SEXTLOAD) {
+ if (DstVT == MVT::i64)
+ Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
+ else
+ Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
+ } else {
+ Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
+ InsertTo64 = DstVT == MVT::i64;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::i8) {
+ if (ExtType == ISD::SEXTLOAD) {
+ if (DstVT == MVT::i64)
+ Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
+ else
+ Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
+ } else {
+ Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
+ InsertTo64 = DstVT == MVT::i64;
+ // The result of the load is only i32. It's the subreg_to_reg that makes
+ // it into an i64.
+ DstVT = MVT::i32;
+ }
+ } else if (VT == MVT::f32) {
+ Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
+ } else if (VT == MVT::f64 || VT.is64BitVector()) {
+ Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
+ } else if (VT.is128BitVector()) {
+ Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
+ } else
+ return nullptr;
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
+ int OffsetVal = (int)OffsetOp->getZExtValue();
+ SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
+ SDValue Ops[] = { Base, Offset, Chain };
+ SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, DstVT,
+ MVT::Other, Ops);
+ // Either way, we're replacing the node, so tell the caller that.
+ Done = true;
+ SDValue LoadedVal = SDValue(Res, 1);
+ if (InsertTo64) {
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ LoadedVal =
+ SDValue(CurDAG->getMachineNode(
+ AArch64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64), LoadedVal, SubReg),
+ 0);
+ }
+
+ ReplaceUses(SDValue(N, 0), LoadedVal);
+ ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
+ ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
+
+ return nullptr;
+}
+SDNode *AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs,
+ unsigned Opc, unsigned SubRegIdx) {
+ SDLoc dl(N);
EVT VT = N->getValueType(0);
- unsigned OpcodeIndex;
- bool is64BitVector = VT.is64BitVector();
- switch (VT.getScalarType().getSizeInBits()) {
- case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
- case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
- case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
- case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
- default: llvm_unreachable("unhandled vector load type");
- }
- unsigned Opc = Opcodes[OpcodeIndex];
+ SDValue Chain = N->getOperand(0);
- SmallVector<SDValue, 2> Ops;
- unsigned AddrOpIdx = isUpdating ? 1 : 2;
- Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(2)); // Mem operand;
+ Ops.push_back(Chain);
- if (isUpdating) {
- SDValue Inc = N->getOperand(AddrOpIdx + 1);
- if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
- Opc = getVLDSTRegisterUpdateOpcode(Opc);
- Ops.push_back(Inc);
- }
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
- Ops.push_back(N->getOperand(0)); // Push back the Chain
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ SDValue SuperReg = SDValue(Ld, 0);
+ for (unsigned i = 0; i < NumVecs; ++i)
+ ReplaceUses(SDValue(N, i),
+ CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
- SmallVector<EVT, 3> ResTys;
- // Push back the type of return super register
- if (NumVecs == 1)
- ResTys.push_back(VT);
- else if (NumVecs == 3)
- ResTys.push_back(MVT::Untyped);
- else {
- EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
- is64BitVector ? NumVecs : NumVecs * 2);
- ResTys.push_back(ResTy);
- }
-
- if (isUpdating)
- ResTys.push_back(MVT::i64); // Type of the updated register
- ResTys.push_back(MVT::Other); // Type of the Chain
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
+ return nullptr;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
+ unsigned Opc, unsigned SubRegIdx) {
SDLoc dl(N);
- SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ EVT VT = N->getValueType(0);
+ SDValue Chain = N->getOperand(0);
- // Transfer memoperands.
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
- cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(1)); // Mem operand
+ Ops.push_back(N->getOperand(2)); // Incremental
+ Ops.push_back(Chain);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ // Update uses of write back register
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
+
+ // Update uses of vector list
+ SDValue SuperReg = SDValue(Ld, 1);
if (NumVecs == 1)
- return VLd;
-
- // If NumVecs > 1, the return result is a super register containing 2-4
- // consecutive vector registers.
- SDValue SuperReg = SDValue(VLd, 0);
-
- unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
- for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
- ReplaceUses(SDValue(N, Vec),
- CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
- // Update users of the Chain
- ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
- if (isUpdating)
- ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
-
- return NULL;
+ ReplaceUses(SDValue(N, 0), SuperReg);
+ else
+ for (unsigned i = 0; i < NumVecs; ++i)
+ ReplaceUses(SDValue(N, i),
+ CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
+
+ // Update the chain
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
+ return nullptr;
}
-SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, bool isUpdating,
- unsigned NumVecs,
- const uint16_t *Opcodes) {
- assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
+SDNode *AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ // Form a REG_SEQUENCE to force register allocation.
+ bool Is128Bit = VT.getSizeInBits() == 128;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+ SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
- unsigned AddrOpIdx = isUpdating ? 1 : 2;
- unsigned Vec0Idx = 3;
- EVT VT = N->getOperand(Vec0Idx).getValueType();
- unsigned OpcodeIndex;
- bool is64BitVector = VT.is64BitVector();
- switch (VT.getScalarType().getSizeInBits()) {
- case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
- case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
- case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
- case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
- default: llvm_unreachable("unhandled vector store type");
- }
- unsigned Opc = Opcodes[OpcodeIndex];
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + 2));
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
+
+ return St;
+}
+SDNode *AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
SmallVector<EVT, 2> ResTys;
- if (isUpdating)
- ResTys.push_back(MVT::i64);
+ ResTys.push_back(MVT::i64); // Type of the write back register
ResTys.push_back(MVT::Other); // Type for the Chain
+ // Form a REG_SEQUENCE to force register allocation.
+ bool Is128Bit = VT.getSizeInBits() == 128;
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
+ SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
+
SmallVector<SDValue, 6> Ops;
- Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
+ Ops.push_back(RegSeq);
+ Ops.push_back(N->getOperand(NumVecs + 1)); // base register
+ Ops.push_back(N->getOperand(NumVecs + 2)); // Incremental
+ Ops.push_back(N->getOperand(0)); // Chain
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
- if (isUpdating) {
- SDValue Inc = N->getOperand(AddrOpIdx + 1);
- if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
- Opc = getVLDSTRegisterUpdateOpcode(Opc);
- Ops.push_back(Inc);
+ return St;
+}
+
+/// WidenVector - Given a value in the V64 register class, produce the
+/// equivalent value in the V128 register class.
+class WidenVector {
+ SelectionDAG &DAG;
+
+public:
+ WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
+
+ SDValue operator()(SDValue V64Reg) {
+ EVT VT = V64Reg.getValueType();
+ unsigned NarrowSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
+ SDLoc DL(V64Reg);
+
+ SDValue Undef =
+ SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
+ return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
}
+};
+
+/// NarrowVector - Given a value in the V128 register class, produce the
+/// equivalent value in the V64 register class.
+static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
+ EVT VT = V128Reg.getValueType();
+ unsigned WideSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
+
+ return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
+ V128Reg);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
- SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
- N->op_begin() + Vec0Idx + NumVecs);
- SDValue SrcReg = is64BitVector ? createDTuple(Regs) : createQTuple(Regs);
- Ops.push_back(SrcReg);
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
- // Push back the Chain
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 3));
Ops.push_back(N->getOperand(0));
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ SDValue SuperReg = SDValue(Ld, 0);
+
+ EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
+ static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
+ AArch64::qsub3 };
+ for (unsigned i = 0; i < NumVecs; ++i) {
+ SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
+ if (Narrow)
+ NV = NarrowVector(NV, *CurDAG);
+ ReplaceUses(SDValue(N, i), NV);
+ }
- // Transfer memoperands.
- SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
- cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
- return VSt;
+ return Ld;
}
-SDValue
-AArch64DAGToDAGISel::getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
- SDValue Operand) {
- SDNode *Reg = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, DL,
- VT, VTD, MVT::Other,
- CurDAG->getTargetConstant(0, MVT::i64),
- Operand,
- CurDAG->getTargetConstant(AArch64::sub_64, MVT::i32));
- return SDValue(Reg, 0);
+SDNode *AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ std::vector<EVT> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Untyped);
+ ResTys.push_back(MVT::Other);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64)); // Lane Number
+ Ops.push_back(N->getOperand(NumVecs + 2)); // Base register
+ Ops.push_back(N->getOperand(NumVecs + 3)); // Incremental
+ Ops.push_back(N->getOperand(0));
+ SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Update uses of the write back register
+ ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
+
+ // Update uses of the vector list
+ SDValue SuperReg = SDValue(Ld, 1);
+ if (NumVecs == 1) {
+ ReplaceUses(SDValue(N, 0),
+ Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
+ } else {
+ EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
+ static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
+ AArch64::qsub3 };
+ for (unsigned i = 0; i < NumVecs; ++i) {
+ SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
+ SuperReg);
+ if (Narrow)
+ NV = NarrowVector(NV, *CurDAG);
+ ReplaceUses(SDValue(N, i), NV);
+ }
+ }
+
+ // Update the Chain
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
+
+ return Ld;
}
-SDNode *AArch64DAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
- unsigned NumVecs,
- const uint16_t *Opcodes) {
- assert(NumVecs >=2 && NumVecs <= 4 && "Load Dup NumVecs out-of-range");
+SDNode *AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
SDLoc dl(N);
+ EVT VT = N->getOperand(2)->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
+
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
- EVT VT = N->getValueType(0);
- unsigned OpcodeIndex;
- bool is64BitVector = VT.is64BitVector();
- switch (VT.getScalarType().getSizeInBits()) {
- case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
- case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
- case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
- case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
- default: llvm_unreachable("unhandled vector duplicate lane load type");
- }
- unsigned Opc = Opcodes[OpcodeIndex];
-
- SDValue SuperReg;
SmallVector<SDValue, 6> Ops;
- Ops.push_back(N->getOperand(1)); // Push back the Memory Address
- if (isUpdating) {
- SDValue Inc = N->getOperand(2);
- if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
- Opc = getVLDSTRegisterUpdateOpcode(Opc);
- Ops.push_back(Inc);
- }
- Ops.push_back(N->getOperand(0)); // Push back the Chain
-
- SmallVector<EVT, 3> ResTys;
- // Push back the type of return super register
- if (NumVecs == 3)
- ResTys.push_back(MVT::Untyped);
- else {
- EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
- is64BitVector ? NumVecs : NumVecs * 2);
- ResTys.push_back(ResTy);
- }
- if (isUpdating)
- ResTys.push_back(MVT::i64); // Type of the updated register
- ResTys.push_back(MVT::Other); // Type of the Chain
- SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 3));
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
// Transfer memoperands.
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
- cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
-
- SuperReg = SDValue(VLdDup, 0);
- unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
- // Update uses of each registers in super register
- for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
- ReplaceUses(SDValue(N, Vec),
- CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
- // Update uses of the Chain
- ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
- if (isUpdating)
- ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
- return NULL;
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
}
-// We only have 128-bit vector type of load/store lane instructions.
-// If it is 64-bit vector, we also select it to the 128-bit instructions.
-// Just use SUBREG_TO_REG to adapt the input to 128-bit vector and
-// EXTRACT_SUBREG to get the 64-bit vector from the 128-bit vector output.
-SDNode *AArch64DAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
- bool isUpdating, unsigned NumVecs,
- const uint16_t *Opcodes) {
- assert(NumVecs >= 2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
+SDNode *AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
+ unsigned Opc) {
SDLoc dl(N);
- unsigned AddrOpIdx = isUpdating ? 1 : 2;
- unsigned Vec0Idx = 3;
+ EVT VT = N->getOperand(2)->getValueType(0);
+ bool Narrow = VT.getSizeInBits() == 64;
- SDValue Chain = N->getOperand(0);
- unsigned Lane =
- cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
- EVT VT = N->getOperand(Vec0Idx).getValueType();
- bool is64BitVector = VT.is64BitVector();
- EVT VT64; // 64-bit Vector Type
-
- if (is64BitVector) {
- VT64 = VT;
- VT = EVT::getVectorVT(*CurDAG->getContext(), VT.getVectorElementType(),
- VT.getVectorNumElements() * 2);
- }
-
- unsigned OpcodeIndex;
- switch (VT.getScalarType().getSizeInBits()) {
- case 8: OpcodeIndex = 0; break;
- case 16: OpcodeIndex = 1; break;
- case 32: OpcodeIndex = 2; break;
- case 64: OpcodeIndex = 3; break;
- default: llvm_unreachable("unhandled vector lane load/store type");
- }
- unsigned Opc = Opcodes[OpcodeIndex];
-
- SmallVector<EVT, 3> ResTys;
- if (IsLoad) {
- // Push back the type of return super register
- if (NumVecs == 3)
- ResTys.push_back(MVT::Untyped);
- else {
- EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
- is64BitVector ? NumVecs : NumVecs * 2);
- ResTys.push_back(ResTy);
- }
- }
- if (isUpdating)
- ResTys.push_back(MVT::i64); // Type of the updated register
- ResTys.push_back(MVT::Other); // Type of Chain
- SmallVector<SDValue, 5> Ops;
- Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
- if (isUpdating) {
- SDValue Inc = N->getOperand(AddrOpIdx + 1);
- if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
- Opc = getVLDSTRegisterUpdateOpcode(Opc);
- Ops.push_back(Inc);
- }
-
- SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
- N->op_begin() + Vec0Idx + NumVecs);
- if (is64BitVector)
- for (unsigned i = 0; i < Regs.size(); i++)
- Regs[i] = getTargetSubregToReg(AArch64::sub_64, dl, VT, VT64, Regs[i]);
- SDValue SuperReg = createQTuple(Regs);
-
- Ops.push_back(SuperReg); // Source Reg
- SDValue LaneValue = CurDAG->getTargetConstant(Lane, MVT::i32);
- Ops.push_back(LaneValue);
- Ops.push_back(Chain); // Push back the Chain
-
- SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ // Form a REG_SEQUENCE to force register allocation.
+ SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
+
+ if (Narrow)
+ std::transform(Regs.begin(), Regs.end(), Regs.begin(),
+ WidenVector(*CurDAG));
+
+ SDValue RegSeq = createQTuple(Regs);
+
+ SmallVector<EVT, 2> ResTys;
+ ResTys.push_back(MVT::i64); // Type of the write back register
+ ResTys.push_back(MVT::Other);
+
+ unsigned LaneNo =
+ cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(RegSeq);
+ Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
+ Ops.push_back(N->getOperand(NumVecs + 2)); // Base Register
+ Ops.push_back(N->getOperand(NumVecs + 3)); // Incremental
+ Ops.push_back(N->getOperand(0));
+ SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Transfer memoperands.
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
- cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
- if (!IsLoad)
- return VLdLn;
-
- // Extract the subregisters.
- SuperReg = SDValue(VLdLn, 0);
- unsigned Sub0 = AArch64::qsub_0;
- // Update uses of each registers in super register
- for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
- SDValue SUB0 = CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg);
- if (is64BitVector) {
- SUB0 = CurDAG->getTargetExtractSubreg(AArch64::sub_64, dl, VT64, SUB0);
- }
- ReplaceUses(SDValue(N, Vec), SUB0);
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
+}
+
+static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
+ unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB,
+ unsigned NumberOfIgnoredLowBits,
+ bool BiggerPattern) {
+ assert(N->getOpcode() == ISD::AND &&
+ "N must be a AND operation to call this function");
+
+ EVT VT = N->getValueType(0);
+
+ // Here we can test the type of VT and return false when the type does not
+ // match, but since it is done prior to that call in the current context
+ // we turned that into an assert to avoid redundant code.
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "Type checking must have been done before calling this function");
+
+ // FIXME: simplify-demanded-bits in DAGCombine will probably have
+ // changed the AND node to a 32-bit mask operation. We'll have to
+ // undo that as part of the transform here if we want to catch all
+ // the opportunities.
+ // Currently the NumberOfIgnoredLowBits argument helps to recover
+ // form these situations when matching bigger pattern (bitfield insert).
+
+ // For unsigned extracts, check for a shift right and mask
+ uint64_t And_imm = 0;
+ if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
+ return false;
+
+ const SDNode *Op0 = N->getOperand(0).getNode();
+
+ // Because of simplify-demanded-bits in DAGCombine, the mask may have been
+ // simplified. Try to undo that
+ And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
+
+ // The immediate is a mask of the low bits iff imm & (imm+1) == 0
+ if (And_imm & (And_imm + 1))
+ return false;
+
+ bool ClampMSB = false;
+ uint64_t Srl_imm = 0;
+ // Handle the SRL + ANY_EXTEND case.
+ if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
+ isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
+ // Extend the incoming operand of the SRL to 64-bit.
+ Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
+ // Make sure to clamp the MSB so that we preserve the semantics of the
+ // original operations.
+ ClampMSB = true;
+ } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
+ isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
+ Srl_imm)) {
+ // If the shift result was truncated, we can still combine them.
+ Opd0 = Op0->getOperand(0).getOperand(0);
+
+ // Use the type of SRL node.
+ VT = Opd0->getValueType(0);
+ } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
+ Opd0 = Op0->getOperand(0);
+ } else if (BiggerPattern) {
+ // Let's pretend a 0 shift right has been performed.
+ // The resulting code will be at least as good as the original one
+ // plus it may expose more opportunities for bitfield insert pattern.
+ // FIXME: Currently we limit this to the bigger pattern, because
+ // some optimizations expect AND and not UBFM
+ Opd0 = N->getOperand(0);
+ } else
+ return false;
+
+ assert((BiggerPattern || (Srl_imm > 0 && Srl_imm < VT.getSizeInBits())) &&
+ "bad amount in shift node!");
+
+ LSB = Srl_imm;
+ MSB = Srl_imm + (VT == MVT::i32 ? CountTrailingOnes_32(And_imm)
+ : CountTrailingOnes_64(And_imm)) -
+ 1;
+ if (ClampMSB)
+ // Since we're moving the extend before the right shift operation, we need
+ // to clamp the MSB to make sure we don't shift in undefined bits instead of
+ // the zeros which would get shifted in with the original right shift
+ // operation.
+ MSB = MSB > 31 ? 31 : MSB;
+
+ Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
+ return true;
+}
+
+static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB) {
+ // We are looking for the following pattern which basically extracts a single
+ // bit from the source value and places it in the LSB of the destination
+ // value, all other bits of the destination value or set to zero:
+ //
+ // Value2 = AND Value, MaskImm
+ // SRL Value2, ShiftImm
+ //
+ // with MaskImm >> ShiftImm == 1.
+ //
+ // This gets selected into a single UBFM:
+ //
+ // UBFM Value, ShiftImm, ShiftImm
+ //
+
+ if (N->getOpcode() != ISD::SRL)
+ return false;
+
+ uint64_t And_mask = 0;
+ if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
+ return false;
+
+ Opd0 = N->getOperand(0).getOperand(0);
+
+ uint64_t Srl_imm = 0;
+ if (!isIntImmediate(N->getOperand(1), Srl_imm))
+ return false;
+
+ // Check whether we really have a one bit extract here.
+ if (And_mask >> Srl_imm == 0x1) {
+ if (N->getValueType(0) == MVT::i32)
+ Opc = AArch64::UBFMWri;
+ else
+ Opc = AArch64::UBFMXri;
+
+ LSB = MSB = Srl_imm;
+
+ return true;
}
- ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
- if (isUpdating)
- ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
- return NULL;
+
+ return false;
}
-unsigned AArch64DAGToDAGISel::getTBLOpc(bool IsExt, bool Is64Bit,
- unsigned NumOfVec) {
- assert(NumOfVec >= 1 && NumOfVec <= 4 && "VST NumVecs out-of-range");
+static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
+ unsigned &LSB, unsigned &MSB,
+ bool BiggerPattern) {
+ assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
+ "N must be a SHR/SRA operation to call this function");
- unsigned Opc = 0;
- switch (NumOfVec) {
+ EVT VT = N->getValueType(0);
+
+ // Here we can test the type of VT and return false when the type does not
+ // match, but since it is done prior to that call in the current context
+ // we turned that into an assert to avoid redundant code.
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "Type checking must have been done before calling this function");
+
+ // Check for AND + SRL doing a one bit extract.
+ if (isOneBitExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
+ return true;
+
+ // we're looking for a shift of a shift
+ uint64_t Shl_imm = 0;
+ uint64_t Trunc_bits = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ Opd0 = N->getOperand(0).getOperand(0);
+ } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
+ N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
+ // We are looking for a shift of truncate. Truncate from i64 to i32 could
+ // be considered as setting high 32 bits as zero. Our strategy here is to
+ // always generate 64bit UBFM. This consistency will help the CSE pass
+ // later find more redundancy.
+ Opd0 = N->getOperand(0).getOperand(0);
+ Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
+ VT = Opd0->getValueType(0);
+ assert(VT == MVT::i64 && "the promoted type should be i64");
+ } else if (BiggerPattern) {
+ // Let's pretend a 0 shift left has been performed.
+ // FIXME: Currently we limit this to the bigger pattern case,
+ // because some optimizations expect AND and not UBFM
+ Opd0 = N->getOperand(0);
+ } else
+ return false;
+
+ assert(Shl_imm < VT.getSizeInBits() && "bad amount in shift node!");
+ uint64_t Srl_imm = 0;
+ if (!isIntImmediate(N->getOperand(1), Srl_imm))
+ return false;
+
+ assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
+ "bad amount in shift node!");
+ // Note: The width operand is encoded as width-1.
+ unsigned Width = VT.getSizeInBits() - Trunc_bits - Srl_imm - 1;
+ int sLSB = Srl_imm - Shl_imm;
+ if (sLSB < 0)
+ return false;
+ LSB = sLSB;
+ MSB = LSB + Width;
+ // SRA requires a signed extraction
+ if (VT == MVT::i32)
+ Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
+ else
+ Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
+ return true;
+}
+
+static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
+ SDValue &Opd0, unsigned &LSB, unsigned &MSB,
+ unsigned NumberOfIgnoredLowBits = 0,
+ bool BiggerPattern = false) {
+ if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
+ return false;
+
+ switch (N->getOpcode()) {
default:
+ if (!N->isMachineOpcode())
+ return false;
break;
- case 1:
- if (IsExt)
- Opc = Is64Bit ? AArch64::TBX1_8b : AArch64::TBX1_16b;
+ case ISD::AND:
+ return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
+ NumberOfIgnoredLowBits, BiggerPattern);
+ case ISD::SRL:
+ case ISD::SRA:
+ return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
+ }
+
+ unsigned NOpc = N->getMachineOpcode();
+ switch (NOpc) {
+ default:
+ return false;
+ case AArch64::SBFMWri:
+ case AArch64::UBFMWri:
+ case AArch64::SBFMXri:
+ case AArch64::UBFMXri:
+ Opc = NOpc;
+ Opd0 = N->getOperand(0);
+ LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+ MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+ return true;
+ }
+ // Unreachable
+ return false;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
+ unsigned Opc, LSB, MSB;
+ SDValue Opd0;
+ if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
+ return nullptr;
+
+ EVT VT = N->getValueType(0);
+
+ // If the bit extract operation is 64bit but the original type is 32bit, we
+ // need to add one EXTRACT_SUBREG.
+ if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
+ SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(LSB, MVT::i64),
+ CurDAG->getTargetConstant(MSB, MVT::i64)};
+
+ SDNode *BFM = CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i64, Ops64);
+ SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
+ MachineSDNode *Node =
+ CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32,
+ SDValue(BFM, 0), SubReg);
+ return Node;
+ }
+
+ SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(LSB, VT),
+ CurDAG->getTargetConstant(MSB, VT)};
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
+}
+
+/// Does DstMask form a complementary pair with the mask provided by
+/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
+/// this asks whether DstMask zeroes precisely those bits that will be set by
+/// the other half.
+static bool isBitfieldDstMask(uint64_t DstMask, APInt BitsToBeInserted,
+ unsigned NumberOfIgnoredHighBits, EVT VT) {
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "i32 or i64 mask type expected!");
+ unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
+
+ APInt SignificantDstMask = APInt(BitWidth, DstMask);
+ APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
+
+ return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
+ (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
+}
+
+// Look for bits that will be useful for later uses.
+// A bit is consider useless as soon as it is dropped and never used
+// before it as been dropped.
+// E.g., looking for useful bit of x
+// 1. y = x & 0x7
+// 2. z = y >> 2
+// After #1, x useful bits are 0x7, then the useful bits of x, live through
+// y.
+// After #2, the useful bits of x are 0x4.
+// However, if x is used on an unpredicatable instruction, then all its bits
+// are useful.
+// E.g.
+// 1. y = x & 0x7
+// 2. z = y >> 2
+// 3. str x, [@x]
+static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
+
+static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
+ Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
+ UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+}
+
+static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
+ uint64_t Imm, uint64_t MSB,
+ unsigned Depth) {
+ // inherit the bitwidth value
+ APInt OpUsefulBits(UsefulBits);
+ OpUsefulBits = 1;
+
+ if (MSB >= Imm) {
+ OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ --OpUsefulBits;
+ // The interesting part will be in the lower part of the result
+ getUsefulBits(Op, OpUsefulBits, Depth + 1);
+ // The interesting part was starting at Imm in the argument
+ OpUsefulBits = OpUsefulBits.shl(Imm);
+ } else {
+ OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ --OpUsefulBits;
+ // The interesting part will be shifted in the result
+ OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
+ getUsefulBits(Op, OpUsefulBits, Depth + 1);
+ // The interesting part was at zero in the argument
+ OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
+ }
+
+ UsefulBits &= OpUsefulBits;
+}
+
+static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
+ uint64_t MSB =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+
+ getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
+}
+
+static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t ShiftTypeAndValue =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+ APInt Mask(UsefulBits);
+ Mask.clearAllBits();
+ Mask.flipAllBits();
+
+ if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
+ // Shift Left
+ uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
+ Mask = Mask.shl(ShiftAmt);
+ getUsefulBits(Op, Mask, Depth + 1);
+ Mask = Mask.lshr(ShiftAmt);
+ } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
+ // Shift Right
+ // We do not handle AArch64_AM::ASR, because the sign will change the
+ // number of useful bits
+ uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
+ Mask = Mask.lshr(ShiftAmt);
+ getUsefulBits(Op, Mask, Depth + 1);
+ Mask = Mask.shl(ShiftAmt);
+ } else
+ return;
+
+ UsefulBits &= Mask;
+}
+
+static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
+ unsigned Depth) {
+ uint64_t Imm =
+ cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
+ uint64_t MSB =
+ cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
+
+ if (Op.getOperand(1) == Orig)
+ return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
+
+ APInt OpUsefulBits(UsefulBits);
+ OpUsefulBits = 1;
+
+ if (MSB >= Imm) {
+ OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ --OpUsefulBits;
+ UsefulBits &= ~OpUsefulBits;
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+ } else {
+ OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ --OpUsefulBits;
+ UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
+ getUsefulBits(Op, UsefulBits, Depth + 1);
+ }
+}
+
+static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
+ SDValue Orig, unsigned Depth) {
+
+ // Users of this node should have already been instruction selected
+ // FIXME: Can we turn that into an assert?
+ if (!UserNode->isMachineOpcode())
+ return;
+
+ switch (UserNode->getMachineOpcode()) {
+ default:
+ return;
+ case AArch64::ANDSWri:
+ case AArch64::ANDSXri:
+ case AArch64::ANDWri:
+ case AArch64::ANDXri:
+ // We increment Depth only when we call the getUsefulBits
+ return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
+ Depth);
+ case AArch64::UBFMWri:
+ case AArch64::UBFMXri:
+ return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
+
+ case AArch64::ORRWrs:
+ case AArch64::ORRXrs:
+ if (UserNode->getOperand(1) != Orig)
+ return;
+ return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
+ Depth);
+ case AArch64::BFMWri:
+ case AArch64::BFMXri:
+ return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
+ }
+}
+
+static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
+ if (Depth >= 6)
+ return;
+ // Initialize UsefulBits
+ if (!Depth) {
+ unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
+ // At the beginning, assume every produced bits is useful
+ UsefulBits = APInt(Bitwidth, 0);
+ UsefulBits.flipAllBits();
+ }
+ APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
+
+ for (SDNode *Node : Op.getNode()->uses()) {
+ // A use cannot produce useful bits
+ APInt UsefulBitsForUse = APInt(UsefulBits);
+ getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
+ UsersUsefulBits |= UsefulBitsForUse;
+ }
+ // UsefulBits contains the produced bits that are meaningful for the
+ // current definition, thus a user cannot make a bit meaningful at
+ // this point
+ UsefulBits &= UsersUsefulBits;
+}
+
+/// Create a machine node performing a notional SHL of Op by ShlAmount. If
+/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
+/// 0, return Op unchanged.
+static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
+ if (ShlAmount == 0)
+ return Op;
+
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
+
+ SDNode *ShiftNode;
+ if (ShlAmount > 0) {
+ // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
+ ShiftNode = CurDAG->getMachineNode(
+ UBFMOpc, SDLoc(Op), VT, Op,
+ CurDAG->getTargetConstant(BitWidth - ShlAmount, VT),
+ CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, VT));
+ } else {
+ // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
+ assert(ShlAmount < 0 && "expected right shift");
+ int ShrAmount = -ShlAmount;
+ ShiftNode = CurDAG->getMachineNode(
+ UBFMOpc, SDLoc(Op), VT, Op, CurDAG->getTargetConstant(ShrAmount, VT),
+ CurDAG->getTargetConstant(BitWidth - 1, VT));
+ }
+
+ return SDValue(ShiftNode, 0);
+}
+
+/// Does this tree qualify as an attempt to move a bitfield into position,
+/// essentially "(and (shl VAL, N), Mask)".
+static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
+ SDValue &Src, int &ShiftAmount,
+ int &MaskWidth) {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ (void)BitWidth;
+ assert(BitWidth == 32 || BitWidth == 64);
+
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(Op, KnownZero, KnownOne);
+
+ // Non-zero in the sense that they're not provably zero, which is the key
+ // point if we want to use this value
+ uint64_t NonZeroBits = (~KnownZero).getZExtValue();
+
+ // Discard a constant AND mask if present. It's safe because the node will
+ // already have been factored into the computeKnownBits calculation above.
+ uint64_t AndImm;
+ if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
+ assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
+ Op = Op.getOperand(0);
+ }
+
+ uint64_t ShlImm;
+ if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
+ return false;
+ Op = Op.getOperand(0);
+
+ if (!isShiftedMask_64(NonZeroBits))
+ return false;
+
+ ShiftAmount = countTrailingZeros(NonZeroBits);
+ MaskWidth = CountTrailingOnes_64(NonZeroBits >> ShiftAmount);
+
+ // BFI encompasses sufficiently many nodes that it's worth inserting an extra
+ // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
+ // amount.
+ Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
+
+ return true;
+}
+
+// Given a OR operation, check if we have the following pattern
+// ubfm c, b, imm, imm2 (or something that does the same jobs, see
+// isBitfieldExtractOp)
+// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
+// countTrailingZeros(mask2) == imm2 - imm + 1
+// f = d | c
+// if yes, given reference arguments will be update so that one can replace
+// the OR instruction with:
+// f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
+static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Dst,
+ SDValue &Src, unsigned &ImmR,
+ unsigned &ImmS, SelectionDAG *CurDAG) {
+ assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
+
+ // Set Opc
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::i32)
+ Opc = AArch64::BFMWri;
+ else if (VT == MVT::i64)
+ Opc = AArch64::BFMXri;
+ else
+ return false;
+
+ // Because of simplify-demanded-bits in DAGCombine, involved masks may not
+ // have the expected shape. Try to undo that.
+ APInt UsefulBits;
+ getUsefulBits(SDValue(N, 0), UsefulBits);
+
+ unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
+ unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
+
+ // OR is commutative, check both possibilities (does llvm provide a
+ // way to do that directely, e.g., via code matcher?)
+ SDValue OrOpd1Val = N->getOperand(1);
+ SDNode *OrOpd0 = N->getOperand(0).getNode();
+ SDNode *OrOpd1 = N->getOperand(1).getNode();
+ for (int i = 0; i < 2;
+ ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
+ unsigned BFXOpc;
+ int DstLSB, Width;
+ if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
+ NumberOfIgnoredLowBits, true)) {
+ // Check that the returned opcode is compatible with the pattern,
+ // i.e., same type and zero extended (U and not S)
+ if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
+ (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
+ continue;
+
+ // Compute the width of the bitfield insertion
+ DstLSB = 0;
+ Width = ImmS - ImmR + 1;
+ // FIXME: This constraint is to catch bitfield insertion we may
+ // want to widen the pattern if we want to grab general bitfied
+ // move case
+ if (Width <= 0)
+ continue;
+
+ // If the mask on the insertee is correct, we have a BFXIL operation. We
+ // can share the ImmR and ImmS values from the already-computed UBFM.
+ } else if (isBitfieldPositioningOp(CurDAG, SDValue(OrOpd0, 0), Src,
+ DstLSB, Width)) {
+ ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
+ ImmS = Width - 1;
+ } else
+ continue;
+
+ // Check the second part of the pattern
+ EVT VT = OrOpd1->getValueType(0);
+ assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
+
+ // Compute the Known Zero for the candidate of the first operand.
+ // This allows to catch more general case than just looking for
+ // AND with imm. Indeed, simplify-demanded-bits may have removed
+ // the AND instruction because it proves it was useless.
+ APInt KnownZero, KnownOne;
+ CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);
+
+ // Check if there is enough room for the second operand to appear
+ // in the first one
+ APInt BitsToBeInserted =
+ APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);
+
+ if ((BitsToBeInserted & ~KnownZero) != 0)
+ continue;
+
+ // Set the first operand
+ uint64_t Imm;
+ if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
+ isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
+ // In that case, we can eliminate the AND
+ Dst = OrOpd1->getOperand(0);
else
- Opc = Is64Bit ? AArch64::TBL1_8b : AArch64::TBL1_16b;
+ // Maybe the AND has been removed by simplify-demanded-bits
+ // or is useful because it discards more bits
+ Dst = OrOpd1Val;
+
+ // both parts match
+ return true;
+ }
+
+ return false;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
+ if (N->getOpcode() != ISD::OR)
+ return nullptr;
+
+ unsigned Opc;
+ unsigned LSB, MSB;
+ SDValue Opd0, Opd1;
+
+ if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
+ return nullptr;
+
+ EVT VT = N->getValueType(0);
+ SDValue Ops[] = { Opd0,
+ Opd1,
+ CurDAG->getTargetConstant(LSB, VT),
+ CurDAG->getTargetConstant(MSB, VT) };
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectLIBM(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ unsigned Variant;
+ unsigned Opc;
+ unsigned FRINTXOpcs[] = { AArch64::FRINTXSr, AArch64::FRINTXDr };
+
+ if (VT == MVT::f32) {
+ Variant = 0;
+ } else if (VT == MVT::f64) {
+ Variant = 1;
+ } else
+ return nullptr; // Unrecognized argument type. Fall back on default codegen.
+
+ // Pick the FRINTX variant needed to set the flags.
+ unsigned FRINTXOpc = FRINTXOpcs[Variant];
+
+ switch (N->getOpcode()) {
+ default:
+ return nullptr; // Unrecognized libm ISD node. Fall back on default codegen.
+ case ISD::FCEIL: {
+ unsigned FRINTPOpcs[] = { AArch64::FRINTPSr, AArch64::FRINTPDr };
+ Opc = FRINTPOpcs[Variant];
break;
- case 2:
- if (IsExt)
- Opc = Is64Bit ? AArch64::TBX2_8b : AArch64::TBX2_16b;
- else
- Opc = Is64Bit ? AArch64::TBL2_8b : AArch64::TBL2_16b;
+ }
+ case ISD::FFLOOR: {
+ unsigned FRINTMOpcs[] = { AArch64::FRINTMSr, AArch64::FRINTMDr };
+ Opc = FRINTMOpcs[Variant];
break;
- case 3:
- if (IsExt)
- Opc = Is64Bit ? AArch64::TBX3_8b : AArch64::TBX3_16b;
- else
- Opc = Is64Bit ? AArch64::TBL3_8b : AArch64::TBL3_16b;
+ }
+ case ISD::FTRUNC: {
+ unsigned FRINTZOpcs[] = { AArch64::FRINTZSr, AArch64::FRINTZDr };
+ Opc = FRINTZOpcs[Variant];
break;
- case 4:
- if (IsExt)
- Opc = Is64Bit ? AArch64::TBX4_8b : AArch64::TBX4_16b;
- else
- Opc = Is64Bit ? AArch64::TBL4_8b : AArch64::TBL4_16b;
+ }
+ case ISD::FROUND: {
+ unsigned FRINTAOpcs[] = { AArch64::FRINTASr, AArch64::FRINTADr };
+ Opc = FRINTAOpcs[Variant];
break;
}
+ }
+
+ SDLoc dl(N);
+ SDValue In = N->getOperand(0);
+ SmallVector<SDValue, 2> Ops;
+ Ops.push_back(In);
+
+ if (!TM.Options.UnsafeFPMath) {
+ SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
+ Ops.push_back(SDValue(FRINTX, 1));
+ }
- return Opc;
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops);
}
-SDNode *AArch64DAGToDAGISel::SelectVTBL(SDNode *N, unsigned NumVecs,
- bool IsExt) {
- assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
- SDLoc dl(N);
+bool
+AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
+ unsigned RegWidth) {
+ APFloat FVal(0.0);
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ FVal = CN->getValueAPF();
+ else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
+ // Some otherwise illegal constants are allowed in this case.
+ if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
+ !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
+ return false;
- // Check the element of look up table is 64-bit or not
- unsigned Vec0Idx = IsExt ? 2 : 1;
- assert(!N->getOperand(Vec0Idx + 0).getValueType().is64BitVector() &&
- "The element of lookup table for vtbl and vtbx must be 128-bit");
+ ConstantPoolSDNode *CN =
+ dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
+ FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
+ } else
+ return false;
- // Check the return value type is 64-bit or not
- EVT ResVT = N->getValueType(0);
- bool is64BitRes = ResVT.is64BitVector();
+ // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
+ // is between 1 and 32 for a destination w-register, or 1 and 64 for an
+ // x-register.
+ //
+ // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
+ // want THIS_NODE to be 2^fbits. This is much easier to deal with using
+ // integers.
+ bool IsExact;
- // Create new SDValue for vector list
- SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
- N->op_begin() + Vec0Idx + NumVecs);
- SDValue TblReg = createQTuple(Regs);
- unsigned Opc = getTBLOpc(IsExt, is64BitRes, NumVecs);
+ // fbits is between 1 and 64 in the worst-case, which means the fmul
+ // could have 2^64 as an actual operand. Need 65 bits of precision.
+ APSInt IntVal(65, true);
+ FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
- SmallVector<SDValue, 3> Ops;
- if (IsExt)
- Ops.push_back(N->getOperand(1));
- Ops.push_back(TblReg);
- Ops.push_back(N->getOperand(Vec0Idx + NumVecs));
- return CurDAG->getMachineNode(Opc, dl, ResVT, Ops);
+ // N.b. isPowerOf2 also checks for > 0.
+ if (!IsExact || !IntVal.isPowerOf2()) return false;
+ unsigned FBits = IntVal.logBase2();
+
+ // Checks above should have guaranteed that we haven't lost information in
+ // finding FBits, but it must still be in range.
+ if (FBits == 0 || FBits > RegWidth) return false;
+
+ FixedPos = CurDAG->getTargetConstant(FBits, MVT::i32);
+ return true;
}
SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
- DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << "\n");
+ DEBUG(errs() << "Selecting: ");
+ DEBUG(Node->dump(CurDAG));
+ DEBUG(errs() << "\n");
+ // If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
- DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
Node->setNodeId(-1);
- return NULL;
- }
-
- switch (Node->getOpcode()) {
- case ISD::ATOMIC_LOAD_ADD:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_ADD_I8,
- AArch64::ATOMIC_LOAD_ADD_I16,
- AArch64::ATOMIC_LOAD_ADD_I32,
- AArch64::ATOMIC_LOAD_ADD_I64);
- case ISD::ATOMIC_LOAD_SUB:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_SUB_I8,
- AArch64::ATOMIC_LOAD_SUB_I16,
- AArch64::ATOMIC_LOAD_SUB_I32,
- AArch64::ATOMIC_LOAD_SUB_I64);
- case ISD::ATOMIC_LOAD_AND:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_AND_I8,
- AArch64::ATOMIC_LOAD_AND_I16,
- AArch64::ATOMIC_LOAD_AND_I32,
- AArch64::ATOMIC_LOAD_AND_I64);
- case ISD::ATOMIC_LOAD_OR:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_OR_I8,
- AArch64::ATOMIC_LOAD_OR_I16,
- AArch64::ATOMIC_LOAD_OR_I32,
- AArch64::ATOMIC_LOAD_OR_I64);
- case ISD::ATOMIC_LOAD_XOR:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_XOR_I8,
- AArch64::ATOMIC_LOAD_XOR_I16,
- AArch64::ATOMIC_LOAD_XOR_I32,
- AArch64::ATOMIC_LOAD_XOR_I64);
- case ISD::ATOMIC_LOAD_NAND:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_NAND_I8,
- AArch64::ATOMIC_LOAD_NAND_I16,
- AArch64::ATOMIC_LOAD_NAND_I32,
- AArch64::ATOMIC_LOAD_NAND_I64);
- case ISD::ATOMIC_LOAD_MIN:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_MIN_I8,
- AArch64::ATOMIC_LOAD_MIN_I16,
- AArch64::ATOMIC_LOAD_MIN_I32,
- AArch64::ATOMIC_LOAD_MIN_I64);
- case ISD::ATOMIC_LOAD_MAX:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_MAX_I8,
- AArch64::ATOMIC_LOAD_MAX_I16,
- AArch64::ATOMIC_LOAD_MAX_I32,
- AArch64::ATOMIC_LOAD_MAX_I64);
- case ISD::ATOMIC_LOAD_UMIN:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_UMIN_I8,
- AArch64::ATOMIC_LOAD_UMIN_I16,
- AArch64::ATOMIC_LOAD_UMIN_I32,
- AArch64::ATOMIC_LOAD_UMIN_I64);
- case ISD::ATOMIC_LOAD_UMAX:
- return SelectAtomic(Node,
- AArch64::ATOMIC_LOAD_UMAX_I8,
- AArch64::ATOMIC_LOAD_UMAX_I16,
- AArch64::ATOMIC_LOAD_UMAX_I32,
- AArch64::ATOMIC_LOAD_UMAX_I64);
- case ISD::ATOMIC_SWAP:
- return SelectAtomic(Node,
- AArch64::ATOMIC_SWAP_I8,
- AArch64::ATOMIC_SWAP_I16,
- AArch64::ATOMIC_SWAP_I32,
- AArch64::ATOMIC_SWAP_I64);
- case ISD::ATOMIC_CMP_SWAP:
- return SelectAtomic(Node,
- AArch64::ATOMIC_CMP_SWAP_I8,
- AArch64::ATOMIC_CMP_SWAP_I16,
- AArch64::ATOMIC_CMP_SWAP_I32,
- AArch64::ATOMIC_CMP_SWAP_I64);
- case ISD::FrameIndex: {
- int FI = cast<FrameIndexSDNode>(Node)->getIndex();
- EVT PtrTy = getTargetLowering()->getPointerTy();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI, PtrTy);
- return CurDAG->SelectNodeTo(Node, AArch64::ADDxxi_lsl0_s, PtrTy,
- TFI, CurDAG->getTargetConstant(0, PtrTy));
+ return nullptr;
}
- case ISD::Constant: {
- SDNode *ResNode = 0;
- if (cast<ConstantSDNode>(Node)->getZExtValue() == 0) {
- // XZR and WZR are probably even better than an actual move: most of the
- // time they can be folded into another instruction with *no* cost.
-
- EVT Ty = Node->getValueType(0);
- assert((Ty == MVT::i32 || Ty == MVT::i64) && "unexpected type");
- uint16_t Register = Ty == MVT::i32 ? AArch64::WZR : AArch64::XZR;
- ResNode = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
- SDLoc(Node),
- Register, Ty).getNode();
- }
- // Next best option is a move-immediate, see if we can do that.
- if (!ResNode) {
- ResNode = TrySelectToMoveImm(Node);
- }
+ // Few custom selection stuff.
+ SDNode *ResNode = nullptr;
+ EVT VT = Node->getValueType(0);
- if (ResNode)
- return ResNode;
+ switch (Node->getOpcode()) {
+ default:
+ break;
- // If even that fails we fall back to a lit-pool entry at the moment. Future
- // tuning may change this to a sequence of MOVZ/MOVN/MOVK instructions.
- ResNode = SelectToLitPool(Node);
- assert(ResNode && "We need *some* way to materialise a constant");
+ case ISD::ADD:
+ if (SDNode *I = SelectMLAV64LaneV128(Node))
+ return I;
+ break;
- // We want to continue selection at this point since the litpool access
- // generated used generic nodes for simplicity.
- ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
- Node = ResNode;
+ case ISD::LOAD: {
+ // Try to select as an indexed load. Fall through to normal processing
+ // if we can't.
+ bool Done = false;
+ SDNode *I = SelectIndexedLoad(Node, Done);
+ if (Done)
+ return I;
break;
}
- case ISD::ConstantFP: {
- if (A64Imms::isFPImm(cast<ConstantFPSDNode>(Node)->getValueAPF())) {
- // FMOV will take care of it from TableGen
- break;
- }
- SDNode *ResNode = LowerToFPLitPool(Node);
- ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
+ case ISD::SRL:
+ case ISD::AND:
+ case ISD::SRA:
+ if (SDNode *I = SelectBitfieldExtractOp(Node))
+ return I;
+ break;
- // We want to continue selection at this point since the litpool access
- // generated used generic nodes for simplicity.
- Node = ResNode;
+ case ISD::OR:
+ if (SDNode *I = SelectBitfieldInsertOp(Node))
+ return I;
break;
+
+ case ISD::EXTRACT_VECTOR_ELT: {
+ // Extracting lane zero is a special case where we can just use a plain
+ // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
+ // the rest of the compiler, especially the register allocator and copyi
+ // propagation, to reason about, so is preferred when it's possible to
+ // use it.
+ ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
+ // Bail and use the default Select() for non-zero lanes.
+ if (LaneNode->getZExtValue() != 0)
+ break;
+ // If the element type is not the same as the result type, likewise
+ // bail and use the default Select(), as there's more to do than just
+ // a cross-class COPY. This catches extracts of i8 and i16 elements
+ // since they will need an explicit zext.
+ if (VT != Node->getOperand(0).getValueType().getVectorElementType())
+ break;
+ unsigned SubReg;
+ switch (Node->getOperand(0)
+ .getValueType()
+ .getVectorElementType()
+ .getSizeInBits()) {
+ default:
+ assert(0 && "Unexpected vector element type!");
+ case 64:
+ SubReg = AArch64::dsub;
+ break;
+ case 32:
+ SubReg = AArch64::ssub;
+ break;
+ case 16: // FALLTHROUGH
+ case 8:
+ llvm_unreachable("unexpected zext-requiring extract element!");
+ }
+ SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
+ Node->getOperand(0));
+ DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
+ DEBUG(Extract->dumpr(CurDAG));
+ DEBUG(dbgs() << "\n");
+ return Extract.getNode();
}
- case AArch64ISD::NEON_LD1_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1WB_8B_fixed, AArch64::LD1WB_4H_fixed,
- AArch64::LD1WB_2S_fixed, AArch64::LD1WB_1D_fixed,
- AArch64::LD1WB_16B_fixed, AArch64::LD1WB_8H_fixed,
- AArch64::LD1WB_4S_fixed, AArch64::LD1WB_2D_fixed
- };
- return SelectVLD(Node, true, 1, Opcodes);
- }
- case AArch64ISD::NEON_LD2_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD2WB_8B_fixed, AArch64::LD2WB_4H_fixed,
- AArch64::LD2WB_2S_fixed, AArch64::LD1x2WB_1D_fixed,
- AArch64::LD2WB_16B_fixed, AArch64::LD2WB_8H_fixed,
- AArch64::LD2WB_4S_fixed, AArch64::LD2WB_2D_fixed
- };
- return SelectVLD(Node, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_LD3_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD3WB_8B_fixed, AArch64::LD3WB_4H_fixed,
- AArch64::LD3WB_2S_fixed, AArch64::LD1x3WB_1D_fixed,
- AArch64::LD3WB_16B_fixed, AArch64::LD3WB_8H_fixed,
- AArch64::LD3WB_4S_fixed, AArch64::LD3WB_2D_fixed
- };
- return SelectVLD(Node, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_LD4_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD4WB_8B_fixed, AArch64::LD4WB_4H_fixed,
- AArch64::LD4WB_2S_fixed, AArch64::LD1x4WB_1D_fixed,
- AArch64::LD4WB_16B_fixed, AArch64::LD4WB_8H_fixed,
- AArch64::LD4WB_4S_fixed, AArch64::LD4WB_2D_fixed
- };
- return SelectVLD(Node, true, 4, Opcodes);
- }
- case AArch64ISD::NEON_LD1x2_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1x2WB_8B_fixed, AArch64::LD1x2WB_4H_fixed,
- AArch64::LD1x2WB_2S_fixed, AArch64::LD1x2WB_1D_fixed,
- AArch64::LD1x2WB_16B_fixed, AArch64::LD1x2WB_8H_fixed,
- AArch64::LD1x2WB_4S_fixed, AArch64::LD1x2WB_2D_fixed
- };
- return SelectVLD(Node, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_LD1x3_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1x3WB_8B_fixed, AArch64::LD1x3WB_4H_fixed,
- AArch64::LD1x3WB_2S_fixed, AArch64::LD1x3WB_1D_fixed,
- AArch64::LD1x3WB_16B_fixed, AArch64::LD1x3WB_8H_fixed,
- AArch64::LD1x3WB_4S_fixed, AArch64::LD1x3WB_2D_fixed
- };
- return SelectVLD(Node, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_LD1x4_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1x4WB_8B_fixed, AArch64::LD1x4WB_4H_fixed,
- AArch64::LD1x4WB_2S_fixed, AArch64::LD1x4WB_1D_fixed,
- AArch64::LD1x4WB_16B_fixed, AArch64::LD1x4WB_8H_fixed,
- AArch64::LD1x4WB_4S_fixed, AArch64::LD1x4WB_2D_fixed
- };
- return SelectVLD(Node, true, 4, Opcodes);
- }
- case AArch64ISD::NEON_ST1_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1WB_8B_fixed, AArch64::ST1WB_4H_fixed,
- AArch64::ST1WB_2S_fixed, AArch64::ST1WB_1D_fixed,
- AArch64::ST1WB_16B_fixed, AArch64::ST1WB_8H_fixed,
- AArch64::ST1WB_4S_fixed, AArch64::ST1WB_2D_fixed
- };
- return SelectVST(Node, true, 1, Opcodes);
- }
- case AArch64ISD::NEON_ST2_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST2WB_8B_fixed, AArch64::ST2WB_4H_fixed,
- AArch64::ST2WB_2S_fixed, AArch64::ST1x2WB_1D_fixed,
- AArch64::ST2WB_16B_fixed, AArch64::ST2WB_8H_fixed,
- AArch64::ST2WB_4S_fixed, AArch64::ST2WB_2D_fixed
- };
- return SelectVST(Node, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_ST3_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST3WB_8B_fixed, AArch64::ST3WB_4H_fixed,
- AArch64::ST3WB_2S_fixed, AArch64::ST1x3WB_1D_fixed,
- AArch64::ST3WB_16B_fixed, AArch64::ST3WB_8H_fixed,
- AArch64::ST3WB_4S_fixed, AArch64::ST3WB_2D_fixed
- };
- return SelectVST(Node, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_ST4_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST4WB_8B_fixed, AArch64::ST4WB_4H_fixed,
- AArch64::ST4WB_2S_fixed, AArch64::ST1x4WB_1D_fixed,
- AArch64::ST4WB_16B_fixed, AArch64::ST4WB_8H_fixed,
- AArch64::ST4WB_4S_fixed, AArch64::ST4WB_2D_fixed
- };
- return SelectVST(Node, true, 4, Opcodes);
- }
- case AArch64ISD::NEON_LD2DUP: {
- static const uint16_t Opcodes[] = {
- AArch64::LD2R_8B, AArch64::LD2R_4H, AArch64::LD2R_2S,
- AArch64::LD2R_1D, AArch64::LD2R_16B, AArch64::LD2R_8H,
- AArch64::LD2R_4S, AArch64::LD2R_2D
- };
- return SelectVLDDup(Node, false, 2, Opcodes);
- }
- case AArch64ISD::NEON_LD3DUP: {
- static const uint16_t Opcodes[] = {
- AArch64::LD3R_8B, AArch64::LD3R_4H, AArch64::LD3R_2S,
- AArch64::LD3R_1D, AArch64::LD3R_16B, AArch64::LD3R_8H,
- AArch64::LD3R_4S, AArch64::LD3R_2D
- };
- return SelectVLDDup(Node, false, 3, Opcodes);
- }
- case AArch64ISD::NEON_LD4DUP: {
- static const uint16_t Opcodes[] = {
- AArch64::LD4R_8B, AArch64::LD4R_4H, AArch64::LD4R_2S,
- AArch64::LD4R_1D, AArch64::LD4R_16B, AArch64::LD4R_8H,
- AArch64::LD4R_4S, AArch64::LD4R_2D
- };
- return SelectVLDDup(Node, false, 4, Opcodes);
- }
- case AArch64ISD::NEON_LD2DUP_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD2R_WB_8B_fixed, AArch64::LD2R_WB_4H_fixed,
- AArch64::LD2R_WB_2S_fixed, AArch64::LD2R_WB_1D_fixed,
- AArch64::LD2R_WB_16B_fixed, AArch64::LD2R_WB_8H_fixed,
- AArch64::LD2R_WB_4S_fixed, AArch64::LD2R_WB_2D_fixed
- };
- return SelectVLDDup(Node, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_LD3DUP_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD3R_WB_8B_fixed, AArch64::LD3R_WB_4H_fixed,
- AArch64::LD3R_WB_2S_fixed, AArch64::LD3R_WB_1D_fixed,
- AArch64::LD3R_WB_16B_fixed, AArch64::LD3R_WB_8H_fixed,
- AArch64::LD3R_WB_4S_fixed, AArch64::LD3R_WB_2D_fixed
- };
- return SelectVLDDup(Node, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_LD4DUP_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD4R_WB_8B_fixed, AArch64::LD4R_WB_4H_fixed,
- AArch64::LD4R_WB_2S_fixed, AArch64::LD4R_WB_1D_fixed,
- AArch64::LD4R_WB_16B_fixed, AArch64::LD4R_WB_8H_fixed,
- AArch64::LD4R_WB_4S_fixed, AArch64::LD4R_WB_2D_fixed
- };
- return SelectVLDDup(Node, true, 4, Opcodes);
- }
- case AArch64ISD::NEON_LD2LN_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD2LN_WB_B_fixed, AArch64::LD2LN_WB_H_fixed,
- AArch64::LD2LN_WB_S_fixed, AArch64::LD2LN_WB_D_fixed
- };
- return SelectVLDSTLane(Node, true, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_LD3LN_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD3LN_WB_B_fixed, AArch64::LD3LN_WB_H_fixed,
- AArch64::LD3LN_WB_S_fixed, AArch64::LD3LN_WB_D_fixed
- };
- return SelectVLDSTLane(Node, true, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_LD4LN_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::LD4LN_WB_B_fixed, AArch64::LD4LN_WB_H_fixed,
- AArch64::LD4LN_WB_S_fixed, AArch64::LD4LN_WB_D_fixed
- };
- return SelectVLDSTLane(Node, true, true, 4, Opcodes);
- }
- case AArch64ISD::NEON_ST2LN_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST2LN_WB_B_fixed, AArch64::ST2LN_WB_H_fixed,
- AArch64::ST2LN_WB_S_fixed, AArch64::ST2LN_WB_D_fixed
- };
- return SelectVLDSTLane(Node, false, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_ST3LN_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST3LN_WB_B_fixed, AArch64::ST3LN_WB_H_fixed,
- AArch64::ST3LN_WB_S_fixed, AArch64::ST3LN_WB_D_fixed
- };
- return SelectVLDSTLane(Node, false, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_ST4LN_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST4LN_WB_B_fixed, AArch64::ST4LN_WB_H_fixed,
- AArch64::ST4LN_WB_S_fixed, AArch64::ST4LN_WB_D_fixed
- };
- return SelectVLDSTLane(Node, false, true, 4, Opcodes);
- }
- case AArch64ISD::NEON_ST1x2_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1x2WB_8B_fixed, AArch64::ST1x2WB_4H_fixed,
- AArch64::ST1x2WB_2S_fixed, AArch64::ST1x2WB_1D_fixed,
- AArch64::ST1x2WB_16B_fixed, AArch64::ST1x2WB_8H_fixed,
- AArch64::ST1x2WB_4S_fixed, AArch64::ST1x2WB_2D_fixed
- };
- return SelectVST(Node, true, 2, Opcodes);
- }
- case AArch64ISD::NEON_ST1x3_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1x3WB_8B_fixed, AArch64::ST1x3WB_4H_fixed,
- AArch64::ST1x3WB_2S_fixed, AArch64::ST1x3WB_1D_fixed,
- AArch64::ST1x3WB_16B_fixed, AArch64::ST1x3WB_8H_fixed,
- AArch64::ST1x3WB_4S_fixed, AArch64::ST1x3WB_2D_fixed
- };
- return SelectVST(Node, true, 3, Opcodes);
- }
- case AArch64ISD::NEON_ST1x4_UPD: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1x4WB_8B_fixed, AArch64::ST1x4WB_4H_fixed,
- AArch64::ST1x4WB_2S_fixed, AArch64::ST1x4WB_1D_fixed,
- AArch64::ST1x4WB_16B_fixed, AArch64::ST1x4WB_8H_fixed,
- AArch64::ST1x4WB_4S_fixed, AArch64::ST1x4WB_2D_fixed
- };
- return SelectVST(Node, true, 4, Opcodes);
- }
- case ISD::INTRINSIC_WO_CHAIN: {
- unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
- bool IsExt = false;
- switch (IntNo) {
- default:
- break;
- case Intrinsic::aarch64_neon_vtbx1:
- IsExt = true;
- case Intrinsic::aarch64_neon_vtbl1:
- return SelectVTBL(Node, 1, IsExt);
- case Intrinsic::aarch64_neon_vtbx2:
- IsExt = true;
- case Intrinsic::aarch64_neon_vtbl2:
- return SelectVTBL(Node, 2, IsExt);
- case Intrinsic::aarch64_neon_vtbx3:
- IsExt = true;
- case Intrinsic::aarch64_neon_vtbl3:
- return SelectVTBL(Node, 3, IsExt);
- case Intrinsic::aarch64_neon_vtbx4:
- IsExt = true;
- case Intrinsic::aarch64_neon_vtbl4:
- return SelectVTBL(Node, 4, IsExt);
+ case ISD::Constant: {
+ // Materialize zero constants as copies from WZR/XZR. This allows
+ // the coalescer to propagate these into other instructions.
+ ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
+ if (ConstNode->isNullValue()) {
+ if (VT == MVT::i32)
+ return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
+ AArch64::WZR, MVT::i32).getNode();
+ else if (VT == MVT::i64)
+ return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
+ AArch64::XZR, MVT::i64).getNode();
}
break;
}
- case ISD::INTRINSIC_VOID:
+
+ case ISD::FrameIndex: {
+ // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
+ int FI = cast<FrameIndexSDNode>(Node)->getIndex();
+ unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
+ const TargetLowering *TLI = getTargetLowering();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ CurDAG->getTargetConstant(Shifter, MVT::i32) };
+ return CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
+ }
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
switch (IntNo) {
default:
break;
- case Intrinsic::arm_neon_vld1: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1_8B, AArch64::LD1_4H, AArch64::LD1_2S, AArch64::LD1_1D,
- AArch64::LD1_16B, AArch64::LD1_8H, AArch64::LD1_4S, AArch64::LD1_2D
- };
- return SelectVLD(Node, false, 1, Opcodes);
- }
- case Intrinsic::arm_neon_vld2: {
- static const uint16_t Opcodes[] = {
- AArch64::LD2_8B, AArch64::LD2_4H, AArch64::LD2_2S, AArch64::LD1x2_1D,
- AArch64::LD2_16B, AArch64::LD2_8H, AArch64::LD2_4S, AArch64::LD2_2D
- };
- return SelectVLD(Node, false, 2, Opcodes);
- }
- case Intrinsic::arm_neon_vld3: {
- static const uint16_t Opcodes[] = {
- AArch64::LD3_8B, AArch64::LD3_4H, AArch64::LD3_2S, AArch64::LD1x3_1D,
- AArch64::LD3_16B, AArch64::LD3_8H, AArch64::LD3_4S, AArch64::LD3_2D
- };
- return SelectVLD(Node, false, 3, Opcodes);
+ case Intrinsic::aarch64_ldaxp:
+ case Intrinsic::aarch64_ldxp: {
+ unsigned Op =
+ IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
+ SDValue MemAddr = Node->getOperand(2);
+ SDLoc DL(Node);
+ SDValue Chain = Node->getOperand(0);
+
+ SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
+ MVT::Other, MemAddr, Chain);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
+ cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
+ return Ld;
}
- case Intrinsic::arm_neon_vld4: {
- static const uint16_t Opcodes[] = {
- AArch64::LD4_8B, AArch64::LD4_4H, AArch64::LD4_2S, AArch64::LD1x4_1D,
- AArch64::LD4_16B, AArch64::LD4_8H, AArch64::LD4_4S, AArch64::LD4_2D
- };
- return SelectVLD(Node, false, 4, Opcodes);
+ case Intrinsic::aarch64_stlxp:
+ case Intrinsic::aarch64_stxp: {
+ unsigned Op =
+ IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
+ SDLoc DL(Node);
+ SDValue Chain = Node->getOperand(0);
+ SDValue ValLo = Node->getOperand(2);
+ SDValue ValHi = Node->getOperand(3);
+ SDValue MemAddr = Node->getOperand(4);
+
+ // Place arguments in the right order.
+ SmallVector<SDValue, 7> Ops;
+ Ops.push_back(ValLo);
+ Ops.push_back(ValHi);
+ Ops.push_back(MemAddr);
+ Ops.push_back(Chain);
+
+ SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
+ cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
+
+ return St;
}
- case Intrinsic::aarch64_neon_vld1x2: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1x2_8B, AArch64::LD1x2_4H, AArch64::LD1x2_2S,
- AArch64::LD1x2_1D, AArch64::LD1x2_16B, AArch64::LD1x2_8H,
- AArch64::LD1x2_4S, AArch64::LD1x2_2D
- };
- return SelectVLD(Node, false, 2, Opcodes);
- }
- case Intrinsic::aarch64_neon_vld1x3: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1x3_8B, AArch64::LD1x3_4H, AArch64::LD1x3_2S,
- AArch64::LD1x3_1D, AArch64::LD1x3_16B, AArch64::LD1x3_8H,
- AArch64::LD1x3_4S, AArch64::LD1x3_2D
- };
- return SelectVLD(Node, false, 3, Opcodes);
- }
- case Intrinsic::aarch64_neon_vld1x4: {
- static const uint16_t Opcodes[] = {
- AArch64::LD1x4_8B, AArch64::LD1x4_4H, AArch64::LD1x4_2S,
- AArch64::LD1x4_1D, AArch64::LD1x4_16B, AArch64::LD1x4_8H,
- AArch64::LD1x4_4S, AArch64::LD1x4_2D
- };
- return SelectVLD(Node, false, 4, Opcodes);
- }
- case Intrinsic::arm_neon_vst1: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1_8B, AArch64::ST1_4H, AArch64::ST1_2S, AArch64::ST1_1D,
- AArch64::ST1_16B, AArch64::ST1_8H, AArch64::ST1_4S, AArch64::ST1_2D
- };
- return SelectVST(Node, false, 1, Opcodes);
- }
- case Intrinsic::arm_neon_vst2: {
- static const uint16_t Opcodes[] = {
- AArch64::ST2_8B, AArch64::ST2_4H, AArch64::ST2_2S, AArch64::ST1x2_1D,
- AArch64::ST2_16B, AArch64::ST2_8H, AArch64::ST2_4S, AArch64::ST2_2D
- };
- return SelectVST(Node, false, 2, Opcodes);
+ case Intrinsic::aarch64_neon_ld1x2:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld1x3:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld1x4:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld2:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld3:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld4:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld2r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld3r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld4r:
+ if (VT == MVT::v8i8)
+ return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
+ break;
+ case Intrinsic::aarch64_neon_ld2lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 2, AArch64::LD2i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 2, AArch64::LD2i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 2, AArch64::LD2i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 2, AArch64::LD2i64);
+ break;
+ case Intrinsic::aarch64_neon_ld3lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 3, AArch64::LD3i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 3, AArch64::LD3i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 3, AArch64::LD3i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 3, AArch64::LD3i64);
+ break;
+ case Intrinsic::aarch64_neon_ld4lane:
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectLoadLane(Node, 4, AArch64::LD4i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectLoadLane(Node, 4, AArch64::LD4i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectLoadLane(Node, 4, AArch64::LD4i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectLoadLane(Node, 4, AArch64::LD4i64);
+ break;
}
- case Intrinsic::arm_neon_vst3: {
- static const uint16_t Opcodes[] = {
- AArch64::ST3_8B, AArch64::ST3_4H, AArch64::ST3_2S, AArch64::ST1x3_1D,
- AArch64::ST3_16B, AArch64::ST3_8H, AArch64::ST3_4S, AArch64::ST3_2D
- };
- return SelectVST(Node, false, 3, Opcodes);
+ } break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_tbl2:
+ return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBLv8i8Two
+ : AArch64::TBLv16i8Two,
+ false);
+ case Intrinsic::aarch64_neon_tbl3:
+ return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
+ : AArch64::TBLv16i8Three,
+ false);
+ case Intrinsic::aarch64_neon_tbl4:
+ return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
+ : AArch64::TBLv16i8Four,
+ false);
+ case Intrinsic::aarch64_neon_tbx2:
+ return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBXv8i8Two
+ : AArch64::TBXv16i8Two,
+ true);
+ case Intrinsic::aarch64_neon_tbx3:
+ return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
+ : AArch64::TBXv16i8Three,
+ true);
+ case Intrinsic::aarch64_neon_tbx4:
+ return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
+ : AArch64::TBXv16i8Four,
+ true);
+ case Intrinsic::aarch64_neon_smull:
+ case Intrinsic::aarch64_neon_umull:
+ if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
+ return N;
+ break;
}
- case Intrinsic::arm_neon_vst4: {
- static const uint16_t Opcodes[] = {
- AArch64::ST4_8B, AArch64::ST4_4H, AArch64::ST4_2S, AArch64::ST1x4_1D,
- AArch64::ST4_16B, AArch64::ST4_8H, AArch64::ST4_4S, AArch64::ST4_2D
- };
- return SelectVST(Node, false, 4, Opcodes);
+ break;
+ }
+ case ISD::INTRINSIC_VOID: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ if (Node->getNumOperands() >= 3)
+ VT = Node->getOperand(2)->getValueType(0);
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_st1x2: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 2, AArch64::ST1Twov8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 2, AArch64::ST1Twov16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 2, AArch64::ST1Twov4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 2, AArch64::ST1Twov8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 2, AArch64::ST1Twov2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 2, AArch64::ST1Twov4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 2, AArch64::ST1Twov2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 2, AArch64::ST1Twov1d);
+ break;
}
- case Intrinsic::aarch64_neon_vst1x2: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1x2_8B, AArch64::ST1x2_4H, AArch64::ST1x2_2S,
- AArch64::ST1x2_1D, AArch64::ST1x2_16B, AArch64::ST1x2_8H,
- AArch64::ST1x2_4S, AArch64::ST1x2_2D
- };
- return SelectVST(Node, false, 2, Opcodes);
+ case Intrinsic::aarch64_neon_st1x3: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 3, AArch64::ST1Threev8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 3, AArch64::ST1Threev16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 3, AArch64::ST1Threev4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 3, AArch64::ST1Threev8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 3, AArch64::ST1Threev2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 3, AArch64::ST1Threev4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 3, AArch64::ST1Threev2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 3, AArch64::ST1Threev1d);
+ break;
}
- case Intrinsic::aarch64_neon_vst1x3: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1x3_8B, AArch64::ST1x3_4H, AArch64::ST1x3_2S,
- AArch64::ST1x3_1D, AArch64::ST1x3_16B, AArch64::ST1x3_8H,
- AArch64::ST1x3_4S, AArch64::ST1x3_2D
- };
- return SelectVST(Node, false, 3, Opcodes);
+ case Intrinsic::aarch64_neon_st1x4: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 4, AArch64::ST1Fourv8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 4, AArch64::ST1Fourv16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 4, AArch64::ST1Fourv4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 4, AArch64::ST1Fourv8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 4, AArch64::ST1Fourv2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 4, AArch64::ST1Fourv4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 4, AArch64::ST1Fourv2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 4, AArch64::ST1Fourv1d);
+ break;
}
- case Intrinsic::aarch64_neon_vst1x4: {
- static const uint16_t Opcodes[] = {
- AArch64::ST1x4_8B, AArch64::ST1x4_4H, AArch64::ST1x4_2S,
- AArch64::ST1x4_1D, AArch64::ST1x4_16B, AArch64::ST1x4_8H,
- AArch64::ST1x4_4S, AArch64::ST1x4_2D
- };
- return SelectVST(Node, false, 4, Opcodes);
+ case Intrinsic::aarch64_neon_st2: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 2, AArch64::ST2Twov8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 2, AArch64::ST2Twov16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 2, AArch64::ST2Twov4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 2, AArch64::ST2Twov8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 2, AArch64::ST2Twov2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 2, AArch64::ST2Twov4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 2, AArch64::ST2Twov2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 2, AArch64::ST1Twov1d);
+ break;
}
- case Intrinsic::arm_neon_vld2lane: {
- static const uint16_t Opcodes[] = {
- AArch64::LD2LN_B, AArch64::LD2LN_H, AArch64::LD2LN_S, AArch64::LD2LN_D
- };
- return SelectVLDSTLane(Node, true, false, 2, Opcodes);
+ case Intrinsic::aarch64_neon_st3: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 3, AArch64::ST3Threev8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 3, AArch64::ST3Threev16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 3, AArch64::ST3Threev4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 3, AArch64::ST3Threev8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 3, AArch64::ST3Threev2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 3, AArch64::ST3Threev4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 3, AArch64::ST3Threev2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 3, AArch64::ST1Threev1d);
+ break;
}
- case Intrinsic::arm_neon_vld3lane: {
- static const uint16_t Opcodes[] = {
- AArch64::LD3LN_B, AArch64::LD3LN_H, AArch64::LD3LN_S, AArch64::LD3LN_D
- };
- return SelectVLDSTLane(Node, true, false, 3, Opcodes);
+ case Intrinsic::aarch64_neon_st4: {
+ if (VT == MVT::v8i8)
+ return SelectStore(Node, 4, AArch64::ST4Fourv8b);
+ else if (VT == MVT::v16i8)
+ return SelectStore(Node, 4, AArch64::ST4Fourv16b);
+ else if (VT == MVT::v4i16)
+ return SelectStore(Node, 4, AArch64::ST4Fourv4h);
+ else if (VT == MVT::v8i16)
+ return SelectStore(Node, 4, AArch64::ST4Fourv8h);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectStore(Node, 4, AArch64::ST4Fourv2s);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectStore(Node, 4, AArch64::ST4Fourv4s);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectStore(Node, 4, AArch64::ST4Fourv2d);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectStore(Node, 4, AArch64::ST1Fourv1d);
+ break;
}
- case Intrinsic::arm_neon_vld4lane: {
- static const uint16_t Opcodes[] = {
- AArch64::LD4LN_B, AArch64::LD4LN_H, AArch64::LD4LN_S, AArch64::LD4LN_D
- };
- return SelectVLDSTLane(Node, true, false, 4, Opcodes);
+ case Intrinsic::aarch64_neon_st2lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 2, AArch64::ST2i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 2, AArch64::ST2i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 2, AArch64::ST2i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 2, AArch64::ST2i64);
+ break;
}
- case Intrinsic::arm_neon_vst2lane: {
- static const uint16_t Opcodes[] = {
- AArch64::ST2LN_B, AArch64::ST2LN_H, AArch64::ST2LN_S, AArch64::ST2LN_D
- };
- return SelectVLDSTLane(Node, false, false, 2, Opcodes);
+ case Intrinsic::aarch64_neon_st3lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 3, AArch64::ST3i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 3, AArch64::ST3i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 3, AArch64::ST3i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 3, AArch64::ST3i64);
+ break;
}
- case Intrinsic::arm_neon_vst3lane: {
- static const uint16_t Opcodes[] = {
- AArch64::ST3LN_B, AArch64::ST3LN_H, AArch64::ST3LN_S, AArch64::ST3LN_D
- };
- return SelectVLDSTLane(Node, false, false, 3, Opcodes);
+ case Intrinsic::aarch64_neon_st4lane: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectStoreLane(Node, 4, AArch64::ST4i8);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectStoreLane(Node, 4, AArch64::ST4i16);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectStoreLane(Node, 4, AArch64::ST4i32);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectStoreLane(Node, 4, AArch64::ST4i64);
+ break;
}
- case Intrinsic::arm_neon_vst4lane: {
- static const uint16_t Opcodes[] = {
- AArch64::ST4LN_B, AArch64::ST4LN_H, AArch64::ST4LN_S, AArch64::ST4LN_D
- };
- return SelectVLDSTLane(Node, false, false, 4, Opcodes);
}
- } // End of switch IntNo
+ }
+ case AArch64ISD::LD2post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD3post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD4post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1x2post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1x3post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1x4post: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD2DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD3DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD4DUPpost: {
+ if (VT == MVT::v8i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
+ else if (VT == MVT::v16i8)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
+ else if (VT == MVT::v4i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
+ else if (VT == MVT::v8i16)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
+ break;
+ }
+ case AArch64ISD::LD1LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
+ break;
+ }
+ case AArch64ISD::LD2LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
+ break;
+ }
+ case AArch64ISD::LD3LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
+ break;
+ }
+ case AArch64ISD::LD4LANEpost: {
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
+ break;
+ }
+ case AArch64ISD::ST2post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
+ break;
+ }
+ case AArch64ISD::ST3post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
+ break;
+ }
+ case AArch64ISD::ST4post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
+ break;
+ }
+ case AArch64ISD::ST1x2post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
+ break;
+ }
+ case AArch64ISD::ST1x3post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
+ break;
+ }
+ case AArch64ISD::ST1x4post: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v8i8)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
+ else if (VT == MVT::v16i8)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
+ else if (VT == MVT::v4i16)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
+ else if (VT == MVT::v8i16)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
+ else if (VT == MVT::v2i32 || VT == MVT::v2f32)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
+ else if (VT == MVT::v1i64 || VT == MVT::v1f64)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
+ break;
+ }
+ case AArch64ISD::ST2LANEpost: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
+ break;
+ }
+ case AArch64ISD::ST3LANEpost: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
+ break;
+ }
+ case AArch64ISD::ST4LANEpost: {
+ VT = Node->getOperand(1).getValueType();
+ if (VT == MVT::v16i8 || VT == MVT::v8i8)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
+ else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
+ VT == MVT::v2f32)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
+ else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
+ VT == MVT::v1f64)
+ return SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
break;
- } // End of case ISD::INTRINSIC_VOID and :ISD::INTRINSIC_W_CHAIN
- default:
- break; // Let generic code handle it
}
- SDNode *ResNode = SelectCode(Node);
+ case ISD::FCEIL:
+ case ISD::FFLOOR:
+ case ISD::FTRUNC:
+ case ISD::FROUND:
+ if (SDNode *I = SelectLIBM(Node))
+ return I;
+ break;
+ }
- DEBUG(dbgs() << "=> ";
- if (ResNode == NULL || ResNode == Node)
- Node->dump(CurDAG);
- else
- ResNode->dump(CurDAG);
- dbgs() << "\n");
+ // Select the default instruction
+ ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ");
+ if (ResNode == nullptr || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
+ else
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(errs() << "\n");
return ResNode;
}
-/// This pass converts a legalized DAG into a AArch64-specific DAG, ready for
-/// instruction scheduling.
-FunctionPass *llvm::createAArch64ISelDAG(AArch64TargetMachine &TM,
+/// createAArch64ISelDag - This pass converts a legalized DAG into a
+/// AArch64-specific DAG, ready for instruction scheduling.
+FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new AArch64DAGToDAGISel(TM, OptLevel);
}