aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM/ARMAsmPrinter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM/ARMAsmPrinter.cpp')
-rw-r--r--lib/Target/ARM/ARMAsmPrinter.cpp278
1 files changed, 194 insertions, 84 deletions
diff --git a/lib/Target/ARM/ARMAsmPrinter.cpp b/lib/Target/ARM/ARMAsmPrinter.cpp
index 695fd4d..2544a01 100644
--- a/lib/Target/ARM/ARMAsmPrinter.cpp
+++ b/lib/Target/ARM/ARMAsmPrinter.cpp
@@ -16,6 +16,7 @@
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMFPUName.h"
+#include "ARMArchExtName.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
@@ -57,6 +58,11 @@ using namespace llvm;
#define DEBUG_TYPE "asm-printer"
+ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
+ std::unique_ptr<MCStreamer> Streamer)
+ : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
+ InConstantPool(false) {}
+
void ARMAsmPrinter::EmitFunctionBodyEnd() {
// Make sure to terminate any constant pools that were at the end
// of the function.
@@ -76,8 +82,7 @@ void ARMAsmPrinter::EmitFunctionEntryLabel() {
}
void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
- uint64_t Size =
- TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(CV->getType());
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
assert(Size && "C++ constructor pointer had zero size!");
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
@@ -99,6 +104,7 @@ void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
+ Subtarget = &MF.getSubtarget<ARMSubtarget>();
SetupMachineFunction(MF);
@@ -120,6 +126,23 @@ bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Emit the rest of the function body.
EmitFunctionBody();
+ // If we need V4T thumb mode Register Indirect Jump pads, emit them.
+ // These are created per function, rather than per TU, since it's
+ // relatively easy to exceed the thumb branch range within a TU.
+ if (! ThumbIndirectPads.empty()) {
+ OutStreamer.EmitAssemblerFlag(MCAF_Code16);
+ EmitAlignment(1);
+ for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
+ OutStreamer.EmitLabel(ThumbIndirectPads[i].second);
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
+ .addReg(ThumbIndirectPads[i].first)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ }
+ ThumbIndirectPads.clear();
+ }
+
// We didn't modify anything.
return false;
}
@@ -183,7 +206,7 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
- const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
+ const DataLayout *DL = TM.getDataLayout();
SmallString<60> Name;
raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
@@ -192,7 +215,7 @@ GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
- const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
+ const DataLayout *DL = TM.getDataLayout();
SmallString<60> Name;
raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
@@ -414,7 +437,8 @@ void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
- if (Subtarget->isTargetMachO()) {
+ Triple TT(TM.getTargetTriple());
+ if (TT.isOSBinFormatMachO()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
@@ -477,10 +501,17 @@ void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
- if (Subtarget->isTargetELF())
+ if (TT.isOSBinFormatELF())
emitAttributes();
- if (!M.getModuleInlineAsm().empty() && Subtarget->isThumb())
+ // Use the triple's architecture and subarchitecture to determine
+ // if we're thumb for the purposes of the top level code16 assembler
+ // flag.
+ bool isThumb = TT.getArch() == Triple::thumb ||
+ TT.getArch() == Triple::thumbeb ||
+ TT.getSubArch() == Triple::ARMSubArch_v7m ||
+ TT.getSubArch() == Triple::ARMSubArch_v6m;
+ if (!M.getModuleInlineAsm().empty() && isThumb)
OutStreamer.EmitAssemblerFlag(MCAF_Code16);
}
@@ -509,7 +540,8 @@ emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
- if (Subtarget->isTargetMachO()) {
+ Triple TT(TM.getTargetTriple());
+ if (TT.isOSBinFormatMachO()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
@@ -552,7 +584,7 @@ void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
}
// Emit a .data.rel section containing any stubs that were created.
- if (Subtarget->isTargetELF()) {
+ if (TT.isOSBinFormatELF()) {
const TargetLoweringObjectFileELF &TLOFELF =
static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
@@ -562,7 +594,7 @@ void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
- const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
+ const DataLayout *TD = TM.getDataLayout();
for (auto &stub: Stubs) {
OutStreamer.EmitLabel(stub.first);
@@ -612,69 +644,96 @@ void ARMAsmPrinter::emitAttributes() {
MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
- ATS.switchVendor("aeabi");
+ ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
- std::string CPUString = Subtarget->getCPUString();
+ ATS.switchVendor("aeabi");
- // FIXME: remove krait check when GNU tools support krait cpu
- if (CPUString != "generic" && CPUString != "krait")
- ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
+ // Compute ARM ELF Attributes based on the default subtarget that
+ // we'd have constructed. The existing ARM behavior isn't LTO clean
+ // anyhow.
+ // FIXME: For ifunc related functions we could iterate over and look
+ // for a feature string that doesn't match the default one.
+ StringRef TT = TM.getTargetTriple();
+ StringRef CPU = TM.getTargetCPU();
+ StringRef FS = TM.getTargetFeatureString();
+ std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
+ if (!FS.empty()) {
+ if (!ArchFS.empty())
+ ArchFS = ArchFS + "," + FS.str();
+ else
+ ArchFS = FS;
+ }
+ const ARMBaseTargetMachine &ATM =
+ static_cast<const ARMBaseTargetMachine &>(TM);
+ const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
+
+ std::string CPUString = STI.getCPUString();
+
+ if (CPUString != "generic") {
+ // FIXME: remove krait check when GNU tools support krait cpu
+ if (STI.isKrait()) {
+ ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
+ // We consider krait as a "cortex-a9" + hwdiv CPU
+ // Enable hwdiv through ".arch_extension idiv"
+ if (STI.hasDivide() || STI.hasDivideInARMMode())
+ ATS.emitArchExtension(ARM::HWDIV);
+ } else
+ ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
+ }
- ATS.emitAttribute(ARMBuildAttrs::CPU_arch,
- getArchForCPU(CPUString, Subtarget));
+ ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
// Tag_CPU_arch_profile must have the default value of 0 when "Architecture
// profile is not applicable (e.g. pre v7, or cross-profile code)".
- if (Subtarget->hasV7Ops()) {
- if (Subtarget->isAClass()) {
+ if (STI.hasV7Ops()) {
+ if (STI.isAClass()) {
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
- } else if (Subtarget->isRClass()) {
+ } else if (STI.isRClass()) {
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::RealTimeProfile);
- } else if (Subtarget->isMClass()) {
+ } else if (STI.isMClass()) {
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::MicroControllerProfile);
}
}
- ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ?
- ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed);
- if (Subtarget->isThumb1Only()) {
- ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
- ARMBuildAttrs::Allowed);
- } else if (Subtarget->hasThumb2()) {
+ ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
+ STI.hasARMOps() ? ARMBuildAttrs::Allowed
+ : ARMBuildAttrs::Not_Allowed);
+ if (STI.isThumb1Only()) {
+ ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
+ } else if (STI.hasThumb2()) {
ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
}
- if (Subtarget->hasNEON()) {
+ if (STI.hasNEON()) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
- if (Subtarget->hasFPARMv8()) {
- if (Subtarget->hasCrypto())
+ if (STI.hasFPARMv8()) {
+ if (STI.hasCrypto())
ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8);
else
ATS.emitFPU(ARM::NEON_FP_ARMV8);
- }
- else if (Subtarget->hasVFP4())
+ } else if (STI.hasVFP4())
ATS.emitFPU(ARM::NEON_VFPV4);
else
ATS.emitFPU(ARM::NEON);
// Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
- if (Subtarget->hasV8Ops())
+ if (STI.hasV8Ops())
ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::AllowNeonARMv8);
} else {
- if (Subtarget->hasFPARMv8())
+ if (STI.hasFPARMv8())
// FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
// FPU, but there are two different names for it depending on the CPU.
- ATS.emitFPU(Subtarget->hasD16() ? ARM::FPV5_D16 : ARM::FP_ARMV8);
- else if (Subtarget->hasVFP4())
- ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4);
- else if (Subtarget->hasVFP3())
- ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3);
- else if (Subtarget->hasVFP2())
+ ATS.emitFPU(STI.hasD16() ? ARM::FPV5_D16 : ARM::FP_ARMV8);
+ else if (STI.hasVFP4())
+ ATS.emitFPU(STI.hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4);
+ else if (STI.hasVFP3())
+ ATS.emitFPU(STI.hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3);
+ else if (STI.hasVFP2())
ATS.emitFPU(ARM::VFPV2);
}
@@ -694,11 +753,42 @@ void ARMAsmPrinter::emitAttributes() {
// Signal various FP modes.
if (!TM.Options.UnsafeFPMath) {
- ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed);
- ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
- ARMBuildAttrs::Allowed);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
+ ARMBuildAttrs::IEEEDenormals);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
+
+ // If the user has permitted this code to choose the IEEE 754
+ // rounding at run-time, emit the rounding attribute.
+ if (TM.Options.HonorSignDependentRoundingFPMathOption)
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
+ } else {
+ if (!STI.hasVFP2()) {
+ // When the target doesn't have an FPU (by design or
+ // intention), the assumptions made on the software support
+ // mirror that of the equivalent hardware support *if it
+ // existed*. For v7 and better we indicate that denormals are
+ // flushed preserving sign, and for V6 we indicate that
+ // denormals are flushed to positive zero.
+ if (STI.hasV7Ops())
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
+ ARMBuildAttrs::PreserveFPSign);
+ } else if (STI.hasVFP3()) {
+ // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
+ // the sign bit of the zero matches the sign bit of the input or
+ // result that is being flushed to zero.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
+ ARMBuildAttrs::PreserveFPSign);
+ }
+ // For VFPv2 implementations it is implementation defined as
+ // to whether denormals are flushed to positive zero or to
+ // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
+ // LLVM has chosen to flush this to positive zero (most likely for
+ // GCC compatibility), so that's the chosen value here (the
+ // absence of its emission implies zero).
}
+ // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
+ // equivalent of GCC's -ffinite-math-only flag.
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
@@ -706,7 +796,7 @@ void ARMAsmPrinter::emitAttributes() {
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEE754);
- if (Subtarget->allowsUnalignedMem())
+ if (STI.allowsUnalignedMem())
ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Allowed);
else
@@ -719,21 +809,28 @@ void ARMAsmPrinter::emitAttributes() {
ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
// ABI_HardFP_use attribute to indicate single precision FP.
- if (Subtarget->isFPOnlySP())
+ if (STI.isFPOnlySP())
ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
ARMBuildAttrs::HardFPSinglePrecision);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
- if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
+ if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
// FIXME: Should we signal R9 usage?
- if (Subtarget->hasFP16())
- ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
+ if (STI.hasFP16())
+ ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
+
+ // FIXME: To support emitting this build attribute as GCC does, the
+ // -mfp16-format option and associated plumbing must be
+ // supported. For now the __fp16 type is exposed by default, so this
+ // attribute should be emitted with value 1.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
+ ARMBuildAttrs::FP16FormatIEEE);
- if (Subtarget->hasMPExtension())
- ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
+ if (STI.hasMPExtension())
+ ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
// Hardware divide in ARM mode is part of base arch, starting from ARMv8.
// If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
@@ -741,14 +838,14 @@ void ARMAsmPrinter::emitAttributes() {
// arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
// AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
// otherwise, the default value (AllowDIVIfExists) applies.
- if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops())
- ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
+ if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
+ ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
if (MMI) {
if (const Module *SourceModule = MMI->getModule()) {
// ABI_PCS_wchar_t to indicate wchar_t width
// FIXME: There is no way to emit value 0 (wchar_t prohibited).
- if (auto WCharWidthValue = cast_or_null<ConstantInt>(
+ if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("wchar_size"))) {
int WCharWidth = WCharWidthValue->getZExtValue();
assert((WCharWidth == 2 || WCharWidth == 4) &&
@@ -759,7 +856,7 @@ void ARMAsmPrinter::emitAttributes() {
// ABI_enum_size to indicate enum width
// FIXME: There is no way to emit value 0 (enums prohibited) or value 3
// (all enums contain a value needing 32 bits to encode).
- if (auto EnumWidthValue = cast_or_null<ConstantInt>(
+ if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("min_enum_size"))) {
int EnumWidth = EnumWidthValue->getZExtValue();
assert((EnumWidth == 1 || EnumWidth == 4) &&
@@ -774,22 +871,20 @@ void ARMAsmPrinter::emitAttributes() {
// it as another callee-saved register, but not as SB or a TLS pointer; It
// would instead be nicer to push this from the frontend as metadata, as we do
// for the wchar and enum size tags
- if (Subtarget->isR9Reserved())
- ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
- ARMBuildAttrs::R9Reserved);
+ if (STI.isR9Reserved())
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved);
else
- ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
- ARMBuildAttrs::R9IsGPR);
-
- if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization())
- ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
- ARMBuildAttrs::AllowTZVirtualization);
- else if (Subtarget->hasTrustZone())
- ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
- ARMBuildAttrs::AllowTZ);
- else if (Subtarget->hasVirtualization())
- ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
- ARMBuildAttrs::AllowVirtualization);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR);
+
+ if (STI.hasTrustZone() && STI.hasVirtualization())
+ ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
+ ARMBuildAttrs::AllowTZVirtualization);
+ else if (STI.hasTrustZone())
+ ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
+ ARMBuildAttrs::AllowTZ);
+ else if (STI.hasVirtualization())
+ ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
+ ARMBuildAttrs::AllowVirtualization);
ATS.finishAttributeSection();
}
@@ -858,9 +953,8 @@ MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
- const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
- int Size =
- TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(MCPV->getType());
+ const DataLayout *DL = TM.getDataLayout();
+ int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
@@ -1176,7 +1270,7 @@ void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
#include "ARMGenMCPseudoLowering.inc"
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
- const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
+ const DataLayout *DL = TM.getDataLayout();
// If we just ended a constant pool, mark it as such.
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
@@ -1251,18 +1345,34 @@ void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case ARM::tBX_CALL: {
- EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
- .addReg(ARM::LR)
- .addReg(ARM::PC)
- // Add predicate operands.
- .addImm(ARMCC::AL)
- .addReg(0));
+ if (Subtarget->hasV5TOps())
+ llvm_unreachable("Expected BLX to be selected for v5t+");
+
+ // On ARM v4t, when doing a call from thumb mode, we need to ensure
+ // that the saved lr has its LSB set correctly (the arch doesn't
+ // have blx).
+ // So here we generate a bl to a small jump pad that does bx rN.
+ // The jump pads are emitted after the function body.
+
+ unsigned TReg = MI->getOperand(0).getReg();
+ MCSymbol *TRegSym = nullptr;
+ for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
+ if (ThumbIndirectPads[i].first == TReg) {
+ TRegSym = ThumbIndirectPads[i].second;
+ break;
+ }
+ }
- EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
- .addReg(MI->getOperand(0).getReg())
- // Add predicate operands.
- .addImm(ARMCC::AL)
- .addReg(0));
+ if (!TRegSym) {
+ TRegSym = OutContext.CreateTempSymbol();
+ ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
+ }
+
+ // Create a link-saving branch to the Reg Indirect Jump Pad.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBL)
+ // Predicate comes first here.
+ .addImm(ARMCC::AL).addReg(0)
+ .addExpr(MCSymbolRefExpr::Create(TRegSym, OutContext)));
return;
}
case ARM::BMOVPCRX_CALL: {