diff options
Diffstat (limited to 'lib/Target/ARM/Disassembler')
-rw-r--r-- | lib/Target/ARM/Disassembler/ARMDisassembler.cpp | 578 | ||||
-rw-r--r-- | lib/Target/ARM/Disassembler/ARMDisassembler.h | 99 | ||||
-rw-r--r-- | lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp | 3350 | ||||
-rw-r--r-- | lib/Target/ARM/Disassembler/ARMDisassemblerCore.h | 262 | ||||
-rw-r--r-- | lib/Target/ARM/Disassembler/Makefile | 16 | ||||
-rw-r--r-- | lib/Target/ARM/Disassembler/ThumbDisassemblerCore.h | 2248 |
6 files changed, 6553 insertions, 0 deletions
diff --git a/lib/Target/ARM/Disassembler/ARMDisassembler.cpp b/lib/Target/ARM/Disassembler/ARMDisassembler.cpp new file mode 100644 index 0000000..4de697e --- /dev/null +++ b/lib/Target/ARM/Disassembler/ARMDisassembler.cpp @@ -0,0 +1,578 @@ +//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// It contains code to implement the public interfaces of ARMDisassembler and +// ThumbDisassembler, both of which are instances of MCDisassembler. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "arm-disassembler" + +#include "ARMDisassembler.h" +#include "ARMDisassemblerCore.h" + +#include "llvm/MC/EDInstInfo.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Target/TargetRegistry.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MemoryObject.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +/// ARMGenDecoderTables.inc - ARMDecoderTables.inc is tblgen'ed from +/// ARMDecoderEmitter.cpp TableGen backend. It contains: +/// +/// o Mappings from opcode to ARM/Thumb instruction format +/// +/// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function +/// for an ARM instruction. +/// +/// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding +/// function for a Thumb instruction. +/// +#include "../ARMGenDecoderTables.inc" + +#include "../ARMGenEDInfo.inc" + +using namespace llvm; + +/// showBitVector - Use the raw_ostream to log a diagnostic message describing +/// the inidividual bits of the instruction. +/// +static inline void showBitVector(raw_ostream &os, const uint32_t &insn) { + // Split the bit position markers into more than one lines to fit 80 columns. + os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11" + << " 10 9 8 7 6 5 4 3 2 1 0 \n"; + os << "---------------------------------------------------------------" + << "----------------------------------\n"; + os << '|'; + for (unsigned i = 32; i != 0; --i) { + if (insn >> (i - 1) & 0x01) + os << " 1"; + else + os << " 0"; + os << (i%4 == 1 ? '|' : ':'); + } + os << '\n'; + // Split the bit position markers into more than one lines to fit 80 columns. + os << "---------------------------------------------------------------" + << "----------------------------------\n"; + os << '\n'; +} + +/// decodeARMInstruction is a decorator function which tries special cases of +/// instruction matching before calling the auto-generated decoder function. +static unsigned decodeARMInstruction(uint32_t &insn) { + if (slice(insn, 31, 28) == 15) + goto AutoGenedDecoder; + + // Special case processing, if any, goes here.... + + // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB. + // The insufficient encoding information of the combined instruction confuses + // the decoder wrt BFC/BFI. Therefore, we try to recover here. + // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111. + // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111. + if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) { + if (slice(insn, 3, 0) == 15) + return ARM::BFC; + else + return ARM::BFI; + } + + // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8. + // As a result, the decoder fails to decode UMULL properly. + if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) { + return ARM::UMULL; + } + + // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195. + // As a result, the decoder fails to decode SBFX properly. + if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5) + return ARM::SBFX; + + // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198. + // As a result, the decoder fails to decode UBFX properly. + if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5) + return ARM::UBFX; + + // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2. + // As a result, the decoder fails to deocode SSAT properly. + if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1) + return slice(insn, 6, 6) == 0 ? ARM::SSATlsl : ARM::SSATasr; + + // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147. + // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT. + if (slice(insn, 27, 24) == 0) { + switch (slice(insn, 21, 20)) { + case 2: + switch (slice(insn, 7, 4)) { + case 11: + return ARM::STRHT; + default: + break; // fallthrough + } + break; + case 3: + switch (slice(insn, 7, 4)) { + case 11: + return ARM::LDRHT; + case 13: + return ARM::LDRSBT; + case 15: + return ARM::LDRSHT; + default: + break; // fallthrough + } + break; + default: + break; // fallthrough + } + } + + // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153. + // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST + // properly. + if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) { + unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21); + switch (slice(insn, 7, 4)) { + case 11: + switch (PW) { + case 2: // Offset + return ARM::STRH; + case 3: // Pre-indexed + return ARM::STRH_PRE; + case 0: // Post-indexed + return ARM::STRH_POST; + default: + break; // fallthrough + } + break; + case 13: + switch (PW) { + case 2: // Offset + return ARM::LDRD; + case 3: // Pre-indexed + return ARM::LDRD_PRE; + case 0: // Post-indexed + return ARM::LDRD_POST; + default: + break; // fallthrough + } + break; + case 15: + switch (PW) { + case 2: // Offset + return ARM::STRD; + case 3: // Pre-indexed + return ARM::STRD_PRE; + case 0: // Post-indexed + return ARM::STRD_POST; + default: + break; // fallthrough + } + break; + default: + break; // fallthrough + } + } + + // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153. + // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST + // properly. + if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) { + unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21); + switch (slice(insn, 7, 4)) { + case 11: + switch (PW) { + case 2: // Offset + return ARM::LDRH; + case 3: // Pre-indexed + return ARM::LDRH_PRE; + case 0: // Post-indexed + return ARM::LDRH_POST; + default: + break; // fallthrough + } + break; + case 13: + switch (PW) { + case 2: // Offset + return ARM::LDRSB; + case 3: // Pre-indexed + return ARM::LDRSB_PRE; + case 0: // Post-indexed + return ARM::LDRSB_POST; + default: + break; // fallthrough + } + break; + case 15: + switch (PW) { + case 2: // Offset + return ARM::LDRSH; + case 3: // Pre-indexed + return ARM::LDRSH_PRE; + case 0: // Post-indexed + return ARM::LDRSH_POST; + default: + break; // fallthrough + } + break; + default: + break; // fallthrough + } + } + +AutoGenedDecoder: + // Calling the auto-generated decoder function. + return decodeInstruction(insn); +} + +// Helper function for special case handling of LDR (literal) and friends. +// See, for example, A6.3.7 Load word: Table A6-18 Load word. +// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode +// before returning it. +static unsigned T2Morph2LoadLiteral(unsigned Opcode) { + switch (Opcode) { + default: + return Opcode; // Return unmorphed opcode. + + case ARM::t2LDRDi8: + return ARM::t2LDRDpci; + + case ARM::t2LDR_POST: case ARM::t2LDR_PRE: + case ARM::t2LDRi12: case ARM::t2LDRi8: + case ARM::t2LDRs: case ARM::t2LDRT: + return ARM::t2LDRpci; + + case ARM::t2LDRB_POST: case ARM::t2LDRB_PRE: + case ARM::t2LDRBi12: case ARM::t2LDRBi8: + case ARM::t2LDRBs: case ARM::t2LDRBT: + return ARM::t2LDRBpci; + + case ARM::t2LDRH_POST: case ARM::t2LDRH_PRE: + case ARM::t2LDRHi12: case ARM::t2LDRHi8: + case ARM::t2LDRHs: case ARM::t2LDRHT: + return ARM::t2LDRHpci; + + case ARM::t2LDRSB_POST: case ARM::t2LDRSB_PRE: + case ARM::t2LDRSBi12: case ARM::t2LDRSBi8: + case ARM::t2LDRSBs: case ARM::t2LDRSBT: + return ARM::t2LDRSBpci; + + case ARM::t2LDRSH_POST: case ARM::t2LDRSH_PRE: + case ARM::t2LDRSHi12: case ARM::t2LDRSHi8: + case ARM::t2LDRSHs: case ARM::t2LDRSHT: + return ARM::t2LDRSHpci; + } +} + +/// decodeThumbSideEffect is a decorator function which can potentially twiddle +/// the instruction or morph the returned opcode under Thumb2. +/// +/// First it checks whether the insn is a NEON or VFP instr; if true, bit +/// twiddling could be performed on insn to turn it into an ARM NEON/VFP +/// equivalent instruction and decodeInstruction is called with the transformed +/// insn. +/// +/// Next, there is special handling for Load byte/halfword/word instruction by +/// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded +/// Thumb2 instruction. See comments below for further details. +/// +/// Finally, one last check is made to see whether the insn is a NEON/VFP and +/// decodeInstruction(insn) is invoked on the original insn. +/// +/// Otherwise, decodeThumbInstruction is called with the original insn. +static unsigned decodeThumbSideEffect(bool IsThumb2, uint32_t &insn) { + if (IsThumb2) { + uint16_t op1 = slice(insn, 28, 27); + uint16_t op2 = slice(insn, 26, 20); + + // A6.3 32-bit Thumb instruction encoding + // Table A6-9 32-bit Thumb instruction encoding + + // The coprocessor instructions of interest are transformed to their ARM + // equivalents. + + // --------- Transform Begin Marker --------- + if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) { + // A7.4 Advanced SIMD data-processing instructions + // U bit of Thumb corresponds to Inst{24} of ARM. + uint16_t U = slice(op1, 1, 1); + + // Inst{28-24} of ARM = {1,0,0,1,U}; + uint16_t bits28_24 = 9 << 1 | U; + DEBUG(showBitVector(errs(), insn)); + setSlice(insn, 28, 24, bits28_24); + return decodeInstruction(insn); + } + + if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) { + // A7.7 Advanced SIMD element or structure load/store instructions + // Inst{27-24} of Thumb = 0b1001 + // Inst{27-24} of ARM = 0b0100 + DEBUG(showBitVector(errs(), insn)); + setSlice(insn, 27, 24, 4); + return decodeInstruction(insn); + } + // --------- Transform End Marker --------- + + // See, for example, A6.3.7 Load word: Table A6-18 Load word. + // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode + // before returning it to our caller. + if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1 + && slice(insn, 19, 16) == 15) + return T2Morph2LoadLiteral(decodeThumbInstruction(insn)); + + // One last check for NEON/VFP instructions. + if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1) + return decodeInstruction(insn); + + // Fall through. + } + + return decodeThumbInstruction(insn); +} + +static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::t2PLDi12: case ARM::t2PLDi8: + case ARM::t2PLDr: case ARM::t2PLDs: + case ARM::t2PLDWi12: case ARM::t2PLDWi8: + case ARM::t2PLDWr: case ARM::t2PLDWs: + case ARM::t2PLIi12: case ARM::t2PLIi8: + case ARM::t2PLIr: case ARM::t2PLIs: + return true; + } +} + +static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) { + switch (Opcode) { + default: + return 0; + case ARM::t2PLDi12: case ARM::t2PLDi8: + case ARM::t2PLDr: case ARM::t2PLDs: + return ARM::t2PLDpci; + case ARM::t2PLDWi12: case ARM::t2PLDWi8: + case ARM::t2PLDWr: case ARM::t2PLDWs: + return ARM::t2PLDWpci; + case ARM::t2PLIi12: case ARM::t2PLIi8: + case ARM::t2PLIr: case ARM::t2PLIs: + return ARM::t2PLIpci; + } +} + +// +// Public interface for the disassembler +// + +bool ARMDisassembler::getInstruction(MCInst &MI, + uint64_t &Size, + const MemoryObject &Region, + uint64_t Address, + raw_ostream &os) const { + // The machine instruction. + uint32_t insn; + uint8_t bytes[4]; + + // We want to read exactly 4 bytes of data. + if (Region.readBytes(Address, 4, (uint8_t*)bytes, NULL) == -1) + return false; + + // Encoded as a small-endian 32-bit word in the stream. + insn = (bytes[3] << 24) | + (bytes[2] << 16) | + (bytes[1] << 8) | + (bytes[0] << 0); + + unsigned Opcode = decodeARMInstruction(insn); + ARMFormat Format = ARMFormats[Opcode]; + Size = 4; + + DEBUG({ + errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode) + << " Format=" << stringForARMFormat(Format) << '(' << (int)Format + << ")\n"; + showBitVector(errs(), insn); + }); + + ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format); + if (!Builder) + return false; + + if (!Builder->Build(MI, insn)) + return false; + + delete Builder; + + return true; +} + +bool ThumbDisassembler::getInstruction(MCInst &MI, + uint64_t &Size, + const MemoryObject &Region, + uint64_t Address, + raw_ostream &os) const { + // The Thumb instruction stream is a sequence of halhwords. + + // This represents the first halfword as well as the machine instruction + // passed to decodeThumbInstruction(). For 16-bit Thumb instruction, the top + // halfword of insn is 0x00 0x00; otherwise, the first halfword is moved to + // the top half followed by the second halfword. + uint32_t insn = 0; + // Possible second halfword. + uint16_t insn1 = 0; + + // A6.1 Thumb instruction set encoding + // + // If bits [15:11] of the halfword being decoded take any of the following + // values, the halfword is the first halfword of a 32-bit instruction: + // o 0b11101 + // o 0b11110 + // o 0b11111. + // + // Otherwise, the halfword is a 16-bit instruction. + + // Read 2 bytes of data first. + uint8_t bytes[2]; + if (Region.readBytes(Address, 2, (uint8_t*)bytes, NULL) == -1) + return false; + + // Encoded as a small-endian 16-bit halfword in the stream. + insn = (bytes[1] << 8) | bytes[0]; + unsigned bits15_11 = slice(insn, 15, 11); + bool IsThumb2 = false; + + // 32-bit instructions if the bits [15:11] of the halfword matches + // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }. + if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) { + IsThumb2 = true; + if (Region.readBytes(Address + 2, 2, (uint8_t*)bytes, NULL) == -1) + return false; + // Encoded as a small-endian 16-bit halfword in the stream. + insn1 = (bytes[1] << 8) | bytes[0]; + insn = (insn << 16 | insn1); + } + + // The insn could potentially be bit-twiddled in order to be decoded as an ARM + // NEON/VFP opcode. In such case, the modified insn is later disassembled as + // an ARM NEON/VFP instruction. + // + // This is a short term solution for lack of encoding bits specified for the + // Thumb2 NEON/VFP instructions. The long term solution could be adding some + // infrastructure to have each instruction support more than one encodings. + // Which encoding is used would be based on which subtarget the compiler/ + // disassembler is working with at the time. This would allow the sharing of + // the NEON patterns between ARM and Thumb2, as well as potential greater + // sharing between the regular ARM instructions and the 32-bit wide Thumb2 + // instructions as well. + unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn); + + // A8.6.117/119/120/121. + // PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant. + if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15) + Opcode = T2Morph2Preload2PCI(Opcode); + + ARMFormat Format = ARMFormats[Opcode]; + Size = IsThumb2 ? 4 : 2; + + DEBUG({ + errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode) + << " Format=" << stringForARMFormat(Format) << '(' << (int)Format + << ")\n"; + showBitVector(errs(), insn); + }); + + ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format); + if (!Builder) + return false; + + Builder->SetSession(const_cast<Session *>(&SO)); + + if (!Builder->Build(MI, insn)) + return false; + + delete Builder; + + return true; +} + +// A8.6.50 +// Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition. +static unsigned short CountITSize(unsigned ITMask) { + // First count the trailing zeros of the IT mask. + unsigned TZ = CountTrailingZeros_32(ITMask); + if (TZ > 3) { + DEBUG(errs() << "Encoding error: IT Mask '0000'"); + return 0; + } + return (4 - TZ); +} + +/// Init ITState. Note that at least one bit is always 1 in mask. +bool Session::InitIT(unsigned short bits7_0) { + ITCounter = CountITSize(slice(bits7_0, 3, 0)); + if (ITCounter == 0) + return false; + + // A8.6.50 IT + unsigned short FirstCond = slice(bits7_0, 7, 4); + if (FirstCond == 0xF) { + DEBUG(errs() << "Encoding error: IT FirstCond '1111'"); + return false; + } + if (FirstCond == 0xE && ITCounter != 1) { + DEBUG(errs() << "Encoding error: IT FirstCond '1110' && Mask != '1000'"); + return false; + } + + ITState = bits7_0; + + return true; +} + +/// Update ITState if necessary. +void Session::UpdateIT() { + assert(ITCounter); + --ITCounter; + if (ITCounter == 0) + ITState = 0; + else { + unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1; + setSlice(ITState, 4, 0, NewITState4_0); + } +} + +static MCDisassembler *createARMDisassembler(const Target &T) { + return new ARMDisassembler; +} + +static MCDisassembler *createThumbDisassembler(const Target &T) { + return new ThumbDisassembler; +} + +extern "C" void LLVMInitializeARMDisassembler() { + // Register the disassembler. + TargetRegistry::RegisterMCDisassembler(TheARMTarget, + createARMDisassembler); + TargetRegistry::RegisterMCDisassembler(TheThumbTarget, + createThumbDisassembler); +} + +EDInstInfo *ARMDisassembler::getEDInfo() const { + return instInfoARM; +} + +EDInstInfo *ThumbDisassembler::getEDInfo() const { + return instInfoARM; +} diff --git a/lib/Target/ARM/Disassembler/ARMDisassembler.h b/lib/Target/ARM/Disassembler/ARMDisassembler.h new file mode 100644 index 0000000..0a74a38 --- /dev/null +++ b/lib/Target/ARM/Disassembler/ARMDisassembler.h @@ -0,0 +1,99 @@ +//===- ARMDisassembler.h - Disassembler for ARM/Thumb ISA -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// It contains the header for ARMDisassembler and ThumbDisassembler, both are +// subclasses of MCDisassembler. +// +//===----------------------------------------------------------------------===// + +#ifndef ARMDISASSEMBLER_H +#define ARMDISASSEMBLER_H + +#include "llvm/MC/MCDisassembler.h" + +namespace llvm { + +class MCInst; +class MemoryObject; +class raw_ostream; + +struct EDInstInfo; + +/// ARMDisassembler - ARM disassembler for all ARM platforms. +class ARMDisassembler : public MCDisassembler { +public: + /// Constructor - Initializes the disassembler. + /// + ARMDisassembler() : + MCDisassembler() { + } + + ~ARMDisassembler() { + } + + /// getInstruction - See MCDisassembler. + bool getInstruction(MCInst &instr, + uint64_t &size, + const MemoryObject ®ion, + uint64_t address, + raw_ostream &vStream) const; + + /// getEDInfo - See MCDisassembler. + EDInstInfo *getEDInfo() const; +private: +}; + +// Forward declaration. +class ARMBasicMCBuilder; + +/// Session - Keep track of the IT Block progression. +class Session { + friend class ARMBasicMCBuilder; +public: + Session() : ITCounter(0), ITState(0) {} + ~Session() {} + /// InitIT - Initializes ITCounter/ITState. + bool InitIT(unsigned short bits7_0); + /// UpdateIT - Updates ITCounter/ITState as IT Block progresses. + void UpdateIT(); + +private: + unsigned ITCounter; // Possible values: 0, 1, 2, 3, 4. + unsigned ITState; // A2.5.2 Consists of IT[7:5] and IT[4:0] initially. +}; + +/// ThumbDisassembler - Thumb disassembler for all ARM platforms. +class ThumbDisassembler : public MCDisassembler { +public: + /// Constructor - Initializes the disassembler. + /// + ThumbDisassembler() : + MCDisassembler(), SO() { + } + + ~ThumbDisassembler() { + } + + /// getInstruction - See MCDisassembler. + bool getInstruction(MCInst &instr, + uint64_t &size, + const MemoryObject ®ion, + uint64_t address, + raw_ostream &vStream) const; + + /// getEDInfo - See MCDisassembler. + EDInstInfo *getEDInfo() const; +private: + Session SO; +}; + +} // namespace llvm + +#endif diff --git a/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp new file mode 100644 index 0000000..adb7795 --- /dev/null +++ b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp @@ -0,0 +1,3350 @@ +//===- ARMDisassemblerCore.cpp - ARM disassembler helpers -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// It contains code to represent the core concepts of Builder and DisassembleFP +// to solve the problem of disassembling an ARM instr. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "arm-disassembler" + +#include "ARMDisassemblerCore.h" +#include "ARMAddressingModes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +/// ARMGenInstrInfo.inc - ARMGenInstrInfo.inc contains the static const +/// TargetInstrDesc ARMInsts[] definition and the TargetOperandInfo[]'s +/// describing the operand info for each ARMInsts[i]. +/// +/// Together with an instruction's encoding format, we can take advantage of the +/// NumOperands and the OpInfo fields of the target instruction description in +/// the quest to build out the MCOperand list for an MCInst. +/// +/// The general guideline is that with a known format, the number of dst and src +/// operands are well-known. The dst is built first, followed by the src +/// operand(s). The operands not yet used at this point are for the Implicit +/// Uses and Defs by this instr. For the Uses part, the pred:$p operand is +/// defined with two components: +/// +/// def pred { // Operand PredicateOperand +/// ValueType Type = OtherVT; +/// string PrintMethod = "printPredicateOperand"; +/// string AsmOperandLowerMethod = ?; +/// dag MIOperandInfo = (ops i32imm, CCR); +/// AsmOperandClass ParserMatchClass = ImmAsmOperand; +/// dag DefaultOps = (ops (i32 14), (i32 zero_reg)); +/// } +/// +/// which is manifested by the TargetOperandInfo[] of: +/// +/// { 0, 0|(1<<TOI::Predicate), 0 }, +/// { ARM::CCRRegClassID, 0|(1<<TOI::Predicate), 0 } +/// +/// So the first predicate MCOperand corresponds to the immediate part of the +/// ARM condition field (Inst{31-28}), and the second predicate MCOperand +/// corresponds to a register kind of ARM::CPSR. +/// +/// For the Defs part, in the simple case of only cc_out:$s, we have: +/// +/// def cc_out { // Operand OptionalDefOperand +/// ValueType Type = OtherVT; +/// string PrintMethod = "printSBitModifierOperand"; +/// string AsmOperandLowerMethod = ?; +/// dag MIOperandInfo = (ops CCR); +/// AsmOperandClass ParserMatchClass = ImmAsmOperand; +/// dag DefaultOps = (ops (i32 zero_reg)); +/// } +/// +/// which is manifested by the one TargetOperandInfo of: +/// +/// { ARM::CCRRegClassID, 0|(1<<TOI::OptionalDef), 0 } +/// +/// And this maps to one MCOperand with the regsiter kind of ARM::CPSR. +#include "ARMGenInstrInfo.inc" + +using namespace llvm; + +const char *ARMUtils::OpcodeName(unsigned Opcode) { + return ARMInsts[Opcode].Name; +} + +// Return the register enum Based on RegClass and the raw register number. +// For DRegPair, see comments below. +// FIXME: Auto-gened? +static unsigned getRegisterEnum(BO B, unsigned RegClassID, unsigned RawRegister, + bool DRegPair = false) { + + if (DRegPair && RegClassID == ARM::QPRRegClassID) { + // LLVM expects { Dd, Dd+1 } to form a super register; this is not specified + // in the ARM Architecture Manual as far as I understand it (A8.6.307). + // Therefore, we morph the RegClassID to be the sub register class and don't + // subsequently transform the RawRegister encoding when calculating RegNum. + // + // See also ARMinstPrinter::printOperand() wrt "dregpair" modifier part + // where this workaround is meant for. + RegClassID = ARM::DPRRegClassID; + } + + // See also decodeNEONRd(), decodeNEONRn(), decodeNEONRm(). + unsigned RegNum = + RegClassID == ARM::QPRRegClassID ? RawRegister >> 1 : RawRegister; + + switch (RegNum) { + default: + break; + case 0: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R0; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D0; + case ARM::QPRRegClassID: case ARM::QPR_8RegClassID: + case ARM::QPR_VFP2RegClassID: + return ARM::Q0; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S0; + } + break; + case 1: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R1; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D1; + case ARM::QPRRegClassID: case ARM::QPR_8RegClassID: + case ARM::QPR_VFP2RegClassID: + return ARM::Q1; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S1; + } + break; + case 2: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R2; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D2; + case ARM::QPRRegClassID: case ARM::QPR_8RegClassID: + case ARM::QPR_VFP2RegClassID: + return ARM::Q2; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S2; + } + break; + case 3: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R3; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D3; + case ARM::QPRRegClassID: case ARM::QPR_8RegClassID: + case ARM::QPR_VFP2RegClassID: + return ARM::Q3; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S3; + } + break; + case 4: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R4; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D4; + case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q4; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S4; + } + break; + case 5: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R5; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D5; + case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q5; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S5; + } + break; + case 6: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R6; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D6; + case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q6; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S6; + } + break; + case 7: + switch (RegClassID) { + case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R7; + case ARM::DPRRegClassID: case ARM::DPR_8RegClassID: + case ARM::DPR_VFP2RegClassID: + return ARM::D7; + case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q7; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S7; + } + break; + case 8: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::R8; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D8; + case ARM::QPRRegClassID: return ARM::Q8; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S8; + } + break; + case 9: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::R9; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D9; + case ARM::QPRRegClassID: return ARM::Q9; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S9; + } + break; + case 10: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::R10; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D10; + case ARM::QPRRegClassID: return ARM::Q10; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S10; + } + break; + case 11: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::R11; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D11; + case ARM::QPRRegClassID: return ARM::Q11; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S11; + } + break; + case 12: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::R12; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D12; + case ARM::QPRRegClassID: return ARM::Q12; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S12; + } + break; + case 13: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::SP; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D13; + case ARM::QPRRegClassID: return ARM::Q13; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S13; + } + break; + case 14: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::LR; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D14; + case ARM::QPRRegClassID: return ARM::Q14; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S14; + } + break; + case 15: + switch (RegClassID) { + case ARM::GPRRegClassID: return ARM::PC; + case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D15; + case ARM::QPRRegClassID: return ARM::Q15; + case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S15; + } + break; + case 16: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D16; + case ARM::SPRRegClassID: return ARM::S16; + } + break; + case 17: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D17; + case ARM::SPRRegClassID: return ARM::S17; + } + break; + case 18: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D18; + case ARM::SPRRegClassID: return ARM::S18; + } + break; + case 19: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D19; + case ARM::SPRRegClassID: return ARM::S19; + } + break; + case 20: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D20; + case ARM::SPRRegClassID: return ARM::S20; + } + break; + case 21: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D21; + case ARM::SPRRegClassID: return ARM::S21; + } + break; + case 22: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D22; + case ARM::SPRRegClassID: return ARM::S22; + } + break; + case 23: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D23; + case ARM::SPRRegClassID: return ARM::S23; + } + break; + case 24: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D24; + case ARM::SPRRegClassID: return ARM::S24; + } + break; + case 25: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D25; + case ARM::SPRRegClassID: return ARM::S25; + } + break; + case 26: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D26; + case ARM::SPRRegClassID: return ARM::S26; + } + break; + case 27: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D27; + case ARM::SPRRegClassID: return ARM::S27; + } + break; + case 28: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D28; + case ARM::SPRRegClassID: return ARM::S28; + } + break; + case 29: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D29; + case ARM::SPRRegClassID: return ARM::S29; + } + break; + case 30: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D30; + case ARM::SPRRegClassID: return ARM::S30; + } + break; + case 31: + switch (RegClassID) { + case ARM::DPRRegClassID: return ARM::D31; + case ARM::SPRRegClassID: return ARM::S31; + } + break; + } + DEBUG(errs() << "Invalid (RegClassID, RawRegister) combination\n"); + // Encoding error. Mark the builder with error code != 0. + B->SetErr(-1); + return 0; +} + +/////////////////////////////// +// // +// Utility Functions // +// // +/////////////////////////////// + +// Extract/Decode Rd: Inst{15-12}. +static inline unsigned decodeRd(uint32_t insn) { + return (insn >> ARMII::RegRdShift) & ARMII::GPRRegMask; +} + +// Extract/Decode Rn: Inst{19-16}. +static inline unsigned decodeRn(uint32_t insn) { + return (insn >> ARMII::RegRnShift) & ARMII::GPRRegMask; +} + +// Extract/Decode Rm: Inst{3-0}. +static inline unsigned decodeRm(uint32_t insn) { + return (insn & ARMII::GPRRegMask); +} + +// Extract/Decode Rs: Inst{11-8}. +static inline unsigned decodeRs(uint32_t insn) { + return (insn >> ARMII::RegRsShift) & ARMII::GPRRegMask; +} + +static inline unsigned getCondField(uint32_t insn) { + return (insn >> ARMII::CondShift); +} + +static inline unsigned getIBit(uint32_t insn) { + return (insn >> ARMII::I_BitShift) & 1; +} + +static inline unsigned getAM3IBit(uint32_t insn) { + return (insn >> ARMII::AM3_I_BitShift) & 1; +} + +static inline unsigned getPBit(uint32_t insn) { + return (insn >> ARMII::P_BitShift) & 1; +} + +static inline unsigned getUBit(uint32_t insn) { + return (insn >> ARMII::U_BitShift) & 1; +} + +static inline unsigned getPUBits(uint32_t insn) { + return (insn >> ARMII::U_BitShift) & 3; +} + +static inline unsigned getSBit(uint32_t insn) { + return (insn >> ARMII::S_BitShift) & 1; +} + +static inline unsigned getWBit(uint32_t insn) { + return (insn >> ARMII::W_BitShift) & 1; +} + +static inline unsigned getDBit(uint32_t insn) { + return (insn >> ARMII::D_BitShift) & 1; +} + +static inline unsigned getNBit(uint32_t insn) { + return (insn >> ARMII::N_BitShift) & 1; +} + +static inline unsigned getMBit(uint32_t insn) { + return (insn >> ARMII::M_BitShift) & 1; +} + +// See A8.4 Shifts applied to a register. +// A8.4.2 Register controlled shifts. +// +// getShiftOpcForBits - getShiftOpcForBits translates from the ARM encoding bits +// into llvm enums for shift opcode. The API clients should pass in the value +// encoded with two bits, so the assert stays to signal a wrong API usage. +// +// A8-12: DecodeRegShift() +static inline ARM_AM::ShiftOpc getShiftOpcForBits(unsigned bits) { + switch (bits) { + default: assert(0 && "No such value"); return ARM_AM::no_shift; + case 0: return ARM_AM::lsl; + case 1: return ARM_AM::lsr; + case 2: return ARM_AM::asr; + case 3: return ARM_AM::ror; + } +} + +// See A8.4 Shifts applied to a register. +// A8.4.1 Constant shifts. +// +// getImmShiftSE - getImmShiftSE translates from the raw ShiftOpc and raw Imm5 +// encodings into the intended ShiftOpc and shift amount. +// +// A8-11: DecodeImmShift() +static inline void getImmShiftSE(ARM_AM::ShiftOpc &ShOp, unsigned &ShImm) { + // If type == 0b11 and imm5 == 0, we have an rrx, instead. + if (ShOp == ARM_AM::ror && ShImm == 0) + ShOp = ARM_AM::rrx; + // If (lsr or asr) and imm5 == 0, shift amount is 32. + if ((ShOp == ARM_AM::lsr || ShOp == ARM_AM::asr) && ShImm == 0) + ShImm = 32; +} + +// getAMSubModeForBits - getAMSubModeForBits translates from the ARM encoding +// bits Inst{24-23} (P(24) and U(23)) into llvm enums for AMSubMode. The API +// clients should pass in the value encoded with two bits, so the assert stays +// to signal a wrong API usage. +static inline ARM_AM::AMSubMode getAMSubModeForBits(unsigned bits) { + switch (bits) { + default: assert(0 && "No such value"); return ARM_AM::bad_am_submode; + case 1: return ARM_AM::ia; // P=0 U=1 + case 3: return ARM_AM::ib; // P=1 U=1 + case 0: return ARM_AM::da; // P=0 U=0 + case 2: return ARM_AM::db; // P=1 U=0 + } +} + +//////////////////////////////////////////// +// // +// Disassemble function definitions // +// // +//////////////////////////////////////////// + +/// There is a separate Disassemble*Frm function entry for disassembly of an ARM +/// instr into a list of MCOperands in the appropriate order, with possible dst, +/// followed by possible src(s). +/// +/// The processing of the predicate, and the 'S' modifier bit, if MI modifies +/// the CPSR, is factored into ARMBasicMCBuilder's method named +/// TryPredicateAndSBitModifier. + +static bool DisassemblePseudo(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO) { + + if (Opcode == ARM::Int_MemBarrierV7 || Opcode == ARM::Int_SyncBarrierV7) + return true; + + assert(0 && "Unexpected pseudo instruction!"); + return false; +} + +// Multiply Instructions. +// MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMMLA, SMMLS: +// Rd{19-16} Rn{3-0} Rm{11-8} Ra{15-12} +// +// MUL, SMMUL, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT: +// Rd{19-16} Rn{3-0} Rm{11-8} +// +// SMLAL, SMULL, UMAAL, UMLAL, UMULL, SMLALBB, SMLALBT, SMLALTB, SMLALTT: +// RdLo{15-12} RdHi{19-16} Rn{3-0} Rm{11-8} +// +// The mapping of the multiply registers to the "regular" ARM registers, where +// there are convenience decoder functions, is: +// +// Inst{15-12} => Rd +// Inst{19-16} => Rn +// Inst{3-0} => Rm +// Inst{11-8} => Rs +static bool DisassembleMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + unsigned short NumDefs = TID.getNumDefs(); + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumDefs > 0 && "NumDefs should be greater than 0 for MulFrm"); + assert(NumOps >= 3 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && OpInfo[2].RegClass == ARM::GPRRegClassID + && "Expect three register operands"); + + // Instructions with two destination registers have RdLo{15-12} first. + if (NumDefs == 2) { + assert(NumOps >= 4 && OpInfo[3].RegClass == ARM::GPRRegClassID && + "Expect 4th register operand"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + } + + // The destination register: RdHi{19-16} or Rd{19-16}. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + // The two src regsiters: Rn{3-0}, then Rm{11-8}. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + OpIdx += 3; + + // Many multiply instructions (e.g., MLA) have three src registers. + // The third register operand is Ra{15-12}. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + } + + return true; +} + +// Helper routines for disassembly of coprocessor instructions. + +static bool LdStCopOpcode(unsigned Opcode) { + if ((Opcode >= ARM::LDC2L_OFFSET && Opcode <= ARM::LDC_PRE) || + (Opcode >= ARM::STC2L_OFFSET && Opcode <= ARM::STC_PRE)) + return true; + return false; +} +static bool CoprocessorOpcode(unsigned Opcode) { + if (LdStCopOpcode(Opcode)) + return true; + + switch (Opcode) { + default: + return false; + case ARM::CDP: case ARM::CDP2: + case ARM::MCR: case ARM::MCR2: case ARM::MRC: case ARM::MRC2: + case ARM::MCRR: case ARM::MCRR2: case ARM::MRRC: case ARM::MRRC2: + return true; + } +} +static inline unsigned GetCoprocessor(uint32_t insn) { + return slice(insn, 11, 8); +} +static inline unsigned GetCopOpc1(uint32_t insn, bool CDP) { + return CDP ? slice(insn, 23, 20) : slice(insn, 23, 21); +} +static inline unsigned GetCopOpc2(uint32_t insn) { + return slice(insn, 7, 5); +} +static inline unsigned GetCopOpc(uint32_t insn) { + return slice(insn, 7, 4); +} +// Most of the operands are in immediate forms, except Rd and Rn, which are ARM +// core registers. +// +// CDP, CDP2: cop opc1 CRd CRn CRm opc2 +// +// MCR, MCR2, MRC, MRC2: cop opc1 Rd CRn CRm opc2 +// +// MCRR, MCRR2, MRRC, MRRc2: cop opc Rd Rn CRm +// +// LDC_OFFSET, LDC_PRE, LDC_POST: cop CRd Rn R0 [+/-]imm8:00 +// and friends +// STC_OFFSET, STC_PRE, STC_POST: cop CRd Rn R0 [+/-]imm8:00 +// and friends +// <-- addrmode2 --> +// +// LDC_OPTION: cop CRd Rn imm8 +// and friends +// STC_OPTION: cop CRd Rn imm8 +// and friends +// +static bool DisassembleCoprocessor(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 5 && "Num of operands >= 5 for coprocessor instr"); + + unsigned &OpIdx = NumOpsAdded; + bool OneCopOpc = (Opcode == ARM::MCRR || Opcode == ARM::MCRR2 || + Opcode == ARM::MRRC || Opcode == ARM::MRRC2); + // CDP/CDP2 has no GPR operand; the opc1 operand is also wider (Inst{23-20}). + bool NoGPR = (Opcode == ARM::CDP || Opcode == ARM::CDP2); + bool LdStCop = LdStCopOpcode(Opcode); + + OpIdx = 0; + + MI.addOperand(MCOperand::CreateImm(GetCoprocessor(insn))); + + if (LdStCop) { + // Unindex if P:W = 0b00 --> _OPTION variant + unsigned PW = getPBit(insn) << 1 | getWBit(insn); + + MI.addOperand(MCOperand::CreateImm(decodeRd(insn))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + if (PW) { + MI.addOperand(MCOperand::CreateReg(0)); + ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub; + unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, slice(insn, 7, 0) << 2, + ARM_AM::no_shift); + MI.addOperand(MCOperand::CreateImm(Offset)); + OpIdx = 5; + } else { + MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 0))); + OpIdx = 4; + } + } else { + MI.addOperand(MCOperand::CreateImm(OneCopOpc ? GetCopOpc(insn) + : GetCopOpc1(insn, NoGPR))); + + MI.addOperand(NoGPR ? MCOperand::CreateImm(decodeRd(insn)) + : MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + MI.addOperand(OneCopOpc ? MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn))) + : MCOperand::CreateImm(decodeRn(insn))); + + MI.addOperand(MCOperand::CreateImm(decodeRm(insn))); + + OpIdx = 5; + + if (!OneCopOpc) { + MI.addOperand(MCOperand::CreateImm(GetCopOpc2(insn))); + ++OpIdx; + } + } + + return true; +} + +// Branch Instructions. +// BLr9: SignExtend(Imm24:'00', 32) +// Bcc, BLr9_pred: SignExtend(Imm24:'00', 32) Pred0 Pred1 +// SMC: ZeroExtend(imm4, 32) +// SVC: ZeroExtend(Imm24, 32) +// +// Various coprocessor instructions are assigned BrFrm arbitrarily. +// Delegates to DisassembleCoprocessor() helper function. +// +// MRS/MRSsys: Rd +// MSR/MSRsys: Rm mask=Inst{19-16} +// BXJ: Rm +// MSRi/MSRsysi: so_imm +// SRSW/SRS: addrmode4:$addr mode_imm +// RFEW/RFE: addrmode4:$addr Rn +static bool DisassembleBrFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + if (CoprocessorOpcode(Opcode)) + return DisassembleCoprocessor(MI, Opcode, insn, NumOps, NumOpsAdded, B); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + // MRS and MRSsys take one GPR reg Rd. + if (Opcode == ARM::MRS || Opcode == ARM::MRSsys) { + assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + NumOpsAdded = 1; + return true; + } + // BXJ takes one GPR reg Rm. + if (Opcode == ARM::BXJ) { + assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + NumOpsAdded = 1; + return true; + } + // MSR and MSRsys take one GPR reg Rm, followed by the mask. + if (Opcode == ARM::MSR || Opcode == ARM::MSRsys) { + assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16))); + NumOpsAdded = 2; + return true; + } + // MSRi and MSRsysi take one so_imm operand, followed by the mask. + if (Opcode == ARM::MSRi || Opcode == ARM::MSRsysi) { + // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0. + // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}. + // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot(). + unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF; + unsigned Imm = insn & 0xFF; + MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot))); + MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16))); + NumOpsAdded = 2; + return true; + } + // SRSW and SRS requires addrmode4:$addr for ${addr:submode}, followed by the + // mode immediate (Inst{4-0}). + if (Opcode == ARM::SRSW || Opcode == ARM::SRS || + Opcode == ARM::RFEW || Opcode == ARM::RFE) { + // ARMInstPrinter::printAddrMode4Operand() prints special mode string + // if the base register is SP; so don't set ARM::SP. + MI.addOperand(MCOperand::CreateReg(0)); + ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn)); + MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode))); + + if (Opcode == ARM::SRSW || Opcode == ARM::SRS) + MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0))); + else + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + NumOpsAdded = 3; + return true; + } + + assert((Opcode == ARM::Bcc || Opcode == ARM::BLr9 || Opcode == ARM::BLr9_pred + || Opcode == ARM::SMC || Opcode == ARM::SVC) && + "Unexpected Opcode"); + + assert(NumOps >= 1 && OpInfo[0].RegClass == 0 && "Reg operand expected"); + + int Imm32 = 0; + if (Opcode == ARM::SMC) { + // ZeroExtend(imm4, 32) where imm24 = Inst{3-0}. + Imm32 = slice(insn, 3, 0); + } else if (Opcode == ARM::SVC) { + // ZeroExtend(imm24, 32) where imm24 = Inst{23-0}. + Imm32 = slice(insn, 23, 0); + } else { + // SignExtend(imm24:'00', 32) where imm24 = Inst{23-0}. + unsigned Imm26 = slice(insn, 23, 0) << 2; + //Imm32 = signextend<signed int, 26>(Imm26); + Imm32 = SignExtend32<26>(Imm26); + + // When executing an ARM instruction, PC reads as the address of the current + // instruction plus 8. The assembler subtracts 8 from the difference + // between the branch instruction and the target address, disassembler has + // to add 8 to compensate. + Imm32 += 8; + } + + MI.addOperand(MCOperand::CreateImm(Imm32)); + NumOpsAdded = 1; + + return true; +} + +// Misc. Branch Instructions. +// BR_JTadd, BR_JTr, BR_JTm +// BLXr9, BXr9 +// BRIND, BX_RET +static bool DisassembleBrMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + // BX_RET has only two predicate operands, do an early return. + if (Opcode == ARM::BX_RET) + return true; + + // BLXr9 and BRIND take one GPR reg. + if (Opcode == ARM::BLXr9 || Opcode == ARM::BRIND) { + assert(NumOps >= 1 && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + OpIdx = 1; + return true; + } + + // BR_JTadd is an ADD with Rd = PC, (Rn, Rm) as the target and index regs. + if (Opcode == ARM::BR_JTadd) { + // InOperandList with GPR:$target and GPR:$idx regs. + + assert(NumOps == 4 && "Expect 4 operands"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + + // Fill in the two remaining imm operands to signify build completion. + MI.addOperand(MCOperand::CreateImm(0)); + MI.addOperand(MCOperand::CreateImm(0)); + + OpIdx = 4; + return true; + } + + // BR_JTr is a MOV with Rd = PC, and Rm as the source register. + if (Opcode == ARM::BR_JTr) { + // InOperandList with GPR::$target reg. + + assert(NumOps == 3 && "Expect 3 operands"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + + // Fill in the two remaining imm operands to signify build completion. + MI.addOperand(MCOperand::CreateImm(0)); + MI.addOperand(MCOperand::CreateImm(0)); + + OpIdx = 3; + return true; + } + + // BR_JTm is an LDR with Rt = PC. + if (Opcode == ARM::BR_JTm) { + // This is the reg/reg form, with base reg followed by +/- reg shop imm. + // See also ARMAddressingModes.h (Addressing Mode #2). + + assert(NumOps == 5 && getIBit(insn) == 1 && "Expect 5 operands && I-bit=1"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub; + + // Disassemble the offset reg (Rm), shift type, and immediate shift length. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + // Inst{6-5} encodes the shift opcode. + ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5)); + // Inst{11-7} encodes the imm5 shift amount. + unsigned ShImm = slice(insn, 11, 7); + + // A8.4.1. Possible rrx or shift amount of 32... + getImmShiftSE(ShOp, ShImm); + MI.addOperand(MCOperand::CreateImm( + ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp))); + + // Fill in the two remaining imm operands to signify build completion. + MI.addOperand(MCOperand::CreateImm(0)); + MI.addOperand(MCOperand::CreateImm(0)); + + OpIdx = 5; + return true; + } + + assert(0 && "Unexpected BrMiscFrm Opcode"); + return false; +} + +static inline bool getBFCInvMask(uint32_t insn, uint32_t &mask) { + uint32_t lsb = slice(insn, 11, 7); + uint32_t msb = slice(insn, 20, 16); + uint32_t Val = 0; + if (msb < lsb) { + DEBUG(errs() << "Encoding error: msb < lsb\n"); + return false; + } + + for (uint32_t i = lsb; i <= msb; ++i) + Val |= (1 << i); + mask = ~Val; + return true; +} + +static inline bool SaturateOpcode(unsigned Opcode) { + switch (Opcode) { + case ARM::SSATlsl: case ARM::SSATasr: case ARM::SSAT16: + case ARM::USATlsl: case ARM::USATasr: case ARM::USAT16: + return true; + default: + return false; + } +} + +static inline unsigned decodeSaturatePos(unsigned Opcode, uint32_t insn) { + switch (Opcode) { + case ARM::SSATlsl: + case ARM::SSATasr: + return slice(insn, 20, 16) + 1; + case ARM::SSAT16: + return slice(insn, 19, 16) + 1; + case ARM::USATlsl: + case ARM::USATasr: + return slice(insn, 20, 16); + case ARM::USAT16: + return slice(insn, 19, 16); + default: + assert(0 && "Invalid opcode passed in"); + return 0; + } +} + +// A major complication is the fact that some of the saturating add/subtract +// operations have Rd Rm Rn, instead of the "normal" Rd Rn Rm. +// They are QADD, QDADD, QDSUB, and QSUB. +static bool DisassembleDPFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + unsigned short NumDefs = TID.getNumDefs(); + bool isUnary = isUnaryDP(TID.TSFlags); + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + // Disassemble register def if there is one. + if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + } + + // Now disassemble the src operands. + if (OpIdx >= NumOps) + return false; + + // SSAT/SSAT16/USAT/USAT16 has imm operand after Rd. + if (SaturateOpcode(Opcode)) { + MI.addOperand(MCOperand::CreateImm(decodeSaturatePos(Opcode, insn))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + + if (Opcode == ARM::SSAT16 || Opcode == ARM::USAT16) { + OpIdx += 2; + return true; + } + + // For SSAT operand reg (Rm) has been disassembled above. + // Now disassemble the shift amount. + + // Inst{11-7} encodes the imm5 shift amount. + unsigned ShAmt = slice(insn, 11, 7); + + // A8.6.183. Possible ASR shift amount of 32... + if (Opcode == ARM::SSATasr && ShAmt == 0) + ShAmt = 32; + + MI.addOperand(MCOperand::CreateImm(ShAmt)); + + OpIdx += 3; + return true; + } + + // Special-case handling of BFC/BFI/SBFX/UBFX. + if (Opcode == ARM::BFC || Opcode == ARM::BFI) { + // TIED_TO operand skipped for BFC and Inst{3-0} (Reg) for BFI. + MI.addOperand(MCOperand::CreateReg(Opcode == ARM::BFC ? 0 + : getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + uint32_t mask = 0; + if (!getBFCInvMask(insn, mask)) + return false; + + MI.addOperand(MCOperand::CreateImm(mask)); + OpIdx += 2; + return true; + } + if (Opcode == ARM::SBFX || Opcode == ARM::UBFX) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 7))); + MI.addOperand(MCOperand::CreateImm(slice(insn, 20, 16) + 1)); + OpIdx += 3; + return true; + } + + bool RmRn = (Opcode == ARM::QADD || Opcode == ARM::QDADD || + Opcode == ARM::QDSUB || Opcode == ARM::QSUB); + + // BinaryDP has an Rn operand. + if (!isUnary) { + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + RmRn ? decodeRm(insn) : decodeRn(insn)))); + ++OpIdx; + } + + // If this is a two-address operand, skip it, e.g., MOVCCr operand 1. + if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) { + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + // Now disassemble operand 2. + if (OpIdx >= NumOps) + return false; + + if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) { + // We have a reg/reg form. + // Assert disabled because saturating operations, e.g., A8.6.127 QASX, are + // routed here as well. + // assert(getIBit(insn) == 0 && "I_Bit != '0' reg/reg form"); + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + RmRn? decodeRn(insn) : decodeRm(insn)))); + ++OpIdx; + } else if (Opcode == ARM::MOVi16 || Opcode == ARM::MOVTi16) { + // We have an imm16 = imm4:imm12 (imm4=Inst{19:16}, imm12 = Inst{11:0}). + assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form"); + unsigned Imm16 = slice(insn, 19, 16) << 12 | slice(insn, 11, 0); + MI.addOperand(MCOperand::CreateImm(Imm16)); + ++OpIdx; + } else { + // We have a reg/imm form. + // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0. + // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}. + // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot(). + assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form"); + unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF; + unsigned Imm = insn & 0xFF; + MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot))); + ++OpIdx; + } + + return true; +} + +static bool DisassembleDPSoRegFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + unsigned short NumDefs = TID.getNumDefs(); + bool isUnary = isUnaryDP(TID.TSFlags); + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + // Disassemble register def if there is one. + if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + } + + // Disassemble the src operands. + if (OpIdx >= NumOps) + return false; + + // BinaryDP has an Rn operand. + if (!isUnary) { + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + // If this is a two-address operand, skip it, e.g., MOVCCs operand 1. + if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) { + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + // Disassemble operand 2, which consists of three components. + if (OpIdx + 2 >= NumOps) + return false; + + assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) && + (OpInfo[OpIdx+1].RegClass == ARM::GPRRegClassID) && + (OpInfo[OpIdx+2].RegClass == 0) && + "Expect 3 reg operands"); + + // Register-controlled shifts have Inst{7} = 0 and Inst{4} = 1. + unsigned Rs = slice(insn, 4, 4); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + if (Rs) { + // Register-controlled shifts: [Rm, Rs, shift]. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + // Inst{6-5} encodes the shift opcode. + ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5)); + MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, 0))); + } else { + // Constant shifts: [Rm, reg0, shift_imm]. + MI.addOperand(MCOperand::CreateReg(0)); // NoRegister + // Inst{6-5} encodes the shift opcode. + ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5)); + // Inst{11-7} encodes the imm5 shift amount. + unsigned ShImm = slice(insn, 11, 7); + + // A8.4.1. Possible rrx or shift amount of 32... + getImmShiftSE(ShOp, ShImm); + MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShImm))); + } + OpIdx += 3; + + return true; +} + +static bool DisassembleLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, bool isStore, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + bool isPrePost = isPrePostLdSt(TID.TSFlags); + const TargetOperandInfo *OpInfo = TID.OpInfo; + if (!OpInfo) return false; + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(((!isStore && TID.getNumDefs() > 0) || + (isStore && (TID.getNumDefs() == 0 || isPrePost))) + && "Invalid arguments"); + + // Operand 0 of a pre- and post-indexed store is the address base writeback. + if (isPrePost && isStore) { + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + // Disassemble the dst/src operand. + if (OpIdx >= NumOps) + return false; + + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + + // After dst of a pre- and post-indexed load is the address base writeback. + if (isPrePost && !isStore) { + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + // Disassemble the base operand. + if (OpIdx >= NumOps) + return false; + + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + assert((!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) + && "Index mode or tied_to operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + + // For reg/reg form, base reg is followed by +/- reg shop imm. + // For immediate form, it is followed by +/- imm12. + // See also ARMAddressingModes.h (Addressing Mode #2). + if (OpIdx + 1 >= NumOps) + return false; + + assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) && + (OpInfo[OpIdx+1].RegClass == 0) && + "Expect 1 reg operand followed by 1 imm operand"); + + ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub; + if (getIBit(insn) == 0) { + MI.addOperand(MCOperand::CreateReg(0)); + + // Disassemble the 12-bit immediate offset. + unsigned Imm12 = slice(insn, 11, 0); + unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, Imm12, ARM_AM::no_shift); + MI.addOperand(MCOperand::CreateImm(Offset)); + } else { + // Disassemble the offset reg (Rm), shift type, and immediate shift length. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + // Inst{6-5} encodes the shift opcode. + ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5)); + // Inst{11-7} encodes the imm5 shift amount. + unsigned ShImm = slice(insn, 11, 7); + + // A8.4.1. Possible rrx or shift amount of 32... + getImmShiftSE(ShOp, ShImm); + MI.addOperand(MCOperand::CreateImm( + ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp))); + } + OpIdx += 2; + + return true; +} + +static bool DisassembleLdFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false, B); +} + +static bool DisassembleStFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true, B); +} + +static bool HasDualReg(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST: + case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST: + return true; + } +} + +static bool DisassembleLdStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, bool isStore, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + bool isPrePost = isPrePostLdSt(TID.TSFlags); + const TargetOperandInfo *OpInfo = TID.OpInfo; + if (!OpInfo) return false; + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(((!isStore && TID.getNumDefs() > 0) || + (isStore && (TID.getNumDefs() == 0 || isPrePost))) + && "Invalid arguments"); + + // Operand 0 of a pre- and post-indexed store is the address base writeback. + if (isPrePost && isStore) { + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + bool DualReg = HasDualReg(Opcode); + + // Disassemble the dst/src operand. + if (OpIdx >= NumOps) + return false; + + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + + // Fill in LDRD and STRD's second operand. + if (DualReg) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn) + 1))); + ++OpIdx; + } + + // After dst of a pre- and post-indexed load is the address base writeback. + if (isPrePost && !isStore) { + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + // Disassemble the base operand. + if (OpIdx >= NumOps) + return false; + + assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + assert((!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) + && "Index mode or tied_to operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + + // For reg/reg form, base reg is followed by +/- reg. + // For immediate form, it is followed by +/- imm8. + // See also ARMAddressingModes.h (Addressing Mode #3). + if (OpIdx + 1 >= NumOps) + return false; + + assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) && + (OpInfo[OpIdx+1].RegClass == 0) && + "Expect 1 reg operand followed by 1 imm operand"); + + ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub; + if (getAM3IBit(insn) == 1) { + MI.addOperand(MCOperand::CreateReg(0)); + + // Disassemble the 8-bit immediate offset. + unsigned Imm4H = (insn >> ARMII::ImmHiShift) & 0xF; + unsigned Imm4L = insn & 0xF; + unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, (Imm4H << 4) | Imm4L); + MI.addOperand(MCOperand::CreateImm(Offset)); + } else { + // Disassemble the offset reg (Rm). + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, 0); + MI.addOperand(MCOperand::CreateImm(Offset)); + } + OpIdx += 2; + + return true; +} + +static bool DisassembleLdMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false, + B); +} + +static bool DisassembleStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true, B); +} + +// The algorithm for disassembly of LdStMulFrm is different from others because +// it explicitly populates the two predicate operands after operand 0 (the base) +// and operand 1 (the AM4 mode imm). After operand 3, we need to populate the +// reglist with each affected register encoded as an MCOperand. +static bool DisassembleLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 5 && "LdStMulFrm expects NumOps >= 5"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn)); + + // Writeback to base, if necessary. + if (Opcode == ARM::LDM_UPD || Opcode == ARM::STM_UPD) { + MI.addOperand(MCOperand::CreateReg(Base)); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(Base)); + + ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn)); + MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode))); + + // Handling the two predicate operands before the reglist. + int64_t CondVal = insn >> ARMII::CondShift; + MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal)); + MI.addOperand(MCOperand::CreateReg(ARM::CPSR)); + + OpIdx += 4; + + // Fill the variadic part of reglist. + unsigned RegListBits = insn & ((1 << 16) - 1); + for (unsigned i = 0; i < 16; ++i) { + if ((RegListBits >> i) & 1) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + i))); + ++OpIdx; + } + } + + return true; +} + +// LDREX, LDREXB, LDREXH: Rd Rn +// LDREXD: Rd Rd+1 Rn +// STREX, STREXB, STREXH: Rd Rm Rn +// STREXD: Rd Rm Rm+1 Rn +// +// SWP, SWPB: Rd Rm Rn +static bool DisassembleLdStExFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && "Expect 2 reg operands"); + + bool isStore = slice(insn, 20, 20) == 0; + bool isDW = (Opcode == ARM::LDREXD || Opcode == ARM::STREXD); + + // Add the destination operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + + // Store register Exclusive needs a source operand. + if (isStore) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + ++OpIdx; + + if (isDW) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)+1))); + ++OpIdx; + } + } else if (isDW) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)+1))); + ++OpIdx; + } + + // Finally add the pointer operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + + return true; +} + +// Misc. Arithmetic Instructions. +// CLZ: Rd Rm +// PKHBT, PKHTB: Rd Rn Rm , LSL/ASR #imm5 +// RBIT, REV, REV16, REVSH: Rd Rm +static bool DisassembleArithMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && "Expect 2 reg operands"); + + bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID; + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + + if (ThreeReg) { + assert(NumOps >= 4 && "Expect >= 4 operands"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + ++OpIdx; + + // If there is still an operand info left which is an immediate operand, add + // an additional imm5 LSL/ASR operand. + if (ThreeReg && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + // Extract the 5-bit immediate field Inst{11-7}. + unsigned ShiftAmt = (insn >> ARMII::ShiftShift) & 0x1F; + MI.addOperand(MCOperand::CreateImm(ShiftAmt)); + ++OpIdx; + } + + return true; +} + +// Extend instructions. +// SXT* and UXT*: Rd [Rn] Rm [rot_imm]. +// The 2nd operand register is Rn and the 3rd operand regsiter is Rm for the +// three register operand form. Otherwise, Rn=0b1111 and only Rm is used. +static bool DisassembleExtFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && "Expect 2 reg operands"); + + bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID; + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + + if (ThreeReg) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + ++OpIdx; + + // If there is still an operand info left which is an immediate operand, add + // an additional rotate immediate operand. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + // Extract the 2-bit rotate field Inst{11-10}. + unsigned rot = (insn >> ARMII::ExtRotImmShift) & 3; + // Rotation by 8, 16, or 24 bits. + MI.addOperand(MCOperand::CreateImm(rot << 3)); + ++OpIdx; + } + + return true; +} + +///////////////////////////////////// +// // +// Utility Functions For VFP // +// // +///////////////////////////////////// + +// Extract/Decode Dd/Sd: +// +// SP => d = UInt(Vd:D) +// DP => d = UInt(D:Vd) +static unsigned decodeVFPRd(uint32_t insn, bool isSPVFP) { + return isSPVFP ? (decodeRd(insn) << 1 | getDBit(insn)) + : (decodeRd(insn) | getDBit(insn) << 4); +} + +// Extract/Decode Dn/Sn: +// +// SP => n = UInt(Vn:N) +// DP => n = UInt(N:Vn) +static unsigned decodeVFPRn(uint32_t insn, bool isSPVFP) { + return isSPVFP ? (decodeRn(insn) << 1 | getNBit(insn)) + : (decodeRn(insn) | getNBit(insn) << 4); +} + +// Extract/Decode Dm/Sm: +// +// SP => m = UInt(Vm:M) +// DP => m = UInt(M:Vm) +static unsigned decodeVFPRm(uint32_t insn, bool isSPVFP) { + return isSPVFP ? (decodeRm(insn) << 1 | getMBit(insn)) + : (decodeRm(insn) | getMBit(insn) << 4); +} + +// A7.5.1 +#if 0 +static uint64_t VFPExpandImm(unsigned char byte, unsigned N) { + assert(N == 32 || N == 64); + + uint64_t Result; + unsigned bit6 = slice(byte, 6, 6); + if (N == 32) { + Result = slice(byte, 7, 7) << 31 | slice(byte, 5, 0) << 19; + if (bit6) + Result |= 0x1f << 25; + else + Result |= 0x1 << 30; + } else { + Result = (uint64_t)slice(byte, 7, 7) << 63 | + (uint64_t)slice(byte, 5, 0) << 48; + if (bit6) + Result |= 0xffL << 54; + else + Result |= 0x1L << 62; + } + return Result; +} +#endif + +// VFP Unary Format Instructions: +// +// VCMP[E]ZD, VCMP[E]ZS: compares one floating-point register with zero +// VCVTDS, VCVTSD: converts between double-precision and single-precision +// The rest of the instructions have homogeneous [VFP]Rd and [VFP]Rm registers. +static bool DisassembleVFPUnaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 1 && "VFPUnaryFrm expects NumOps >= 1"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + unsigned RegClass = OpInfo[OpIdx].RegClass; + assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) && + "Reg operand expected"); + bool isSP = (RegClass == ARM::SPRRegClassID); + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, decodeVFPRd(insn, isSP)))); + ++OpIdx; + + // Early return for compare with zero instructions. + if (Opcode == ARM::VCMPEZD || Opcode == ARM::VCMPEZS + || Opcode == ARM::VCMPZD || Opcode == ARM::VCMPZS) + return true; + + RegClass = OpInfo[OpIdx].RegClass; + assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) && + "Reg operand expected"); + isSP = (RegClass == ARM::SPRRegClassID); + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, decodeVFPRm(insn, isSP)))); + ++OpIdx; + + return true; +} + +// All the instructions have homogeneous [VFP]Rd, [VFP]Rn, and [VFP]Rm regs. +// Some of them have operand constraints which tie the first operand in the +// InOperandList to that of the dst. As far as asm printing is concerned, this +// tied_to operand is simply skipped. +static bool DisassembleVFPBinaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 3 && "VFPBinaryFrm expects NumOps >= 3"); + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + unsigned RegClass = OpInfo[OpIdx].RegClass; + assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) && + "Reg operand expected"); + bool isSP = (RegClass == ARM::SPRRegClassID); + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, decodeVFPRd(insn, isSP)))); + ++OpIdx; + + // Skip tied_to operand constraint. + if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) { + assert(NumOps >= 4 && "Expect >=4 operands"); + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, decodeVFPRn(insn, isSP)))); + ++OpIdx; + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, decodeVFPRm(insn, isSP)))); + ++OpIdx; + + return true; +} + +// A8.6.295 vcvt (floating-point <-> integer) +// Int to FP: VSITOD, VSITOS, VUITOD, VUITOS +// FP to Int: VTOSI[Z|R]D, VTOSI[Z|R]S, VTOUI[Z|R]D, VTOUI[Z|R]S +// +// A8.6.297 vcvt (floating-point and fixed-point) +// Dd|Sd Dd|Sd(TIED_TO) #fbits(= 16|32 - UInt(imm4:i)) +static bool DisassembleVFPConv1Frm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 2 && "VFPConv1Frm expects NumOps >= 2"); + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + if (!OpInfo) return false; + + bool SP = slice(insn, 8, 8) == 0; // A8.6.295 & A8.6.297 + bool fixed_point = slice(insn, 17, 17) == 1; // A8.6.297 + unsigned RegClassID = SP ? ARM::SPRRegClassID : ARM::DPRRegClassID; + + if (fixed_point) { + // A8.6.297 + assert(NumOps >= 3 && "Expect >= 3 operands"); + int size = slice(insn, 7, 7) == 0 ? 16 : 32; + int fbits = size - (slice(insn,3,0) << 1 | slice(insn,5,5)); + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClassID, + decodeVFPRd(insn, SP)))); + + assert(TID.getOperandConstraint(1, TOI::TIED_TO) != -1 && + "Tied to operand expected"); + MI.addOperand(MI.getOperand(0)); + + assert(OpInfo[2].RegClass == 0 && !OpInfo[2].isPredicate() && + !OpInfo[2].isOptionalDef() && "Imm operand expected"); + MI.addOperand(MCOperand::CreateImm(fbits)); + + NumOpsAdded = 3; + } else { + // A8.6.295 + // The Rd (destination) and Rm (source) bits have different interpretations + // depending on their single-precisonness. + unsigned d, m; + if (slice(insn, 18, 18) == 1) { // to_integer operation + d = decodeVFPRd(insn, true /* Is Single Precision */); + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::SPRRegClassID, d))); + m = decodeVFPRm(insn, SP); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, m))); + } else { + d = decodeVFPRd(insn, SP); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, d))); + m = decodeVFPRm(insn, true /* Is Single Precision */); + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::SPRRegClassID, m))); + } + NumOpsAdded = 2; + } + + return true; +} + +// VMOVRS - A8.6.330 +// Rt => Rd; Sn => UInt(Vn:N) +static bool DisassembleVFPConv2Frm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 2 && "VFPConv2Frm expects NumOps >= 2"); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID, + decodeVFPRn(insn, true)))); + NumOpsAdded = 2; + return true; +} + +// VMOVRRD - A8.6.332 +// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm) +// +// VMOVRRS - A8.6.331 +// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1 +static bool DisassembleVFPConv3Frm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 3 && "VFPConv3Frm expects NumOps >= 3"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + OpIdx = 2; + + if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) { + unsigned Sm = decodeVFPRm(insn, true); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID, + Sm))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID, + Sm+1))); + OpIdx += 2; + } else { + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::DPRRegClassID, + decodeVFPRm(insn, false)))); + ++OpIdx; + } + return true; +} + +// VMOVSR - A8.6.330 +// Rt => Rd; Sn => UInt(Vn:N) +static bool DisassembleVFPConv4Frm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 2 && "VFPConv4Frm expects NumOps >= 2"); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID, + decodeVFPRn(insn, true)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + NumOpsAdded = 2; + return true; +} + +// VMOVDRR - A8.6.332 +// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm) +// +// VMOVRRS - A8.6.331 +// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1 +static bool DisassembleVFPConv5Frm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 3 && "VFPConv5Frm expects NumOps >= 3"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) { + unsigned Sm = decodeVFPRm(insn, true); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID, + Sm))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID, + Sm+1))); + OpIdx += 2; + } else { + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::DPRRegClassID, + decodeVFPRm(insn, false)))); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + OpIdx += 2; + return true; +} + +// VFP Load/Store Instructions. +// VLDRD, VLDRS, VSTRD, VSTRS +static bool DisassembleVFPLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 3 && "VFPLdStFrm expects NumOps >= 3"); + + bool isSPVFP = (Opcode == ARM::VLDRS || Opcode == ARM::VSTRS) ? true : false; + unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID; + + // Extract Dd/Sd for operand 0. + unsigned RegD = decodeVFPRd(insn, isSPVFP); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, RegD))); + + unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn)); + MI.addOperand(MCOperand::CreateReg(Base)); + + // Next comes the AM5 Opcode. + ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub; + unsigned char Imm8 = insn & 0xFF; + MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(AddrOpcode, Imm8))); + + NumOpsAdded = 3; + + return true; +} + +// VFP Load/Store Multiple Instructions. +// This is similar to the algorithm for LDM/STM in that operand 0 (the base) and +// operand 1 (the AM5 mode imm) is followed by two predicate operands. It is +// followed by a reglist of either DPR(s) or SPR(s). +// +// VLDMD[_UPD], VLDMS[_UPD], VSTMD[_UPD], VSTMS[_UPD] +static bool DisassembleVFPLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 5 && "VFPLdStMulFrm expects NumOps >= 5"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn)); + + // Writeback to base, if necessary. + if (Opcode == ARM::VLDMD_UPD || Opcode == ARM::VLDMS_UPD || + Opcode == ARM::VSTMD_UPD || Opcode == ARM::VSTMS_UPD) { + MI.addOperand(MCOperand::CreateReg(Base)); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(Base)); + + // Next comes the AM5 Opcode. + ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn)); + // Must be either "ia" or "db" submode. + if (SubMode != ARM_AM::ia && SubMode != ARM_AM::db) { + DEBUG(errs() << "Illegal addressing mode 5 sub-mode!\n"); + return false; + } + + unsigned char Imm8 = insn & 0xFF; + MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(SubMode, Imm8))); + + // Handling the two predicate operands before the reglist. + int64_t CondVal = insn >> ARMII::CondShift; + MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal)); + MI.addOperand(MCOperand::CreateReg(ARM::CPSR)); + + OpIdx += 4; + + bool isSPVFP = (Opcode == ARM::VLDMS || Opcode == ARM::VLDMS_UPD || + Opcode == ARM::VSTMS || Opcode == ARM::VSTMS_UPD) ? true : false; + unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID; + + // Extract Dd/Sd. + unsigned RegD = decodeVFPRd(insn, isSPVFP); + + // Fill the variadic part of reglist. + unsigned Regs = isSPVFP ? Imm8 : Imm8/2; + for (unsigned i = 0; i < Regs; ++i) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, + RegD + i))); + ++OpIdx; + } + + return true; +} + +// Misc. VFP Instructions. +// FMSTAT (vmrs with Rt=0b1111, i.e., to apsr_nzcv and no register operand) +// FCONSTD (DPR and a VFPf64Imm operand) +// FCONSTS (SPR and a VFPf32Imm operand) +// VMRS/VMSR (GPR operand) +static bool DisassembleVFPMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + if (Opcode == ARM::FMSTAT) + return true; + + assert(NumOps >= 2 && "VFPMiscFrm expects >=2 operands"); + + unsigned RegEnum = 0; + switch (OpInfo[0].RegClass) { + case ARM::DPRRegClassID: + RegEnum = getRegisterEnum(B, ARM::DPRRegClassID, decodeVFPRd(insn, false)); + break; + case ARM::SPRRegClassID: + RegEnum = getRegisterEnum(B, ARM::SPRRegClassID, decodeVFPRd(insn, true)); + break; + case ARM::GPRRegClassID: + RegEnum = getRegisterEnum(B, ARM::GPRRegClassID, decodeRd(insn)); + break; + default: + assert(0 && "Invalid reg class id"); + return false; + } + + MI.addOperand(MCOperand::CreateReg(RegEnum)); + ++OpIdx; + + // Extract/decode the f64/f32 immediate. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + // The asm syntax specifies the before-expanded <imm>. + // Not VFPExpandImm(slice(insn,19,16) << 4 | slice(insn, 3, 0), + // Opcode == ARM::FCONSTD ? 64 : 32) + MI.addOperand(MCOperand::CreateImm(slice(insn,19,16)<<4 | slice(insn,3,0))); + ++OpIdx; + } + + return true; +} + +// DisassembleThumbFrm() is defined in ThumbDisassemblerCore.h file. +#include "ThumbDisassemblerCore.h" + +///////////////////////////////////////////////////// +// // +// Utility Functions For ARM Advanced SIMD // +// // +///////////////////////////////////////////////////// + +// The following NEON namings are based on A8.6.266 VABA, VABAL. Notice that +// A8.6.303 VDUP (ARM core register)'s D/Vd pair is the N/Vn pair of VABA/VABAL. + +// A7.3 Register encoding + +// Extract/Decode NEON D/Vd: +// +// Note that for quadword, Qd = UInt(D:Vd<3:1>) = Inst{22:15-13}, whereas for +// doubleword, Dd = UInt(D:Vd). We compensate for this difference by +// handling it in the getRegisterEnum() utility function. +// D = Inst{22}, Vd = Inst{15-12} +static unsigned decodeNEONRd(uint32_t insn) { + return ((insn >> ARMII::NEON_D_BitShift) & 1) << 4 + | ((insn >> ARMII::NEON_RegRdShift) & ARMII::NEONRegMask); +} + +// Extract/Decode NEON N/Vn: +// +// Note that for quadword, Qn = UInt(N:Vn<3:1>) = Inst{7:19-17}, whereas for +// doubleword, Dn = UInt(N:Vn). We compensate for this difference by +// handling it in the getRegisterEnum() utility function. +// N = Inst{7}, Vn = Inst{19-16} +static unsigned decodeNEONRn(uint32_t insn) { + return ((insn >> ARMII::NEON_N_BitShift) & 1) << 4 + | ((insn >> ARMII::NEON_RegRnShift) & ARMII::NEONRegMask); +} + +// Extract/Decode NEON M/Vm: +// +// Note that for quadword, Qm = UInt(M:Vm<3:1>) = Inst{5:3-1}, whereas for +// doubleword, Dm = UInt(M:Vm). We compensate for this difference by +// handling it in the getRegisterEnum() utility function. +// M = Inst{5}, Vm = Inst{3-0} +static unsigned decodeNEONRm(uint32_t insn) { + return ((insn >> ARMII::NEON_M_BitShift) & 1) << 4 + | ((insn >> ARMII::NEON_RegRmShift) & ARMII::NEONRegMask); +} + +namespace { +enum ElemSize { + ESizeNA = 0, + ESize8 = 8, + ESize16 = 16, + ESize32 = 32, + ESize64 = 64 +}; +} // End of unnamed namespace + +// size field -> Inst{11-10} +// index_align field -> Inst{7-4} +// +// The Lane Index interpretation depends on the Data Size: +// 8 (encoded as size = 0b00) -> Index = index_align[3:1] +// 16 (encoded as size = 0b01) -> Index = index_align[3:2] +// 32 (encoded as size = 0b10) -> Index = index_align[3] +// +// Ref: A8.6.317 VLD4 (single 4-element structure to one lane). +static unsigned decodeLaneIndex(uint32_t insn) { + unsigned size = insn >> 10 & 3; + assert((size == 0 || size == 1 || size == 2) && + "Encoding error: size should be either 0, 1, or 2"); + + unsigned index_align = insn >> 4 & 0xF; + return (index_align >> 1) >> size; +} + +// imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4) +// op = Inst{5}, cmode = Inst{11-8} +// i = Inst{24} (ARM architecture) +// imm3 = Inst{18-16}, imm4 = Inst{3-0} +// Ref: Table A7-15 Modified immediate values for Advanced SIMD instructions. +static uint64_t decodeN1VImm(uint32_t insn, ElemSize esize) { + unsigned char cmode = (insn >> 8) & 0xF; + unsigned char Imm8 = ((insn >> 24) & 1) << 7 | + ((insn >> 16) & 7) << 4 | + (insn & 0xF); + uint64_t Imm64 = 0; + + switch (esize) { + case ESize8: + Imm64 = Imm8; + break; + case ESize16: + Imm64 = Imm8 << 8*(cmode >> 1 & 1); + break; + case ESize32: { + if (cmode == 12) + Imm64 = (Imm8 << 8) | 0xFF; + else if (cmode == 13) + Imm64 = (Imm8 << 16) | 0xFFFF; + else { + // Imm8 to be shifted left by how many bytes... + Imm64 = Imm8 << 8*(cmode >> 1 & 3); + } + break; + } + case ESize64: { + for (unsigned i = 0; i < 8; ++i) + if ((Imm8 >> i) & 1) + Imm64 |= (uint64_t)0xFF << 8*i; + break; + } + default: + assert(0 && "Unreachable code!"); + return 0; + } + + return Imm64; +} + +// A8.6.339 VMUL, VMULL (by scalar) +// ESize16 => m = Inst{2-0} (Vm<2:0>) D0-D7 +// ESize32 => m = Inst{3-0} (Vm<3:0>) D0-D15 +static unsigned decodeRestrictedDm(uint32_t insn, ElemSize esize) { + switch (esize) { + case ESize16: + return insn & 7; + case ESize32: + return insn & 0xF; + default: + assert(0 && "Unreachable code!"); + return 0; + } +} + +// A8.6.339 VMUL, VMULL (by scalar) +// ESize16 => index = Inst{5:3} (M:Vm<3>) D0-D7 +// ESize32 => index = Inst{5} (M) D0-D15 +static unsigned decodeRestrictedDmIndex(uint32_t insn, ElemSize esize) { + switch (esize) { + case ESize16: + return (((insn >> 5) & 1) << 1) | ((insn >> 3) & 1); + case ESize32: + return (insn >> 5) & 1; + default: + assert(0 && "Unreachable code!"); + return 0; + } +} + +// A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD) +// (64 - <fbits>) is encoded as imm6, i.e., Inst{21-16}. +static unsigned decodeVCVTFractionBits(uint32_t insn) { + return 64 - ((insn >> 16) & 0x3F); +} + +// A8.6.302 VDUP (scalar) +// ESize8 => index = Inst{19-17} +// ESize16 => index = Inst{19-18} +// ESize32 => index = Inst{19} +static unsigned decodeNVLaneDupIndex(uint32_t insn, ElemSize esize) { + switch (esize) { + case ESize8: + return (insn >> 17) & 7; + case ESize16: + return (insn >> 18) & 3; + case ESize32: + return (insn >> 19) & 1; + default: + assert(0 && "Unspecified element size!"); + return 0; + } +} + +// A8.6.328 VMOV (ARM core register to scalar) +// A8.6.329 VMOV (scalar to ARM core register) +// ESize8 => index = Inst{21:6-5} +// ESize16 => index = Inst{21:6} +// ESize32 => index = Inst{21} +static unsigned decodeNVLaneOpIndex(uint32_t insn, ElemSize esize) { + switch (esize) { + case ESize8: + return ((insn >> 21) & 1) << 2 | ((insn >> 5) & 3); + case ESize16: + return ((insn >> 21) & 1) << 1 | ((insn >> 6) & 1); + case ESize32: + return ((insn >> 21) & 1); + default: + assert(0 && "Unspecified element size!"); + return 0; + } +} + +// Imm6 = Inst{21-16}, L = Inst{7} +// +// LeftShift == true (A8.6.367 VQSHL, A8.6.387 VSLI): +// case L:imm6 of +// '0001xxx' => esize = 8; shift_amount = imm6 - 8 +// '001xxxx' => esize = 16; shift_amount = imm6 - 16 +// '01xxxxx' => esize = 32; shift_amount = imm6 - 32 +// '1xxxxxx' => esize = 64; shift_amount = imm6 +// +// LeftShift == false (A8.6.376 VRSHR, A8.6.368 VQSHRN): +// case L:imm6 of +// '0001xxx' => esize = 8; shift_amount = 16 - imm6 +// '001xxxx' => esize = 16; shift_amount = 32 - imm6 +// '01xxxxx' => esize = 32; shift_amount = 64 - imm6 +// '1xxxxxx' => esize = 64; shift_amount = 64 - imm6 +// +static unsigned decodeNVSAmt(uint32_t insn, bool LeftShift) { + ElemSize esize = ESizeNA; + unsigned L = (insn >> 7) & 1; + unsigned imm6 = (insn >> 16) & 0x3F; + if (L == 0) { + if (imm6 >> 3 == 1) + esize = ESize8; + else if (imm6 >> 4 == 1) + esize = ESize16; + else if (imm6 >> 5 == 1) + esize = ESize32; + else + assert(0 && "Wrong encoding of Inst{7:21-16}!"); + } else + esize = ESize64; + + if (LeftShift) + return esize == ESize64 ? imm6 : (imm6 - esize); + else + return esize == ESize64 ? (esize - imm6) : (2*esize - imm6); +} + +// A8.6.305 VEXT +// Imm4 = Inst{11-8} +static unsigned decodeN3VImm(uint32_t insn) { + return (insn >> 8) & 0xF; +} + +static bool UseDRegPair(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::VLD1q8_UPD: + case ARM::VLD1q16_UPD: + case ARM::VLD1q32_UPD: + case ARM::VLD1q64_UPD: + case ARM::VST1q8_UPD: + case ARM::VST1q16_UPD: + case ARM::VST1q32_UPD: + case ARM::VST1q64_UPD: + return true; + } +} + +// VLD* +// D[d] D[d2] ... Rn [TIED_TO Rn] align [Rm] +// VLD*LN* +// D[d] D[d2] ... Rn [TIED_TO Rn] align [Rm] TIED_TO ... imm(idx) +// VST* +// Rn [TIED_TO Rn] align [Rm] D[d] D[d2] ... +// VST*LN* +// Rn [TIED_TO Rn] align [Rm] D[d] D[d2] ... [imm(idx)] +// +// Correctly set VLD*/VST*'s TIED_TO GPR, as the asm printer needs it. +static bool DisassembleNLdSt0(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, bool Store, bool DblSpaced, + BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + + // At least one DPR register plus addressing mode #6. + assert(NumOps >= 3 && "Expect >= 3 operands"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + // We have homogeneous NEON registers for Load/Store. + unsigned RegClass = 0; + + // Double-spaced registers have increments of 2. + unsigned Inc = DblSpaced ? 2 : 1; + + unsigned Rn = decodeRn(insn); + unsigned Rm = decodeRm(insn); + unsigned Rd = decodeNEONRd(insn); + + // A7.7.1 Advanced SIMD addressing mode. + bool WB = Rm != 15; + + // LLVM Addressing Mode #6. + unsigned RmEnum = 0; + if (WB && Rm != 13) + RmEnum = getRegisterEnum(B, ARM::GPRRegClassID, Rm); + + if (Store) { + // Consume possible WB, AddrMode6, possible increment reg, the DPR/QPR's, + // then possible lane index. + assert(OpIdx < NumOps && OpInfo[0].RegClass == ARM::GPRRegClassID && + "Reg operand expected"); + + if (WB) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + Rn))); + ++OpIdx; + } + + assert((OpIdx+1) < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + OpInfo[OpIdx + 1].RegClass == 0 && "Addrmode #6 Operands expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + Rn))); + MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored? + OpIdx += 2; + + if (WB) { + MI.addOperand(MCOperand::CreateReg(RmEnum)); + ++OpIdx; + } + + assert(OpIdx < NumOps && + (OpInfo[OpIdx].RegClass == ARM::DPRRegClassID || + OpInfo[OpIdx].RegClass == ARM::QPRRegClassID) && + "Reg operand expected"); + + RegClass = OpInfo[OpIdx].RegClass; + while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) { + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, Rd, + UseDRegPair(Opcode)))); + Rd += Inc; + ++OpIdx; + } + + // Handle possible lane index. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn))); + ++OpIdx; + } + + } else { + // Consume the DPR/QPR's, possible WB, AddrMode6, possible incrment reg, + // possible TIED_TO DPR/QPR's (ignored), then possible lane index. + RegClass = OpInfo[0].RegClass; + + while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) { + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, Rd, + UseDRegPair(Opcode)))); + Rd += Inc; + ++OpIdx; + } + + if (WB) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + Rn))); + ++OpIdx; + } + + assert((OpIdx+1) < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID && + OpInfo[OpIdx + 1].RegClass == 0 && "Addrmode #6 Operands expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + Rn))); + MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored? + OpIdx += 2; + + if (WB) { + MI.addOperand(MCOperand::CreateReg(RmEnum)); + ++OpIdx; + } + + while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) { + assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1 && + "Tied to operand expected"); + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + // Handle possible lane index. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn))); + ++OpIdx; + } + } + + return true; +} + +// A7.7 +// If L (Inst{21}) == 0, store instructions. +// Find out about double-spaced-ness of the Opcode and pass it on to +// DisassembleNLdSt0(). +static bool DisassembleNLdSt(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const StringRef Name = ARMInsts[Opcode].Name; + bool DblSpaced = false; + + if (Name.find("LN") != std::string::npos) { + // To one lane instructions. + // See, for example, 8.6.317 VLD4 (single 4-element structure to one lane). + + // <size> == 16 && Inst{5} == 1 --> DblSpaced = true + if (Name.endswith("16") || Name.endswith("16_UPD")) + DblSpaced = slice(insn, 5, 5) == 1; + + // <size> == 32 && Inst{6} == 1 --> DblSpaced = true + if (Name.endswith("32") || Name.endswith("32_UPD")) + DblSpaced = slice(insn, 6, 6) == 1; + + } else { + // Multiple n-element structures with type encoded as Inst{11-8}. + // See, for example, A8.6.316 VLD4 (multiple 4-element structures). + + // n == 2 && type == 0b1001 -> DblSpaced = true + if (Name.startswith("VST2") || Name.startswith("VLD2")) + DblSpaced = slice(insn, 11, 8) == 9; + + // n == 3 && type == 0b0101 -> DblSpaced = true + if (Name.startswith("VST3") || Name.startswith("VLD3")) + DblSpaced = slice(insn, 11, 8) == 5; + + // n == 4 && type == 0b0001 -> DblSpaced = true + if (Name.startswith("VST4") || Name.startswith("VLD4")) + DblSpaced = slice(insn, 11, 8) == 1; + + } + return DisassembleNLdSt0(MI, Opcode, insn, NumOps, NumOpsAdded, + slice(insn, 21, 21) == 0, DblSpaced, B); +} + +// VMOV (immediate) +// Qd/Dd imm +static bool DisassembleN1RegModImmFrm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + + assert(NumOps >= 2 && + (OpInfo[0].RegClass == ARM::DPRRegClassID || + OpInfo[0].RegClass == ARM::QPRRegClassID) && + (OpInfo[1].RegClass == 0) && + "Expect 1 reg operand followed by 1 imm operand"); + + // Qd/Dd = Inst{22:15-12} => NEON Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[0].RegClass, + decodeNEONRd(insn)))); + + ElemSize esize = ESizeNA; + switch (Opcode) { + case ARM::VMOVv8i8: + case ARM::VMOVv16i8: + esize = ESize8; + break; + case ARM::VMOVv4i16: + case ARM::VMOVv8i16: + esize = ESize16; + break; + case ARM::VMOVv2i32: + case ARM::VMOVv4i32: + esize = ESize32; + break; + case ARM::VMOVv1i64: + case ARM::VMOVv2i64: + esize = ESize64; + break; + default: + assert(0 && "Unreachable code!"); + return false; + } + + // One register and a modified immediate value. + // Add the imm operand. + MI.addOperand(MCOperand::CreateImm(decodeN1VImm(insn, esize))); + + NumOpsAdded = 2; + return true; +} + +namespace { +enum N2VFlag { + N2V_None, + N2V_VectorDupLane, + N2V_VectorConvert_Between_Float_Fixed +}; +} // End of unnamed namespace + +// Vector Convert [between floating-point and fixed-point] +// Qd/Dd Qm/Dm [fbits] +// +// Vector Duplicate Lane (from scalar to all elements) Instructions. +// VDUPLN16d, VDUPLN16q, VDUPLN32d, VDUPLN32q, VDUPLN8d, VDUPLN8q: +// Qd/Dd Dm index +// +// Vector Move Long: +// Qd Dm +// +// Vector Move Narrow: +// Dd Qm +// +// Others +static bool DisassembleNVdVmOptImm(MCInst &MI, unsigned Opc, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, N2VFlag Flag, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opc]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + + assert(NumOps >= 2 && + (OpInfo[0].RegClass == ARM::DPRRegClassID || + OpInfo[0].RegClass == ARM::QPRRegClassID) && + (OpInfo[1].RegClass == ARM::DPRRegClassID || + OpInfo[1].RegClass == ARM::QPRRegClassID) && + "Expect >= 2 operands and first 2 as reg operands"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + ElemSize esize = ESizeNA; + if (Flag == N2V_VectorDupLane) { + // VDUPLN has its index embedded. Its size can be inferred from the Opcode. + assert(Opc >= ARM::VDUPLN16d && Opc <= ARM::VDUPLN8q && + "Unexpected Opcode"); + esize = (Opc == ARM::VDUPLN8d || Opc == ARM::VDUPLN8q) ? ESize8 + : ((Opc == ARM::VDUPLN16d || Opc == ARM::VDUPLN16q) ? ESize16 + : ESize32); + } + + // Qd/Dd = Inst{22:15-12} => NEON Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass, + decodeNEONRd(insn)))); + ++OpIdx; + + // VPADAL... + if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) { + // TIED_TO operand. + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + // Dm = Inst{5:3-0} => NEON Rm + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass, + decodeNEONRm(insn)))); + ++OpIdx; + + // VZIP and others have two TIED_TO reg operands. + int Idx; + while (OpIdx < NumOps && + (Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) { + // Add TIED_TO operand. + MI.addOperand(MI.getOperand(Idx)); + ++OpIdx; + } + + // Add the imm operand, if required. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + + unsigned imm = 0xFFFFFFFF; + + if (Flag == N2V_VectorDupLane) + imm = decodeNVLaneDupIndex(insn, esize); + if (Flag == N2V_VectorConvert_Between_Float_Fixed) + imm = decodeVCVTFractionBits(insn); + + assert(imm != 0xFFFFFFFF && "Internal error"); + MI.addOperand(MCOperand::CreateImm(imm)); + ++OpIdx; + } + + return true; +} + +static bool DisassembleN2RegFrm(MCInst &MI, unsigned Opc, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded, + N2V_None, B); +} +static bool DisassembleNVCVTFrm(MCInst &MI, unsigned Opc, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded, + N2V_VectorConvert_Between_Float_Fixed, B); +} +static bool DisassembleNVecDupLnFrm(MCInst &MI, unsigned Opc, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded, + N2V_VectorDupLane, B); +} + +// Vector Shift [Accumulate] Instructions. +// Qd/Dd [Qd/Dd (TIED_TO)] Qm/Dm ShiftAmt +// +// Vector Shift Left Long (with maximum shift count) Instructions. +// VSHLLi16, VSHLLi32, VSHLLi8: Qd Dm imm (== size) +// +static bool DisassembleNVectorShift(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, bool LeftShift, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + + assert(NumOps >= 3 && + (OpInfo[0].RegClass == ARM::DPRRegClassID || + OpInfo[0].RegClass == ARM::QPRRegClassID) && + (OpInfo[1].RegClass == ARM::DPRRegClassID || + OpInfo[1].RegClass == ARM::QPRRegClassID) && + "Expect >= 3 operands and first 2 as reg operands"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + // Qd/Dd = Inst{22:15-12} => NEON Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass, + decodeNEONRd(insn)))); + ++OpIdx; + + if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) { + // TIED_TO operand. + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + assert((OpInfo[OpIdx].RegClass == ARM::DPRRegClassID || + OpInfo[OpIdx].RegClass == ARM::QPRRegClassID) && + "Reg operand expected"); + + // Qm/Dm = Inst{5:3-0} => NEON Rm + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass, + decodeNEONRm(insn)))); + ++OpIdx; + + assert(OpInfo[OpIdx].RegClass == 0 && "Imm operand expected"); + + // Add the imm operand. + + // VSHLL has maximum shift count as the imm, inferred from its size. + unsigned Imm; + switch (Opcode) { + default: + Imm = decodeNVSAmt(insn, LeftShift); + break; + case ARM::VSHLLi8: + Imm = 8; + break; + case ARM::VSHLLi16: + Imm = 16; + break; + case ARM::VSHLLi32: + Imm = 32; + break; + } + MI.addOperand(MCOperand::CreateImm(Imm)); + ++OpIdx; + + return true; +} + +// Left shift instructions. +static bool DisassembleN2RegVecShLFrm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVectorShift(MI, Opcode, insn, NumOps, NumOpsAdded, true, + B); +} +// Right shift instructions have different shift amount interpretation. +static bool DisassembleN2RegVecShRFrm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVectorShift(MI, Opcode, insn, NumOps, NumOpsAdded, false, + B); +} + +namespace { +enum N3VFlag { + N3V_None, + N3V_VectorExtract, + N3V_VectorShift, + N3V_Multiply_By_Scalar +}; +} // End of unnamed namespace + +// NEON Three Register Instructions with Optional Immediate Operand +// +// Vector Extract Instructions. +// Qd/Dd Qn/Dn Qm/Dm imm4 +// +// Vector Shift (Register) Instructions. +// Qd/Dd Qm/Dm Qn/Dn (notice the order of m, n) +// +// Vector Multiply [Accumulate/Subtract] [Long] By Scalar Instructions. +// Qd/Dd Qn/Dn RestrictedDm index +// +// Others +static bool DisassembleNVdVnVmOptImm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, N3VFlag Flag, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + + // No checking for OpInfo[2] because of MOVDneon/MOVQ with only two regs. + assert(NumOps >= 3 && + (OpInfo[0].RegClass == ARM::DPRRegClassID || + OpInfo[0].RegClass == ARM::QPRRegClassID) && + (OpInfo[1].RegClass == ARM::DPRRegClassID || + OpInfo[1].RegClass == ARM::QPRRegClassID) && + "Expect >= 3 operands and first 2 as reg operands"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + bool VdVnVm = Flag == N3V_VectorShift ? false : true; + bool IsImm4 = Flag == N3V_VectorExtract ? true : false; + bool IsDmRestricted = Flag == N3V_Multiply_By_Scalar ? true : false; + ElemSize esize = ESizeNA; + if (Flag == N3V_Multiply_By_Scalar) { + unsigned size = (insn >> 20) & 3; + if (size == 1) esize = ESize16; + if (size == 2) esize = ESize32; + assert (esize == ESize16 || esize == ESize32); + } + + // Qd/Dd = Inst{22:15-12} => NEON Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass, + decodeNEONRd(insn)))); + ++OpIdx; + + // VABA, VABAL, VBSLd, VBSLq, ... + if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) { + // TIED_TO operand. + MI.addOperand(MCOperand::CreateReg(0)); + ++OpIdx; + } + + // Dn = Inst{7:19-16} => NEON Rn + // or + // Dm = Inst{5:3-0} => NEON Rm + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, OpInfo[OpIdx].RegClass, + VdVnVm ? decodeNEONRn(insn) + : decodeNEONRm(insn)))); + ++OpIdx; + + // Special case handling for VMOVDneon and VMOVQ because they are marked as + // N3RegFrm. + if (Opcode == ARM::VMOVDneon || Opcode == ARM::VMOVQ) + return true; + + // Dm = Inst{5:3-0} => NEON Rm + // or + // Dm is restricted to D0-D7 if size is 16, D0-D15 otherwise + // or + // Dn = Inst{7:19-16} => NEON Rn + unsigned m = VdVnVm ? (IsDmRestricted ? decodeRestrictedDm(insn, esize) + : decodeNEONRm(insn)) + : decodeNEONRn(insn); + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, OpInfo[OpIdx].RegClass, m))); + ++OpIdx; + + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + // Add the imm operand. + unsigned Imm = 0; + if (IsImm4) + Imm = decodeN3VImm(insn); + else if (IsDmRestricted) + Imm = decodeRestrictedDmIndex(insn, esize); + else { + assert(0 && "Internal error: unreachable code!"); + return false; + } + + MI.addOperand(MCOperand::CreateImm(Imm)); + ++OpIdx; + } + + return true; +} + +static bool DisassembleN3RegFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded, + N3V_None, B); +} +static bool DisassembleN3RegVecShFrm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded, + N3V_VectorShift, B); +} +static bool DisassembleNVecExtractFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded, + N3V_VectorExtract, B); +} +static bool DisassembleNVecMulScalarFrm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded, + N3V_Multiply_By_Scalar, B); +} + +// Vector Table Lookup +// +// VTBL1, VTBX1: Dd [Dd(TIED_TO)] Dn Dm +// VTBL2, VTBX2: Dd [Dd(TIED_TO)] Dn Dn+1 Dm +// VTBL3, VTBX3: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dm +// VTBL4, VTBX4: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dn+3 Dm +static bool DisassembleNVTBLFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 3 && + OpInfo[0].RegClass == ARM::DPRRegClassID && + OpInfo[1].RegClass == ARM::DPRRegClassID && + OpInfo[2].RegClass == ARM::DPRRegClassID && + "Expect >= 3 operands and first 3 as reg operands"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + unsigned Rn = decodeNEONRn(insn); + + // {Dn} encoded as len = 0b00 + // {Dn Dn+1} encoded as len = 0b01 + // {Dn Dn+1 Dn+2 } encoded as len = 0b10 + // {Dn Dn+1 Dn+2 Dn+3} encoded as len = 0b11 + unsigned Len = slice(insn, 9, 8) + 1; + + // Dd (the destination vector) + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID, + decodeNEONRd(insn)))); + ++OpIdx; + + // Process tied_to operand constraint. + int Idx; + if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) { + MI.addOperand(MI.getOperand(Idx)); + ++OpIdx; + } + + // Do the <list> now. + for (unsigned i = 0; i < Len; ++i) { + assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID && + "Reg operand expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID, + Rn + i))); + ++OpIdx; + } + + // Dm (the index vector) + assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID && + "Reg operand (index vector) expected"); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID, + decodeNEONRm(insn)))); + ++OpIdx; + + return true; +} + +static bool DisassembleNEONFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO) { + assert(0 && "Unreachable code!"); + return false; +} + +// Vector Get Lane (move scalar to ARM core register) Instructions. +// VGETLNi32, VGETLNs16, VGETLNs8, VGETLNu16, VGETLNu8: Rt Dn index +static bool DisassembleNEONGetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + if (!OpInfo) return false; + + assert(TID.getNumDefs() == 1 && NumOps >= 3 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + OpInfo[1].RegClass == ARM::DPRRegClassID && + OpInfo[2].RegClass == 0 && + "Expect >= 3 operands with one dst operand"); + + ElemSize esize = + Opcode == ARM::VGETLNi32 ? ESize32 + : ((Opcode == ARM::VGETLNs16 || Opcode == ARM::VGETLNu16) ? ESize16 + : ESize32); + + // Rt = Inst{15-12} => ARM Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + // Dn = Inst{7:19-16} => NEON Rn + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID, + decodeNEONRn(insn)))); + + MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize))); + + NumOpsAdded = 3; + return true; +} + +// Vector Set Lane (move ARM core register to scalar) Instructions. +// VSETLNi16, VSETLNi32, VSETLNi8: Dd Dd (TIED_TO) Rt index +static bool DisassembleNEONSetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + if (!OpInfo) return false; + + assert(TID.getNumDefs() == 1 && NumOps >= 3 && + OpInfo[0].RegClass == ARM::DPRRegClassID && + OpInfo[1].RegClass == ARM::DPRRegClassID && + TID.getOperandConstraint(1, TOI::TIED_TO) != -1 && + OpInfo[2].RegClass == ARM::GPRRegClassID && + OpInfo[3].RegClass == 0 && + "Expect >= 3 operands with one dst operand"); + + ElemSize esize = + Opcode == ARM::VSETLNi8 ? ESize8 + : (Opcode == ARM::VSETLNi16 ? ESize16 + : ESize32); + + // Dd = Inst{7:19-16} => NEON Rn + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID, + decodeNEONRn(insn)))); + + // TIED_TO operand. + MI.addOperand(MCOperand::CreateReg(0)); + + // Rt = Inst{15-12} => ARM Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize))); + + NumOpsAdded = 4; + return true; +} + +// Vector Duplicate Instructions (from ARM core register to all elements). +// VDUP8d, VDUP16d, VDUP32d, VDUP8q, VDUP16q, VDUP32q: Qd/Dd Rt +static bool DisassembleNEONDupFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + + assert(NumOps >= 2 && + (OpInfo[0].RegClass == ARM::DPRRegClassID || + OpInfo[0].RegClass == ARM::QPRRegClassID) && + OpInfo[1].RegClass == ARM::GPRRegClassID && + "Expect >= 2 operands and first 2 as reg operand"); + + unsigned RegClass = OpInfo[0].RegClass; + + // Qd/Dd = Inst{7:19-16} => NEON Rn + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClass, + decodeNEONRn(insn)))); + + // Rt = Inst{15-12} => ARM Rd + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + NumOpsAdded = 2; + return true; +} + +// A8.6.41 DMB +// A8.6.42 DSB +// A8.6.49 ISB +static inline bool MemBarrierInstr(uint32_t insn) { + unsigned op7_4 = slice(insn, 7, 4); + if (slice(insn, 31, 20) == 0xf57 && (op7_4 >= 4 && op7_4 <= 6)) + return true; + + return false; +} + +static inline bool PreLoadOpcode(unsigned Opcode) { + switch(Opcode) { + case ARM::PLDi: case ARM::PLDr: + case ARM::PLDWi: case ARM::PLDWr: + case ARM::PLIi: case ARM::PLIr: + return true; + default: + return false; + } +} + +static bool DisassemblePreLoadFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + // Preload Data/Instruction requires either 2 or 4 operands. + // PLDi, PLDWi, PLIi: Rn [+/-]imm12 add = (U == '1') + // PLDr[a|m], PLDWr[a|m], PLIr[a|m]: Rn Rm addrmode2_opc + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + if (Opcode == ARM::PLDi || Opcode == ARM::PLDWi || Opcode == ARM::PLIi) { + unsigned Imm12 = slice(insn, 11, 0); + bool Negative = getUBit(insn) == 0; + int Offset = Negative ? -1 - Imm12 : 1 * Imm12; + MI.addOperand(MCOperand::CreateImm(Offset)); + NumOpsAdded = 2; + } else { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + + ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub; + + // Inst{6-5} encodes the shift opcode. + ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5)); + // Inst{11-7} encodes the imm5 shift amount. + unsigned ShImm = slice(insn, 11, 7); + + // A8.4.1. Possible rrx or shift amount of 32... + getImmShiftSE(ShOp, ShImm); + MI.addOperand(MCOperand::CreateImm( + ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp))); + NumOpsAdded = 3; + } + + return true; +} + +static bool DisassembleMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + if (MemBarrierInstr(insn)) + return true; + + switch (Opcode) { + case ARM::CLREX: + case ARM::NOP: + case ARM::TRAP: + case ARM::YIELD: + case ARM::WFE: + case ARM::WFI: + case ARM::SEV: + case ARM::SETENDBE: + case ARM::SETENDLE: + return true; + default: + break; + } + + // CPS has a singleton $opt operand that contains the following information: + // opt{4-0} = mode from Inst{4-0} + // opt{5} = changemode from Inst{17} + // opt{8-6} = AIF from Inst{8-6} + // opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable + if (Opcode == ARM::CPS) { + unsigned Option = slice(insn, 4, 0) | slice(insn, 17, 17) << 5 | + slice(insn, 8, 6) << 6 | slice(insn, 19, 18) << 9; + MI.addOperand(MCOperand::CreateImm(Option)); + NumOpsAdded = 1; + return true; + } + + // DBG has its option specified in Inst{3-0}. + if (Opcode == ARM::DBG) { + MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0))); + NumOpsAdded = 1; + return true; + } + + // BKPT takes an imm32 val equal to ZeroExtend(Inst{19-8:3-0}). + if (Opcode == ARM::BKPT) { + MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 8) << 4 | + slice(insn, 3, 0))); + NumOpsAdded = 1; + return true; + } + + if (PreLoadOpcode(Opcode)) + return DisassemblePreLoadFrm(MI, Opcode, insn, NumOps, NumOpsAdded, B); + + assert(0 && "Unexpected misc instruction!"); + return false; +} + +static bool DisassembleThumbMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO) { + + assert(0 && "Unexpected thumb misc. instruction!"); + return false; +} + +/// FuncPtrs - FuncPtrs maps ARMFormat to its corresponding DisassembleFP. +/// We divide the disassembly task into different categories, with each one +/// corresponding to a specific instruction encoding format. There could be +/// exceptions when handling a specific format, and that is why the Opcode is +/// also present in the function prototype. +static const DisassembleFP FuncPtrs[] = { + &DisassemblePseudo, + &DisassembleMulFrm, + &DisassembleBrFrm, + &DisassembleBrMiscFrm, + &DisassembleDPFrm, + &DisassembleDPSoRegFrm, + &DisassembleLdFrm, + &DisassembleStFrm, + &DisassembleLdMiscFrm, + &DisassembleStMiscFrm, + &DisassembleLdStMulFrm, + &DisassembleLdStExFrm, + &DisassembleArithMiscFrm, + &DisassembleExtFrm, + &DisassembleVFPUnaryFrm, + &DisassembleVFPBinaryFrm, + &DisassembleVFPConv1Frm, + &DisassembleVFPConv2Frm, + &DisassembleVFPConv3Frm, + &DisassembleVFPConv4Frm, + &DisassembleVFPConv5Frm, + &DisassembleVFPLdStFrm, + &DisassembleVFPLdStMulFrm, + &DisassembleVFPMiscFrm, + &DisassembleThumbFrm, + &DisassembleNEONFrm, + &DisassembleNEONGetLnFrm, + &DisassembleNEONSetLnFrm, + &DisassembleNEONDupFrm, + &DisassembleMiscFrm, + &DisassembleThumbMiscFrm, + + // VLD and VST (including one lane) Instructions. + &DisassembleNLdSt, + + // A7.4.6 One register and a modified immediate value + // 1-Register Instructions with imm. + // LLVM only defines VMOVv instructions. + &DisassembleN1RegModImmFrm, + + // 2-Register Instructions with no imm. + &DisassembleN2RegFrm, + + // 2-Register Instructions with imm (vector convert float/fixed point). + &DisassembleNVCVTFrm, + + // 2-Register Instructions with imm (vector dup lane). + &DisassembleNVecDupLnFrm, + + // Vector Shift Left Instructions. + &DisassembleN2RegVecShLFrm, + + // Vector Shift Righ Instructions, which has different interpretation of the + // shift amount from the imm6 field. + &DisassembleN2RegVecShRFrm, + + // 3-Register Data-Processing Instructions. + &DisassembleN3RegFrm, + + // Vector Shift (Register) Instructions. + // D:Vd M:Vm N:Vn (notice that M:Vm is the first operand) + &DisassembleN3RegVecShFrm, + + // Vector Extract Instructions. + &DisassembleNVecExtractFrm, + + // Vector [Saturating Rounding Doubling] Multiply [Accumulate/Subtract] [Long] + // By Scalar Instructions. + &DisassembleNVecMulScalarFrm, + + // Vector Table Lookup uses byte indexes in a control vector to look up byte + // values in a table and generate a new vector. + &DisassembleNVTBLFrm, + + NULL +}; + +/// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder. +/// The general idea is to set the Opcode for the MCInst, followed by adding +/// the appropriate MCOperands to the MCInst. ARM Basic MC Builder delegates +/// to the Format-specific disassemble function for disassembly, followed by +/// TryPredicateAndSBitModifier() to do PredicateOperand and OptionalDefOperand +/// which follow the Dst/Src Operands. +bool ARMBasicMCBuilder::BuildIt(MCInst &MI, uint32_t insn) { + // Stage 1 sets the Opcode. + MI.setOpcode(Opcode); + // If the number of operands is zero, we're done! + if (NumOps == 0) + return true; + + // Stage 2 calls the format-specific disassemble function to build the operand + // list. + if (Disasm == NULL) + return false; + unsigned NumOpsAdded = 0; + bool OK = (*Disasm)(MI, Opcode, insn, NumOps, NumOpsAdded, this); + + if (!OK || this->Err != 0) return false; + if (NumOpsAdded >= NumOps) + return true; + + // Stage 3 deals with operands unaccounted for after stage 2 is finished. + // FIXME: Should this be done selectively? + return TryPredicateAndSBitModifier(MI, Opcode, insn, NumOps - NumOpsAdded); +} + +// A8.3 Conditional execution +// A8.3.1 Pseudocode details of conditional execution +// Condition bits '111x' indicate the instruction is always executed. +static uint32_t CondCode(uint32_t CondField) { + if (CondField == 0xF) + return ARMCC::AL; + return CondField; +} + +/// DoPredicateOperands - DoPredicateOperands process the predicate operands +/// of some Thumb instructions which come before the reglist operands. It +/// returns true if the two predicate operands have been processed. +bool ARMBasicMCBuilder::DoPredicateOperands(MCInst& MI, unsigned Opcode, + uint32_t /* insn */, unsigned short NumOpsRemaining) { + + assert(NumOpsRemaining > 0 && "Invalid argument"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned Idx = MI.getNumOperands(); + + // First, we check whether this instr specifies the PredicateOperand through + // a pair of TargetOperandInfos with isPredicate() property. + if (NumOpsRemaining >= 2 && + OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() && + OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID) + { + // If we are inside an IT block, get the IT condition bits maintained via + // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond(). + // See also A2.5.2. + if (InITBlock()) + MI.addOperand(MCOperand::CreateImm(GetITCond())); + else + MI.addOperand(MCOperand::CreateImm(ARMCC::AL)); + MI.addOperand(MCOperand::CreateReg(ARM::CPSR)); + return true; + } + + return false; +} + +/// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process +/// the possible Predicate and SBitModifier, to build the remaining MCOperand +/// constituents. +bool ARMBasicMCBuilder::TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode, + uint32_t insn, unsigned short NumOpsRemaining) { + + assert(NumOpsRemaining > 0 && "Invalid argument"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + const std::string &Name = ARMInsts[Opcode].Name; + unsigned Idx = MI.getNumOperands(); + + // First, we check whether this instr specifies the PredicateOperand through + // a pair of TargetOperandInfos with isPredicate() property. + if (NumOpsRemaining >= 2 && + OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() && + OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID) + { + // If we are inside an IT block, get the IT condition bits maintained via + // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond(). + // See also A2.5.2. + if (InITBlock()) + MI.addOperand(MCOperand::CreateImm(GetITCond())); + else { + if (Name.length() > 1 && Name[0] == 't') { + // Thumb conditional branch instructions have their cond field embedded, + // like ARM. + // + // A8.6.16 B + if (Name == "t2Bcc") + MI.addOperand(MCOperand::CreateImm(CondCode(slice(insn, 25, 22)))); + else if (Name == "tBcc") + MI.addOperand(MCOperand::CreateImm(CondCode(slice(insn, 11, 8)))); + else + MI.addOperand(MCOperand::CreateImm(ARMCC::AL)); + } else { + // ARM instructions get their condition field from Inst{31-28}. + MI.addOperand(MCOperand::CreateImm(CondCode(getCondField(insn)))); + } + } + MI.addOperand(MCOperand::CreateReg(ARM::CPSR)); + Idx += 2; + NumOpsRemaining -= 2; + } + + if (NumOpsRemaining == 0) + return true; + + // Next, if OptionalDefOperand exists, we check whether the 'S' bit is set. + if (OpInfo[Idx].isOptionalDef() && OpInfo[Idx].RegClass==ARM::CCRRegClassID) { + MI.addOperand(MCOperand::CreateReg(getSBit(insn) == 1 ? ARM::CPSR : 0)); + --NumOpsRemaining; + } + + if (NumOpsRemaining == 0) + return true; + else + return false; +} + +/// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary +/// after BuildIt is finished. +bool ARMBasicMCBuilder::RunBuildAfterHook(bool Status, MCInst &MI, + uint32_t insn) { + + if (!SP) return Status; + + if (Opcode == ARM::t2IT) + Status = SP->InitIT(slice(insn, 7, 0)) ? Status : false; + else if (InITBlock()) + SP->UpdateIT(); + + return Status; +} + +/// Opcode, Format, and NumOperands make up an ARM Basic MCBuilder. +ARMBasicMCBuilder::ARMBasicMCBuilder(unsigned opc, ARMFormat format, + unsigned short num) + : Opcode(opc), Format(format), NumOps(num), SP(0), Err(0) { + unsigned Idx = (unsigned)format; + assert(Idx < (array_lengthof(FuncPtrs) - 1) && "Unknown format"); + Disasm = FuncPtrs[Idx]; +} + +/// CreateMCBuilder - Return an ARMBasicMCBuilder that can build up the MC +/// infrastructure of an MCInst given the Opcode and Format of the instr. +/// Return NULL if it fails to create/return a proper builder. API clients +/// are responsible for freeing up of the allocated memory. Cacheing can be +/// performed by the API clients to improve performance. +ARMBasicMCBuilder *llvm::CreateMCBuilder(unsigned Opcode, ARMFormat Format) { + // For "Unknown format", fail by returning a NULL pointer. + if ((unsigned)Format >= (array_lengthof(FuncPtrs) - 1)) { + DEBUG(errs() << "Unknown format\n"); + return 0; + } + + return new ARMBasicMCBuilder(Opcode, Format, + ARMInsts[Opcode].getNumOperands()); +} diff --git a/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h new file mode 100644 index 0000000..b1d90df --- /dev/null +++ b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h @@ -0,0 +1,262 @@ +//===- ARMDisassemblerCore.h - ARM disassembler helpers ---------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// +// The first part defines the enumeration type of ARM instruction format, which +// specifies the encoding used by the instruction, as well as a helper function +// to convert the enums to printable char strings. +// +// It also contains code to represent the concepts of Builder and DisassembleFP +// to solve the problem of disassembling an ARM instr. +// +//===----------------------------------------------------------------------===// + +#ifndef ARMDISASSEMBLERCORE_H +#define ARMDISASSEMBLERCORE_H + +#include "llvm/MC/MCInst.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "ARMInstrInfo.h" +#include "ARMDisassembler.h" + +namespace llvm { + +class ARMUtils { +public: + static const char *OpcodeName(unsigned Opcode); +}; + +///////////////////////////////////////////////////// +// // +// Enums and Utilities for ARM Instruction Format // +// // +///////////////////////////////////////////////////// + +#define ARM_FORMATS \ + ENTRY(ARM_FORMAT_PSEUDO, 0) \ + ENTRY(ARM_FORMAT_MULFRM, 1) \ + ENTRY(ARM_FORMAT_BRFRM, 2) \ + ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ + ENTRY(ARM_FORMAT_DPFRM, 4) \ + ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \ + ENTRY(ARM_FORMAT_LDFRM, 6) \ + ENTRY(ARM_FORMAT_STFRM, 7) \ + ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ + ENTRY(ARM_FORMAT_STMISCFRM, 9) \ + ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ + ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \ + ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \ + ENTRY(ARM_FORMAT_EXTFRM, 13) \ + ENTRY(ARM_FORMAT_VFPUNARYFRM, 14) \ + ENTRY(ARM_FORMAT_VFPBINARYFRM, 15) \ + ENTRY(ARM_FORMAT_VFPCONV1FRM, 16) \ + ENTRY(ARM_FORMAT_VFPCONV2FRM, 17) \ + ENTRY(ARM_FORMAT_VFPCONV3FRM, 18) \ + ENTRY(ARM_FORMAT_VFPCONV4FRM, 19) \ + ENTRY(ARM_FORMAT_VFPCONV5FRM, 20) \ + ENTRY(ARM_FORMAT_VFPLDSTFRM, 21) \ + ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 22) \ + ENTRY(ARM_FORMAT_VFPMISCFRM, 23) \ + ENTRY(ARM_FORMAT_THUMBFRM, 24) \ + ENTRY(ARM_FORMAT_NEONFRM, 25) \ + ENTRY(ARM_FORMAT_NEONGETLNFRM, 26) \ + ENTRY(ARM_FORMAT_NEONSETLNFRM, 27) \ + ENTRY(ARM_FORMAT_NEONDUPFRM, 28) \ + ENTRY(ARM_FORMAT_MISCFRM, 29) \ + ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) \ + ENTRY(ARM_FORMAT_NLdSt, 31) \ + ENTRY(ARM_FORMAT_N1RegModImm, 32) \ + ENTRY(ARM_FORMAT_N2Reg, 33) \ + ENTRY(ARM_FORMAT_NVCVT, 34) \ + ENTRY(ARM_FORMAT_NVecDupLn, 35) \ + ENTRY(ARM_FORMAT_N2RegVecShL, 36) \ + ENTRY(ARM_FORMAT_N2RegVecShR, 37) \ + ENTRY(ARM_FORMAT_N3Reg, 38) \ + ENTRY(ARM_FORMAT_N3RegVecSh, 39) \ + ENTRY(ARM_FORMAT_NVecExtract, 40) \ + ENTRY(ARM_FORMAT_NVecMulScalar, 41) \ + ENTRY(ARM_FORMAT_NVTBL, 42) + +// ARM instruction format specifies the encoding used by the instruction. +#define ENTRY(n, v) n = v, +typedef enum { + ARM_FORMATS + ARM_FORMAT_NA +} ARMFormat; +#undef ENTRY + +// Converts enum to const char*. +static const inline char *stringForARMFormat(ARMFormat form) { +#define ENTRY(n, v) case n: return #n; + switch(form) { + ARM_FORMATS + case ARM_FORMAT_NA: + default: + return ""; + } +#undef ENTRY +} + +/// Expands on the enum definitions from ARMBaseInstrInfo.h. +/// They are being used by the disassembler implementation. +namespace ARMII { + enum { + NEONRegMask = 15, + GPRRegMask = 15, + NEON_RegRdShift = 12, + NEON_D_BitShift = 22, + NEON_RegRnShift = 16, + NEON_N_BitShift = 7, + NEON_RegRmShift = 0, + NEON_M_BitShift = 5 + }; +} + +/// Utility function for extracting [From, To] bits from a uint32_t. +static inline unsigned slice(uint32_t Bits, unsigned From, unsigned To) { + assert(From < 32 && To < 32 && From >= To); + return (Bits >> To) & ((1 << (From - To + 1)) - 1); +} + +/// Utility function for setting [From, To] bits to Val for a uint32_t. +static inline void setSlice(uint32_t &Bits, unsigned From, unsigned To, + uint32_t Val) { + assert(From < 32 && To < 32 && From >= To); + uint32_t Mask = ((1 << (From - To + 1)) - 1); + Bits &= ~(Mask << To); + Bits |= (Val & Mask) << To; +} + +/// Various utilities for checking the target specific flags. + +/// A unary data processing instruction doesn't have an Rn operand. +static inline bool isUnaryDP(unsigned TSFlags) { + return (TSFlags & ARMII::UnaryDP); +} + +/// This four-bit field describes the addressing mode used. +/// See also ARMBaseInstrInfo.h. +static inline unsigned getAddrMode(unsigned TSFlags) { + return (TSFlags & ARMII::AddrModeMask); +} + +/// {IndexModePre, IndexModePost} +/// Only valid for load and store ops. +/// See also ARMBaseInstrInfo.h. +static inline unsigned getIndexMode(unsigned TSFlags) { + return (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift; +} + +/// Pre-/post-indexed operations define an extra $base_wb in the OutOperandList. +static inline bool isPrePostLdSt(unsigned TSFlags) { + return (TSFlags & ARMII::IndexModeMask) != 0; +} + +// Forward declaration. +class ARMBasicMCBuilder; + +// Builder Object is mostly ignored except in some Thumb disassemble functions. +typedef ARMBasicMCBuilder *BO; + +/// DisassembleFP - DisassembleFP points to a function that disassembles an insn +/// and builds the MCOperand list upon disassembly. It returns false on failure +/// or true on success. The number of operands added is updated upon success. +typedef bool (*DisassembleFP)(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO Builder); + +/// CreateMCBuilder - Return an ARMBasicMCBuilder that can build up the MC +/// infrastructure of an MCInst given the Opcode and Format of the instr. +/// Return NULL if it fails to create/return a proper builder. API clients +/// are responsible for freeing up of the allocated memory. Cacheing can be +/// performed by the API clients to improve performance. +extern ARMBasicMCBuilder *CreateMCBuilder(unsigned Opcode, ARMFormat Format); + +/// ARMBasicMCBuilder - ARMBasicMCBuilder represents an ARM MCInst builder that +/// knows how to build up the MCOperand list. +class ARMBasicMCBuilder { + friend ARMBasicMCBuilder *CreateMCBuilder(unsigned Opcode, ARMFormat Format); + unsigned Opcode; + ARMFormat Format; + unsigned short NumOps; + DisassembleFP Disasm; + Session *SP; + int Err; // !=0 if the builder encounters some error condition during build. + +private: + /// Opcode, Format, and NumOperands make up an ARM Basic MCBuilder. + ARMBasicMCBuilder(unsigned opc, ARMFormat format, unsigned short num); + +public: + ARMBasicMCBuilder(ARMBasicMCBuilder &B) + : Opcode(B.Opcode), Format(B.Format), NumOps(B.NumOps), Disasm(B.Disasm), + SP(B.SP) { + Err = 0; + } + + virtual ~ARMBasicMCBuilder() {} + + void SetSession(Session *sp) { + SP = sp; + } + + void SetErr(int ErrCode) { + Err = ErrCode; + } + + /// DoPredicateOperands - DoPredicateOperands process the predicate operands + /// of some Thumb instructions which come before the reglist operands. It + /// returns true if the two predicate operands have been processed. + bool DoPredicateOperands(MCInst& MI, unsigned Opcode, + uint32_t insn, unsigned short NumOpsRemaning); + + /// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process + /// the possible Predicate and SBitModifier, to build the remaining MCOperand + /// constituents. + bool TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode, + uint32_t insn, unsigned short NumOpsRemaning); + + /// InITBlock - InITBlock returns true if we are inside an IT block. + bool InITBlock() { + if (SP) + return SP->ITCounter > 0; + + return false; + } + + /// Build - Build delegates to BuildIt to perform the heavy liftling. After + /// that, it invokes RunBuildAfterHook where some housekeepings can be done. + virtual bool Build(MCInst &MI, uint32_t insn) { + bool Status = BuildIt(MI, insn); + return RunBuildAfterHook(Status, MI, insn); + } + + /// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder. + /// The general idea is to set the Opcode for the MCInst, followed by adding + /// the appropriate MCOperands to the MCInst. ARM Basic MC Builder delegates + /// to the Format-specific disassemble function for disassembly, followed by + /// TryPredicateAndSBitModifier() for PredicateOperand and OptionalDefOperand + /// which follow the Dst/Src Operands. + virtual bool BuildIt(MCInst &MI, uint32_t insn); + + /// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary + /// after BuildIt is finished. + virtual bool RunBuildAfterHook(bool Status, MCInst &MI, uint32_t insn); + +private: + /// Get condition of the current IT instruction. + unsigned GetITCond() { + assert(SP); + return slice(SP->ITState, 7, 4); + } +}; + +} // namespace llvm + +#endif diff --git a/lib/Target/ARM/Disassembler/Makefile b/lib/Target/ARM/Disassembler/Makefile new file mode 100644 index 0000000..031b6ac --- /dev/null +++ b/lib/Target/ARM/Disassembler/Makefile @@ -0,0 +1,16 @@ +##===- lib/Target/ARM/Disassembler/Makefile ----------------*- Makefile -*-===## +# +# The LLVM Compiler Infrastructure +# +# This file is distributed under the University of Illinois Open Source +# License. See LICENSE.TXT for details. +# +##===----------------------------------------------------------------------===## + +LEVEL = ../../../.. +LIBRARYNAME = LLVMARMDisassembler + +# Hack: we need to include 'main' arm target directory to grab private headers +CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/.. + +include $(LEVEL)/Makefile.common diff --git a/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.h b/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.h new file mode 100644 index 0000000..4b2e308 --- /dev/null +++ b/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.h @@ -0,0 +1,2248 @@ +//===- ThumbDisassemblerCore.h - Thumb disassembler helpers -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the ARM Disassembler. +// It contains code for disassembling a Thumb instr. It is to be included by +// ARMDisassemblerCore.cpp because it contains the static DisassembleThumbFrm() +// function which acts as the dispatcher to disassemble a Thumb instruction. +// +//===----------------------------------------------------------------------===// + +/////////////////////////////// +// // +// Utility Functions // +// // +/////////////////////////////// + +// Utilities for 16-bit Thumb instructions. +/* +15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 + [ tRt ] + [ tRm ] [ tRn ] [ tRd ] + D [ Rm ] [ Rd ] + + [ imm3] + [ imm5 ] + i [ imm5 ] + [ imm7 ] + [ imm8 ] + [ imm11 ] + + [ cond ] +*/ + +// Extract tRt: Inst{10-8}. +static inline unsigned getT1tRt(uint32_t insn) { + return slice(insn, 10, 8); +} + +// Extract tRm: Inst{8-6}. +static inline unsigned getT1tRm(uint32_t insn) { + return slice(insn, 8, 6); +} + +// Extract tRn: Inst{5-3}. +static inline unsigned getT1tRn(uint32_t insn) { + return slice(insn, 5, 3); +} + +// Extract tRd: Inst{2-0}. +static inline unsigned getT1tRd(uint32_t insn) { + return slice(insn, 2, 0); +} + +// Extract [D:Rd]: Inst{7:2-0}. +static inline unsigned getT1Rd(uint32_t insn) { + return slice(insn, 7, 7) << 3 | slice(insn, 2, 0); +} + +// Extract Rm: Inst{6-3}. +static inline unsigned getT1Rm(uint32_t insn) { + return slice(insn, 6, 3); +} + +// Extract imm3: Inst{8-6}. +static inline unsigned getT1Imm3(uint32_t insn) { + return slice(insn, 8, 6); +} + +// Extract imm5: Inst{10-6}. +static inline unsigned getT1Imm5(uint32_t insn) { + return slice(insn, 10, 6); +} + +// Extract i:imm5: Inst{9:7-3}. +static inline unsigned getT1Imm6(uint32_t insn) { + return slice(insn, 9, 9) << 5 | slice(insn, 7, 3); +} + +// Extract imm7: Inst{6-0}. +static inline unsigned getT1Imm7(uint32_t insn) { + return slice(insn, 6, 0); +} + +// Extract imm8: Inst{7-0}. +static inline unsigned getT1Imm8(uint32_t insn) { + return slice(insn, 7, 0); +} + +// Extract imm11: Inst{10-0}. +static inline unsigned getT1Imm11(uint32_t insn) { + return slice(insn, 10, 0); +} + +// Extract cond: Inst{11-8}. +static inline unsigned getT1Cond(uint32_t insn) { + return slice(insn, 11, 8); +} + +static inline bool IsGPR(unsigned RegClass) { + return RegClass == ARM::GPRRegClassID; +} + +// Utilities for 32-bit Thumb instructions. + +// Extract imm4: Inst{19-16}. +static inline unsigned getImm4(uint32_t insn) { + return slice(insn, 19, 16); +} + +// Extract imm3: Inst{14-12}. +static inline unsigned getImm3(uint32_t insn) { + return slice(insn, 14, 12); +} + +// Extract imm8: Inst{7-0}. +static inline unsigned getImm8(uint32_t insn) { + return slice(insn, 7, 0); +} + +// A8.6.61 LDRB (immediate, Thumb) and friends +// +/-: Inst{9} +// imm8: Inst{7-0} +static inline int decodeImm8(uint32_t insn) { + int Offset = getImm8(insn); + return slice(insn, 9, 9) ? Offset : -Offset; +} + +// Extract imm12: Inst{11-0}. +static inline unsigned getImm12(uint32_t insn) { + return slice(insn, 11, 0); +} + +// A8.6.63 LDRB (literal) and friends +// +/-: Inst{23} +// imm12: Inst{11-0} +static inline int decodeImm12(uint32_t insn) { + int Offset = getImm12(insn); + return slice(insn, 23, 23) ? Offset : -Offset; +} + +// Extract imm2: Inst{7-6}. +static inline unsigned getImm2(uint32_t insn) { + return slice(insn, 7, 6); +} + +// For BFI, BFC, t2SBFX, and t2UBFX. +// Extract lsb: Inst{14-12:7-6}. +static inline unsigned getLsb(uint32_t insn) { + return getImm3(insn) << 2 | getImm2(insn); +} + +// For BFI and BFC. +// Extract msb: Inst{4-0}. +static inline unsigned getMsb(uint32_t insn) { + return slice(insn, 4, 0); +} + +// For t2SBFX and t2UBFX. +// Extract widthminus1: Inst{4-0}. +static inline unsigned getWidthMinus1(uint32_t insn) { + return slice(insn, 4, 0); +} + +// For t2ADDri12 and t2SUBri12. +// imm12 = i:imm3:imm8; +static inline unsigned getIImm3Imm8(uint32_t insn) { + return slice(insn, 26, 26) << 11 | getImm3(insn) << 8 | getImm8(insn); +} + +// For t2MOVi16 and t2MOVTi16. +// imm16 = imm4:i:imm3:imm8; +static inline unsigned getImm16(uint32_t insn) { + return getImm4(insn) << 12 | slice(insn, 26, 26) << 11 | + getImm3(insn) << 8 | getImm8(insn); +} + +// Inst{5-4} encodes the shift type. +static inline unsigned getShiftTypeBits(uint32_t insn) { + return slice(insn, 5, 4); +} + +// Inst{14-12}:Inst{7-6} encodes the imm5 shift amount. +static inline unsigned getShiftAmtBits(uint32_t insn) { + return getImm3(insn) << 2 | getImm2(insn); +} + +// A8.6.17 BFC +// Encoding T1 ARMv6T2, ARMv7 +// LLVM-specific encoding for #<lsb> and #<width> +static inline bool getBitfieldInvMask(uint32_t insn, uint32_t &mask) { + uint32_t lsb = getImm3(insn) << 2 | getImm2(insn); + uint32_t msb = getMsb(insn); + uint32_t Val = 0; + if (msb < lsb) { + DEBUG(errs() << "Encoding error: msb < lsb\n"); + return false; + } + for (uint32_t i = lsb; i <= msb; ++i) + Val |= (1 << i); + mask = ~Val; + return true; +} + +// A8.4 Shifts applied to a register +// A8.4.1 Constant shifts +// A8.4.3 Pseudocode details of instruction-specified shifts and rotates +// +// decodeImmShift() returns the shift amount and the the shift opcode. +// Note that, as of Jan-06-2010, LLVM does not support rrx shifted operands yet. +static inline unsigned decodeImmShift(unsigned bits2, unsigned imm5, + ARM_AM::ShiftOpc &ShOp) { + + assert(imm5 < 32 && "Invalid imm5 argument"); + switch (bits2) { + default: assert(0 && "No such value"); + case 0: + ShOp = ARM_AM::lsl; + return imm5; + case 1: + ShOp = ARM_AM::lsr; + return (imm5 == 0 ? 32 : imm5); + case 2: + ShOp = ARM_AM::asr; + return (imm5 == 0 ? 32 : imm5); + case 3: + ShOp = (imm5 == 0 ? ARM_AM::rrx : ARM_AM::ror); + return (imm5 == 0 ? 1 : imm5); + } +} + +// A6.3.2 Modified immediate constants in Thumb instructions +// +// ThumbExpandImm() returns the modified immediate constant given an imm12 for +// Thumb data-processing instructions with modified immediate. +// See also A6.3.1 Data-processing (modified immediate). +static inline unsigned ThumbExpandImm(unsigned imm12) { + assert(imm12 <= 0xFFF && "Invalid imm12 argument"); + + // If the leading two bits is 0b00, the modified immediate constant is + // obtained by splatting the low 8 bits into the first byte, every other byte, + // or every byte of a 32-bit value. + // + // Otherwise, a rotate right of '1':imm12<6:0> by the amount imm12<11:7> is + // performed. + + if (slice(imm12, 11, 10) == 0) { + unsigned short control = slice(imm12, 9, 8); + unsigned imm8 = slice(imm12, 7, 0); + switch (control) { + default: + assert(0 && "No such value"); + return 0; + case 0: + return imm8; + case 1: + return imm8 << 16 | imm8; + case 2: + return imm8 << 24 | imm8 << 8; + case 3: + return imm8 << 24 | imm8 << 16 | imm8 << 8 | imm8; + } + } else { + // A rotate is required. + unsigned Val = 1 << 7 | slice(imm12, 6, 0); + unsigned Amt = slice(imm12, 11, 7); + return ARM_AM::rotr32(Val, Amt); + } +} + +static inline int decodeImm32_B_EncodingT3(uint32_t insn) { + bool S = slice(insn, 26, 26); + bool J1 = slice(insn, 13, 13); + bool J2 = slice(insn, 11, 11); + unsigned Imm21 = slice(insn, 21, 16) << 12 | slice(insn, 10, 0) << 1; + if (S) Imm21 |= 1 << 20; + if (J2) Imm21 |= 1 << 19; + if (J1) Imm21 |= 1 << 18; + + return SignExtend32<21>(Imm21); +} + +static inline int decodeImm32_B_EncodingT4(uint32_t insn) { + unsigned S = slice(insn, 26, 26); + bool I1 = slice(insn, 13, 13) == S; + bool I2 = slice(insn, 11, 11) == S; + unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1; + if (S) Imm25 |= 1 << 24; + if (I1) Imm25 |= 1 << 23; + if (I2) Imm25 |= 1 << 22; + + return SignExtend32<25>(Imm25); +} + +static inline int decodeImm32_BL(uint32_t insn) { + unsigned S = slice(insn, 26, 26); + bool I1 = slice(insn, 13, 13) == S; + bool I2 = slice(insn, 11, 11) == S; + unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1; + if (S) Imm25 |= 1 << 24; + if (I1) Imm25 |= 1 << 23; + if (I2) Imm25 |= 1 << 22; + + return SignExtend32<25>(Imm25); +} + +static inline int decodeImm32_BLX(uint32_t insn) { + unsigned S = slice(insn, 26, 26); + bool I1 = slice(insn, 13, 13) == S; + bool I2 = slice(insn, 11, 11) == S; + unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 1) << 2; + if (S) Imm25 |= 1 << 24; + if (I1) Imm25 |= 1 << 23; + if (I2) Imm25 |= 1 << 22; + + return SignExtend32<25>(Imm25); +} + +// See, for example, A8.6.221 SXTAB16. +static inline unsigned decodeRotate(uint32_t insn) { + unsigned rotate = slice(insn, 5, 4); + return rotate << 3; +} + +/////////////////////////////////////////////// +// // +// Thumb1 instruction disassembly functions. // +// // +/////////////////////////////////////////////// + +// See "Utilities for 16-bit Thumb instructions" for register naming convention. + +// A6.2.1 Shift (immediate), add, subtract, move, and compare +// +// shift immediate: tRd CPSR tRn imm5 +// add/sub register: tRd CPSR tRn tRm +// add/sub 3-bit immediate: tRd CPSR tRn imm3 +// add/sub 8-bit immediate: tRt CPSR tRt(TIED_TO) imm8 +// mov/cmp immediate: tRt [CPSR] imm8 (CPSR present for mov) +// +// Special case: +// tMOVSr: tRd tRn +static bool DisassembleThumb1General(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID + && "Invalid arguments"); + + bool Imm3 = (Opcode == ARM::tADDi3 || Opcode == ARM::tSUBi3); + + // Use Rt implies use imm8. + bool UseRt = (Opcode == ARM::tADDi8 || Opcode == ARM::tSUBi8 || + Opcode == ARM::tMOVi8 || Opcode == ARM::tCMPi8); + + // Add the destination operand. + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::tGPRRegClassID, + UseRt ? getT1tRt(insn) : getT1tRd(insn)))); + ++OpIdx; + + // Check whether the next operand to be added is a CCR Register. + if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) { + assert(OpInfo[OpIdx].isOptionalDef() && "Optional def operand expected"); + MI.addOperand(MCOperand::CreateReg(B->InITBlock() ? 0 : ARM::CPSR)); + ++OpIdx; + } + + // Check whether the next operand to be added is a Thumb1 Register. + assert(OpIdx < NumOps && "More operands expected"); + if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) { + // For UseRt, the reg operand is tied to the first reg operand. + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::tGPRRegClassID, + UseRt ? getT1tRt(insn) : getT1tRn(insn)))); + ++OpIdx; + } + + // Special case for tMOVSr. + if (OpIdx == NumOps) + return true; + + // The next available operand is either a reg operand or an imm operand. + if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) { + // Three register operand instructions. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRm(insn)))); + } else { + assert(OpInfo[OpIdx].RegClass == 0 && + !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef() + && "Pure imm operand expected"); + MI.addOperand(MCOperand::CreateImm(UseRt ? getT1Imm8(insn) + : (Imm3 ? getT1Imm3(insn) + : getT1Imm5(insn)))); + } + ++OpIdx; + + return true; +} + +// A6.2.2 Data-processing +// +// tCMPr, tTST, tCMN: tRd tRn +// tMVN, tRSB: tRd CPSR tRn +// Others: tRd CPSR tRd(TIED_TO) tRn +static bool DisassembleThumb1DP(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID && + (OpInfo[1].RegClass == ARM::CCRRegClassID + || OpInfo[1].RegClass == ARM::tGPRRegClassID) + && "Invalid arguments"); + + // Add the destination operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRd(insn)))); + ++OpIdx; + + // Check whether the next operand to be added is a CCR Register. + if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) { + assert(OpInfo[OpIdx].isOptionalDef() && "Optional def operand expected"); + MI.addOperand(MCOperand::CreateReg(B->InITBlock() ? 0 : ARM::CPSR)); + ++OpIdx; + } + + // We have either { tRd(TIED_TO), tRn } or { tRn } remaining. + // Process the TIED_TO operand first. + + assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID + && "Thumb reg operand expected"); + int Idx; + if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) { + // The reg operand is tied to the first reg operand. + MI.addOperand(MI.getOperand(Idx)); + ++OpIdx; + } + + // Process possible next reg operand. + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) { + // Add tRn operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRn(insn)))); + ++OpIdx; + } + + return true; +} + +// A6.2.3 Special data instructions and branch and exchange +// +// tADDhirr: Rd Rd(TIED_TO) Rm +// tCMPhir: Rd Rm +// tMOVr, tMOVgpr2gpr, tMOVgpr2tgpr, tMOVtgpr2gpr: Rd|tRd Rm|tRn +// tBX_RET: 0 operand +// tBX_RET_vararg: Rm +// tBLXr_r9: Rm +static bool DisassembleThumb1Special(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + // tBX_RET has 0 operand. + if (NumOps == 0) + return true; + + // BX/BLX has 1 reg operand: Rm. + if (NumOps == 1) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + getT1Rm(insn)))); + NumOpsAdded = 1; + return true; + } + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + // Add the destination operand. + unsigned RegClass = OpInfo[OpIdx].RegClass; + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, + IsGPR(RegClass) ? getT1Rd(insn) + : getT1tRd(insn)))); + ++OpIdx; + + // We have either { Rd(TIED_TO), Rm } or { Rm|tRn } remaining. + // Process the TIED_TO operand first. + + assert(OpIdx < NumOps && "More operands expected"); + int Idx; + if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) { + // The reg operand is tied to the first reg operand. + MI.addOperand(MI.getOperand(Idx)); + ++OpIdx; + } + + // The next reg operand is either Rm or tRn. + assert(OpIdx < NumOps && "More operands expected"); + RegClass = OpInfo[OpIdx].RegClass; + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, RegClass, + IsGPR(RegClass) ? getT1Rm(insn) + : getT1tRn(insn)))); + ++OpIdx; + + return true; +} + +// A8.6.59 LDR (literal) +// +// tLDRpci: tRt imm8*4 +static bool DisassembleThumb1LdPC(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID && + (OpInfo[1].RegClass == 0 && + !OpInfo[1].isPredicate() && + !OpInfo[1].isOptionalDef()) + && "Invalid arguments"); + + // Add the destination operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRt(insn)))); + + // And the (imm8 << 2) operand. + MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn) << 2)); + + NumOpsAdded = 2; + + return true; +} + +// Thumb specific addressing modes (see ARMInstrThumb.td): +// +// t_addrmode_rr := reg + reg +// +// t_addrmode_s4 := reg + reg +// reg + imm5 * 4 +// +// t_addrmode_s2 := reg + reg +// reg + imm5 * 2 +// +// t_addrmode_s1 := reg + reg +// reg + imm5 +// +// t_addrmode_sp := sp + imm8 * 4 +// + +// A6.2.4 Load/store single data item +// +// Load/Store Register (reg|imm): tRd tRn imm5 tRm +// Load Register Signed Byte|Halfword: tRd tRn tRm +static bool DisassembleThumb1LdSt(unsigned opA, MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + // Table A6-5 16-bit Thumb Load/store instructions + // opA = 0b0101 for STR/LDR (register) and friends. + // Otherwise, we have STR/LDR (immediate) and friends. + bool Imm5 = (opA != 5); + + assert(NumOps >= 2 + && OpInfo[0].RegClass == ARM::tGPRRegClassID + && OpInfo[1].RegClass == ARM::tGPRRegClassID + && "Expect >= 2 operands and first two as thumb reg operands"); + + // Add the destination reg and the base reg. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRd(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRn(insn)))); + OpIdx = 2; + + // We have either { imm5, tRm } or { tRm } remaining. + // Process the imm5 first. Note that STR/LDR (register) should skip the imm5 + // offset operand for t_addrmode_s[1|2|4]. + + assert(OpIdx < NumOps && "More operands expected"); + + if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() && + !OpInfo[OpIdx].isOptionalDef()) { + + MI.addOperand(MCOperand::CreateImm(Imm5 ? getT1Imm5(insn) : 0)); + ++OpIdx; + } + + // The next reg operand is tRm, the offset. + assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID + && "Thumb reg operand expected"); + MI.addOperand(MCOperand::CreateReg( + Imm5 ? 0 + : getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRm(insn)))); + ++OpIdx; + + return true; +} + +// A6.2.4 Load/store single data item +// +// Load/Store Register SP relative: tRt ARM::SP imm8 +static bool DisassembleThumb1LdStSP(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert((Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) + && "Unexpected opcode"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 3 && + OpInfo[0].RegClass == ARM::tGPRRegClassID && + OpInfo[1].RegClass == ARM::GPRRegClassID && + (OpInfo[2].RegClass == 0 && + !OpInfo[2].isPredicate() && + !OpInfo[2].isOptionalDef()) + && "Invalid arguments"); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRt(insn)))); + MI.addOperand(MCOperand::CreateReg(ARM::SP)); + MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); + NumOpsAdded = 3; + return true; +} + +// Table A6-1 16-bit Thumb instruction encoding +// A8.6.10 ADR +// +// tADDrPCi: tRt imm8 +static bool DisassembleThumb1AddPCi(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(Opcode == ARM::tADDrPCi && "Unexpected opcode"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID && + (OpInfo[1].RegClass == 0 && + !OpInfo[1].isPredicate() && + !OpInfo[1].isOptionalDef()) + && "Invalid arguments"); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRt(insn)))); + MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); + NumOpsAdded = 2; + return true; +} + +// Table A6-1 16-bit Thumb instruction encoding +// A8.6.8 ADD (SP plus immediate) +// +// tADDrSPi: tRt ARM::SP imm8 +static bool DisassembleThumb1AddSPi(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(Opcode == ARM::tADDrSPi && "Unexpected opcode"); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 3 && + OpInfo[0].RegClass == ARM::tGPRRegClassID && + OpInfo[1].RegClass == ARM::GPRRegClassID && + (OpInfo[2].RegClass == 0 && + !OpInfo[2].isPredicate() && + !OpInfo[2].isOptionalDef()) + && "Invalid arguments"); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRt(insn)))); + MI.addOperand(MCOperand::CreateReg(ARM::SP)); + MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); + NumOpsAdded = 3; + return true; +} + +// tPUSH, tPOP: Pred-Imm Pred-CCR register_list +// +// where register_list = low registers + [lr] for PUSH or +// low registers + [pc] for POP +// +// "low registers" is specified by Inst{7-0} +// lr|pc is specified by Inst{8} +static bool DisassembleThumb1PushPop(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert((Opcode == ARM::tPUSH || Opcode == ARM::tPOP) && "Unexpected opcode"); + + unsigned &OpIdx = NumOpsAdded; + + // Handling the two predicate operands before the reglist. + if (B->DoPredicateOperands(MI, Opcode, insn, NumOps)) + OpIdx += 2; + else { + DEBUG(errs() << "Expected predicate operands not found.\n"); + return false; + } + + unsigned RegListBits = slice(insn, 8, 8) << (Opcode == ARM::tPUSH ? 14 : 15) + | slice(insn, 7, 0); + + // Fill the variadic part of reglist. + for (unsigned i = 0; i < 16; ++i) { + if ((RegListBits >> i) & 1) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + i))); + ++OpIdx; + } + } + + return true; +} + +// A6.2.5 Miscellaneous 16-bit instructions +// Delegate to DisassembleThumb1PushPop() for tPUSH & tPOP. +// +// tADDspi, tSUBspi: ARM::SP ARM::SP(TIED_TO) imm7 +// t2IT: firstcond=Inst{7-4} mask=Inst{3-0} +// tCBNZ, tCBZ: tRd imm6*2 +// tBKPT: imm8 +// tNOP, tSEV, tYIELD, tWFE, tWFI: +// no operand (except predicate pair) +// tSETENDBE, tSETENDLE, : +// no operand +// Others: tRd tRn +static bool DisassembleThumb1Misc(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + if (NumOps == 0) + return true; + + if (Opcode == ARM::tPUSH || Opcode == ARM::tPOP) + return DisassembleThumb1PushPop(MI, Opcode, insn, NumOps, NumOpsAdded, B); + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + + // Predicate operands are handled elsewhere. + if (NumOps == 2 && + OpInfo[0].isPredicate() && OpInfo[1].isPredicate() && + OpInfo[0].RegClass == 0 && OpInfo[1].RegClass == ARM::CCRRegClassID) { + return true; + } + + if (Opcode == ARM::tADDspi || Opcode == ARM::tSUBspi) { + // Special case handling for tADDspi and tSUBspi. + // A8.6.8 ADD (SP plus immediate) & A8.6.215 SUB (SP minus immediate) + MI.addOperand(MCOperand::CreateReg(ARM::SP)); + MI.addOperand(MCOperand::CreateReg(ARM::SP)); + MI.addOperand(MCOperand::CreateImm(getT1Imm7(insn))); + NumOpsAdded = 3; + return true; + } + + if (Opcode == ARM::t2IT) { + // Special case handling for If-Then. + // A8.6.50 IT + // Tag the (firstcond[0] bit << 4) along with mask. + + // firstcond + MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 4))); + + // firstcond[0] and mask + MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0))); + NumOpsAdded = 2; + return true; + } + + if (Opcode == ARM::tBKPT) { + MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); // breakpoint value + NumOpsAdded = 1; + return true; + } + + // CPS has a singleton $opt operand that contains the following information: + // opt{4-0} = don't care + // opt{5} = 0 (false) + // opt{8-6} = AIF from Inst{2-0} + // opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable + if (Opcode == ARM::tCPS) { + unsigned Option = slice(insn, 2, 0) << 6 | slice(insn, 4, 4) << 9 | 1 << 10; + MI.addOperand(MCOperand::CreateImm(Option)); + NumOpsAdded = 1; + return true; + } + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID && + (OpInfo[1].RegClass==0 || OpInfo[1].RegClass==ARM::tGPRRegClassID) + && "Expect >=2 operands"); + + // Add the destination operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRd(insn)))); + + if (OpInfo[1].RegClass == ARM::tGPRRegClassID) { + // Two register instructions. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + getT1tRn(insn)))); + } else { + // CBNZ, CBZ + assert((Opcode == ARM::tCBNZ || Opcode == ARM::tCBZ) &&"Unexpected opcode"); + MI.addOperand(MCOperand::CreateImm(getT1Imm6(insn) * 2)); + } + + NumOpsAdded = 2; + + return true; +} + +// A8.6.53 LDM / LDMIA +// A8.6.189 STM / STMIA +// +// tLDM_UPD/tSTM_UPD: tRt tRt AM4ModeImm Pred-Imm Pred-CCR register_list +// tLDM: tRt AM4ModeImm Pred-Imm Pred-CCR register_list +static bool DisassembleThumb1LdStMul(bool Ld, MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert((Opcode == ARM::tLDM || Opcode == ARM::tLDM_UPD || + Opcode == ARM::tSTM_UPD) && "Unexpected opcode"); + + unsigned &OpIdx = NumOpsAdded; + + unsigned tRt = getT1tRt(insn); + + OpIdx = 0; + + // WB register, if necessary. + if (Opcode == ARM::tLDM_UPD || Opcode == ARM::tSTM_UPD) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + tRt))); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + tRt))); + ++OpIdx; + + // A8.6.53 LDM / LDMIA / LDMFD - Encoding T1 + // A8.6.53 STM / STMIA / STMEA - Encoding T1 + MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(ARM_AM::ia))); + ++OpIdx; + + // Handling the two predicate operands before the reglist. + if (B->DoPredicateOperands(MI, Opcode, insn, NumOps)) + OpIdx += 2; + else { + DEBUG(errs() << "Expected predicate operands not found.\n"); + return false; + } + + unsigned RegListBits = slice(insn, 7, 0); + + // Fill the variadic part of reglist. + for (unsigned i = 0; i < 8; ++i) { + if ((RegListBits >> i) & 1) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::tGPRRegClassID, + i))); + ++OpIdx; + } + } + + return true; +} + +static bool DisassembleThumb1LdMul(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + return DisassembleThumb1LdStMul(true, MI, Opcode, insn, NumOps, NumOpsAdded, + B); +} + +static bool DisassembleThumb1StMul(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + return DisassembleThumb1LdStMul(false, MI, Opcode, insn, NumOps, NumOpsAdded, + B); +} + +// A8.6.16 B Encoding T1 +// cond = Inst{11-8} & imm8 = Inst{7-0} +// imm32 = SignExtend(imm8:'0', 32) +// +// tBcc: offset Pred-Imm Pred-CCR +// tSVC: imm8 Pred-Imm Pred-CCR +// tTRAP: 0 operand (early return) +static bool DisassembleThumb1CondBr(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO) { + + if (Opcode == ARM::tTRAP) + return true; + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps == 3 && OpInfo[0].RegClass == 0 && + OpInfo[1].isPredicate() && OpInfo[2].RegClass == ARM::CCRRegClassID + && "Exactly 3 operands expected"); + + unsigned Imm8 = getT1Imm8(insn); + MI.addOperand(MCOperand::CreateImm( + Opcode == ARM::tBcc ? SignExtend32<9>(Imm8 << 1) + 4 + : (int)Imm8)); + + // Predicate operands by ARMBasicMCBuilder::TryPredicateAndSBitModifier(). + NumOpsAdded = 1; + + return true; +} + +// A8.6.16 B Encoding T2 +// imm11 = Inst{10-0} +// imm32 = SignExtend(imm11:'0', 32) +// +// tB: offset +static bool DisassembleThumb1Br(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps == 1 && OpInfo[0].RegClass == 0 && "1 imm operand expected"); + + unsigned Imm11 = getT1Imm11(insn); + + // When executing a Thumb instruction, PC reads as the address of the current + // instruction plus 4. The assembler subtracts 4 from the difference between + // the branch instruction and the target address, disassembler has to add 4 to + // to compensate. + MI.addOperand(MCOperand::CreateImm(SignExtend32<12>(Imm11 << 1) + 4)); + + NumOpsAdded = 1; + + return true; + +} + +// See A6.2 16-bit Thumb instruction encoding for instruction classes +// corresponding to op. +// +// Table A6-1 16-bit Thumb instruction encoding (abridged) +// op Instruction or instruction class +// ------ -------------------------------------------------------------------- +// 00xxxx Shift (immediate), add, subtract, move, and compare on page A6-7 +// 010000 Data-processing on page A6-8 +// 010001 Special data instructions and branch and exchange on page A6-9 +// 01001x Load from Literal Pool, see LDR (literal) on page A8-122 +// 0101xx Load/store single data item on page A6-10 +// 011xxx +// 100xxx +// 10100x Generate PC-relative address, see ADR on page A8-32 +// 10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-28 +// 1011xx Miscellaneous 16-bit instructions on page A6-11 +// 11000x Store multiple registers, see STM / STMIA / STMEA on page A8-374 +// 11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 a +// 1101xx Conditional branch, and Supervisor Call on page A6-13 +// 11100x Unconditional Branch, see B on page A8-44 +// +static bool DisassembleThumb1(uint16_t op, MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + unsigned op1 = slice(op, 5, 4); + unsigned op2 = slice(op, 3, 2); + unsigned op3 = slice(op, 1, 0); + unsigned opA = slice(op, 5, 2); + switch (op1) { + case 0: + // A6.2.1 Shift (immediate), add, subtract, move, and compare + return DisassembleThumb1General(MI, Opcode, insn, NumOps, NumOpsAdded, B); + case 1: + switch (op2) { + case 0: + switch (op3) { + case 0: + // A6.2.2 Data-processing + return DisassembleThumb1DP(MI, Opcode, insn, NumOps, NumOpsAdded, B); + case 1: + // A6.2.3 Special data instructions and branch and exchange + return DisassembleThumb1Special(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + default: + // A8.6.59 LDR (literal) + return DisassembleThumb1LdPC(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } + break; + default: + // A6.2.4 Load/store single data item + return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded, + B); + break; + } + break; + case 2: + switch (op2) { + case 0: + // A6.2.4 Load/store single data item + return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded, + B); + case 1: + // A6.2.4 Load/store single data item + return DisassembleThumb1LdStSP(MI, Opcode, insn, NumOps, NumOpsAdded, B); + case 2: + if (op3 <= 1) { + // A8.6.10 ADR + return DisassembleThumb1AddPCi(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } else { + // A8.6.8 ADD (SP plus immediate) + return DisassembleThumb1AddSPi(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + default: + // A6.2.5 Miscellaneous 16-bit instructions + return DisassembleThumb1Misc(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } + break; + case 3: + switch (op2) { + case 0: + if (op3 <= 1) { + // A8.6.189 STM / STMIA / STMEA + return DisassembleThumb1StMul(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } else { + // A8.6.53 LDM / LDMIA / LDMFD + return DisassembleThumb1LdMul(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } + case 1: + // A6.2.6 Conditional branch, and Supervisor Call + return DisassembleThumb1CondBr(MI, Opcode, insn, NumOps, NumOpsAdded, B); + case 2: + // Unconditional Branch, see B on page A8-44 + return DisassembleThumb1Br(MI, Opcode, insn, NumOps, NumOpsAdded, B); + default: + assert(0 && "Unreachable code"); + break; + } + break; + default: + assert(0 && "Unreachable code"); + break; + } + + return false; +} + +/////////////////////////////////////////////// +// // +// Thumb2 instruction disassembly functions. // +// // +/////////////////////////////////////////////// + +/////////////////////////////////////////////////////////// +// // +// Note: the register naming follows the ARM convention! // +// // +/////////////////////////////////////////////////////////// + +static inline bool Thumb2SRSOpcode(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::t2SRSDBW: case ARM::t2SRSDB: + case ARM::t2SRSIAW: case ARM::t2SRSIA: + return true; + } +} + +static inline bool Thumb2RFEOpcode(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::t2RFEDBW: case ARM::t2RFEDB: + case ARM::t2RFEIAW: case ARM::t2RFEIA: + return true; + } +} + +// t2SRS[IA|DB]W/t2SRS[IA|DB]: mode_imm = Inst{4-0} +static bool DisassembleThumb2SRS(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded) { + MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0))); + NumOpsAdded = 1; + return true; +} + +// t2RFE[IA|DB]W/t2RFE[IA|DB]: Rn +static bool DisassembleThumb2RFE(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + NumOpsAdded = 1; + return true; +} + +static bool DisassembleThumb2LdStMul(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + if (Thumb2SRSOpcode(Opcode)) + return DisassembleThumb2SRS(MI, Opcode, insn, NumOps, NumOpsAdded); + + if (Thumb2RFEOpcode(Opcode)) + return DisassembleThumb2RFE(MI, Opcode, insn, NumOps, NumOpsAdded, B); + + assert((Opcode == ARM::t2LDM || Opcode == ARM::t2LDM_UPD || + Opcode == ARM::t2STM || Opcode == ARM::t2STM_UPD) + && "Unexpected opcode"); + assert(NumOps >= 5 && "Thumb2 LdStMul expects NumOps >= 5"); + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn)); + + // Writeback to base. + if (Opcode == ARM::t2LDM_UPD || Opcode == ARM::t2STM_UPD) { + MI.addOperand(MCOperand::CreateReg(Base)); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(Base)); + ++OpIdx; + + ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn)); + MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode))); + ++OpIdx; + + // Handling the two predicate operands before the reglist. + if (B->DoPredicateOperands(MI, Opcode, insn, NumOps)) + OpIdx += 2; + else { + DEBUG(errs() << "Expected predicate operands not found.\n"); + return false; + } + + unsigned RegListBits = insn & ((1 << 16) - 1); + + // Fill the variadic part of reglist. + for (unsigned i = 0; i < 16; ++i) { + if ((RegListBits >> i) & 1) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + i))); + ++OpIdx; + } + } + + return true; +} + +// t2LDREX: Rd Rn +// t2LDREXD: Rd Rs Rn +// t2LDREXB, t2LDREXH: Rd Rn +// t2STREX: Rs Rd Rn +// t2STREXD: Rm Rd Rs Rn +// t2STREXB, t2STREXH: Rm Rd Rn +static bool DisassembleThumb2LdStEx(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && "Expect >=2 operands and first two as reg operands"); + + bool isStore = (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH); + bool isSW = (Opcode == ARM::t2LDREX || Opcode == ARM::t2STREX); + bool isDW = (Opcode == ARM::t2LDREXD || Opcode == ARM::t2STREXD); + + // Add the destination operand for store. + if (isStore) { + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + isSW ? decodeRs(insn) : decodeRm(insn)))); + ++OpIdx; + } + + // Source operand for store and destination operand for load. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + ++OpIdx; + + // Thumb2 doubleword complication: with an extra source/destination operand. + if (isDW) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + ++OpIdx; + } + + // Finally add the pointer operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + + return true; +} + +// LLVM, as of Jan-05-2010, does not output <Rt2>, i.e., Rs, in the asm. +// Whereas the ARM Arch. Manual does not require that t2 = t+1 like in ARM ISA. +// +// t2LDRDi8: Rd Rs Rn imm8s4 (offset mode) +// t2LDRDpci: Rd Rs imm8s4 (Not decoded, prefer the generic t2LDRDi8 version) +// t2STRDi8: Rd Rs Rn imm8s4 (offset mode) +// +// Ditto for t2LDRD_PRE, t2LDRD_POST, t2STRD_PRE, t2STRD_POST, which are for +// disassembly only and do not have a tied_to writeback base register operand. +static bool DisassembleThumb2LdStDual(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 4 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && OpInfo[2].RegClass == ARM::GPRRegClassID + && OpInfo[3].RegClass == 0 + && "Expect >= 4 operands and first 3 as reg operands"); + + // Add the <Rt> <Rt2> operands. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + // Finally add (+/-)imm8*4, depending on the U bit. + int Offset = getImm8(insn) * 4; + if (getUBit(insn) == 0) + Offset = -Offset; + MI.addOperand(MCOperand::CreateImm(Offset)); + NumOpsAdded = 4; + + return true; +} + +// PC-based defined for Codegen, which do not get decoded by design: +// +// t2TBB, t2TBH: Rm immDontCare immDontCare +// +// Generic version defined for disassembly: +// +// t2TBBgen, t2TBHgen: Rn Rm Pred-Imm Pred-CCR +static bool DisassembleThumb2TB(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + assert(NumOps >= 2 && "Expect >= 2 operands"); + + // The generic version of TBB/TBH needs a base register. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + // Add the index register. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + NumOpsAdded = 2; + + return true; +} + +static inline bool Thumb2ShiftOpcode(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::t2MOVCClsl: case ARM::t2MOVCClsr: + case ARM::t2MOVCCasr: case ARM::t2MOVCCror: + case ARM::t2LSLri: case ARM::t2LSRri: + case ARM::t2ASRri: case ARM::t2RORri: + return true; + } +} + +// A6.3.11 Data-processing (shifted register) +// +// Two register operands (Rn=0b1111 no 1st operand reg): Rs Rm +// Two register operands (Rs=0b1111 no dst operand reg): Rn Rm +// Three register operands: Rs Rn Rm +// Three register operands: (Rn=0b1111 Conditional Move) Rs Ro(TIED_TO) Rm +// +// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2 +// register with shift forms: (Rm, ConstantShiftSpecifier). +// Constant shift specifier: Imm = (ShOp | ShAmt<<3). +// +// There are special instructions, like t2MOVsra_flag and t2MOVsrl_flag, which +// only require two register operands: Rd, Rm in ARM Reference Manual terms, and +// nothing else, because the shift amount is already specified. +// Similar case holds for t2MOVrx, t2ADDrr, ..., etc. +static bool DisassembleThumb2DPSoReg(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + // Special case handling. + if (Opcode == ARM::t2BR_JT) { + assert(NumOps == 4 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && OpInfo[2].RegClass == 0 + && OpInfo[3].RegClass == 0 + && "Exactlt 4 operands expect and first two as reg operands"); + // Only need to populate the src reg operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + MI.addOperand(MCOperand::CreateReg(0)); + MI.addOperand(MCOperand::CreateImm(0)); + MI.addOperand(MCOperand::CreateImm(0)); + NumOpsAdded = 4; + return true; + } + + OpIdx = 0; + + assert(NumOps >= 2 + && OpInfo[0].RegClass == ARM::GPRRegClassID + && OpInfo[1].RegClass == ARM::GPRRegClassID + && "Expect >= 2 operands and first two as reg operands"); + + bool ThreeReg = (NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID); + bool NoDstReg = (decodeRs(insn) == 0xF); + + // Build the register operands, followed by the constant shift specifier. + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + NoDstReg ? decodeRn(insn) : decodeRs(insn)))); + ++OpIdx; + + if (ThreeReg) { + int Idx; + if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) { + // Process tied_to operand constraint. + MI.addOperand(MI.getOperand(Idx)); + ++OpIdx; + } else if (!NoDstReg) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } else { + DEBUG(errs() << "Thumb2 encoding error: d==15 for three-reg operands.\n"); + return false; + } + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + ++OpIdx; + + if (NumOps == OpIdx) + return true; + + if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() + && !OpInfo[OpIdx].isOptionalDef()) { + + if (Thumb2ShiftOpcode(Opcode)) + MI.addOperand(MCOperand::CreateImm(getShiftAmtBits(insn))); + else { + // Build the constant shift specifier operand. + unsigned bits2 = getShiftTypeBits(insn); + unsigned imm5 = getShiftAmtBits(insn); + ARM_AM::ShiftOpc ShOp = ARM_AM::no_shift; + unsigned ShAmt = decodeImmShift(bits2, imm5, ShOp); + + // PKHBT/PKHTB are special in that we need the decodeImmShift() call to + // decode the shift amount from raw imm5 and bits2, but we DO NOT need + // to encode the ShOp, as it's in the asm string already. + if (Opcode == ARM::t2PKHBT || Opcode == ARM::t2PKHTB) + MI.addOperand(MCOperand::CreateImm(ShAmt)); + else + MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShAmt))); + } + ++OpIdx; + } + + return true; +} + +// A6.3.1 Data-processing (modified immediate) +// +// Two register operands: Rs Rn ModImm +// One register operands (Rs=0b1111 no explicit dest reg): Rn ModImm +// One register operands (Rn=0b1111 no explicit src reg): Rs ModImm - {t2MOVi, t2MVNi} +// +// ModImm = ThumbExpandImm(i:imm3:imm8) +static bool DisassembleThumb2DPModImm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID + && "Expect >= 2 operands and first one as reg operand"); + + bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID); + bool NoDstReg = (decodeRs(insn) == 0xF); + + // Build the register operands, followed by the modified immediate. + + MI.addOperand(MCOperand::CreateReg( + getRegisterEnum(B, ARM::GPRRegClassID, + NoDstReg ? decodeRn(insn) : decodeRs(insn)))); + ++OpIdx; + + if (TwoReg) { + if (NoDstReg) { + DEBUG(errs()<<"Thumb2 encoding error: d==15 for DPModImm 2-reg instr.\n"); + return false; + } + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + // The modified immediate operand should come next. + assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 && + !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef() + && "Pure imm operand expected"); + + // i:imm3:imm8 + // A6.3.2 Modified immediate constants in Thumb instructions + unsigned imm12 = getIImm3Imm8(insn); + MI.addOperand(MCOperand::CreateImm(ThumbExpandImm(imm12))); + ++OpIdx; + + return true; +} + +static inline bool Thumb2SaturateOpcode(unsigned Opcode) { + switch (Opcode) { + case ARM::t2SSATlsl: case ARM::t2SSATasr: case ARM::t2SSAT16: + case ARM::t2USATlsl: case ARM::t2USATasr: case ARM::t2USAT16: + return true; + default: + return false; + } +} + +static inline unsigned decodeThumb2SaturatePos(unsigned Opcode, uint32_t insn) { + switch (Opcode) { + case ARM::t2SSATlsl: + case ARM::t2SSATasr: + return slice(insn, 4, 0) + 1; + case ARM::t2SSAT16: + return slice(insn, 3, 0) + 1; + case ARM::t2USATlsl: + case ARM::t2USATasr: + return slice(insn, 4, 0); + case ARM::t2USAT16: + return slice(insn, 3, 0); + default: + assert(0 && "Unexpected opcode"); + return 0; + } +} + +// A6.3.3 Data-processing (plain binary immediate) +// +// o t2ADDri12, t2SUBri12: Rs Rn imm12 +// o t2LEApcrel (ADR): Rs imm12 +// o t2BFC (BFC): Rs Ro(TIED_TO) bf_inv_mask_imm +// o t2BFI (BFI) (Currently not defined in LLVM as of Jan-07-2010) +// o t2MOVi16: Rs imm16 +// o t2MOVTi16: Rs imm16 +// o t2SBFX (SBFX): Rs Rn lsb width +// o t2UBFX (UBFX): Rs Rn lsb width +// o t2BFI (BFI): Rs Rn lsb width +// +// [Signed|Unsigned] Saturate [16] +// +// o t2SSAT[lsl|asr], t2USAT[lsl|asr]: Rs sat_pos Rn shamt +// o t2SSAT16, t2USAT16: Rs sat_pos Rn +static bool DisassembleThumb2DPBinImm(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID + && "Expect >= 2 operands and first one as reg operand"); + + bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID); + + // Build the register operand(s), followed by the immediate(s). + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + ++OpIdx; + + // t2SSAT/t2SSAT16/t2USAT/t2USAT16 has imm operand after Rd. + if (Thumb2SaturateOpcode(Opcode)) { + MI.addOperand(MCOperand::CreateImm(decodeThumb2SaturatePos(Opcode, insn))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + if (Opcode == ARM::t2SSAT16 || Opcode == ARM::t2USAT16) { + OpIdx += 2; + return true; + } + + // For SSAT operand reg (Rn) has been disassembled above. + // Now disassemble the shift amount. + + // Inst{14-12:7-6} encodes the imm5 shift amount. + unsigned ShAmt = slice(insn, 14, 12) << 2 | slice(insn, 7, 6); + + MI.addOperand(MCOperand::CreateImm(ShAmt)); + + OpIdx += 3; + return true; + } + + if (TwoReg) { + assert(NumOps >= 3 && "Expect >= 3 operands"); + int Idx; + if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) { + // Process tied_to operand constraint. + MI.addOperand(MI.getOperand(Idx)); + } else { + // Add src reg operand. + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + } + ++OpIdx; + } + + assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() + && !OpInfo[OpIdx].isOptionalDef() + && "Pure imm operand expected"); + + // Pre-increment OpIdx. + ++OpIdx; + + if (Opcode == ARM::t2ADDri12 || Opcode == ARM::t2SUBri12 + || Opcode == ARM::t2LEApcrel) + MI.addOperand(MCOperand::CreateImm(getIImm3Imm8(insn))); + else if (Opcode == ARM::t2MOVi16 || Opcode == ARM::t2MOVTi16) + MI.addOperand(MCOperand::CreateImm(getImm16(insn))); + else if (Opcode == ARM::t2BFC) { + uint32_t mask = 0; + if (getBitfieldInvMask(insn, mask)) + MI.addOperand(MCOperand::CreateImm(mask)); + else + return false; + } else { + // Handle the case of: lsb width + assert((Opcode == ARM::t2SBFX || Opcode == ARM::t2UBFX || + Opcode == ARM::t2BFI) && "Unexpected opcode"); + MI.addOperand(MCOperand::CreateImm(getLsb(insn))); + if (Opcode == ARM::t2BFI) { + if (getMsb(insn) < getLsb(insn)) { + DEBUG(errs() << "Encoding error: msb < lsb\n"); + return false; + } + MI.addOperand(MCOperand::CreateImm(getMsb(insn) - getLsb(insn) + 1)); + } else + MI.addOperand(MCOperand::CreateImm(getWidthMinus1(insn) + 1)); + + ++OpIdx; + } + + return true; +} + +// A6.3.4 Table A6-15 Miscellaneous control instructions +// A8.6.41 DMB +// A8.6.42 DSB +// A8.6.49 ISB +static inline bool t2MiscCtrlInstr(uint32_t insn) { + if (slice(insn, 31, 20) == 0xf3b && slice(insn, 15, 14) == 2 && + slice(insn, 12, 12) == 0) + return true; + + return false; +} + +// A6.3.4 Branches and miscellaneous control +// +// A8.6.16 B +// Branches: t2B, t2Bcc -> imm operand +// +// Branches: t2TPsoft -> no operand +// +// A8.6.23 BL, BLX (immediate) +// Branches (defined in ARMInstrThumb.td): tBLr9, tBLXi_r9 -> imm operand +// +// A8.6.26 +// t2BXJ -> Rn +// +// Miscellaneous control: t2Int_MemBarrierV7 (and its t2DMB variants), +// t2Int_SyncBarrierV7 (and its t2DSB varianst), t2ISBsy, t2CLREX +// -> no operand (except pred-imm pred-ccr for CLREX, memory barrier variants) +// +// Hint: t2NOP, t2YIELD, t2WFE, t2WFI, t2SEV +// -> no operand (except pred-imm pred-ccr) +// +// t2DBG -> imm4 = Inst{3-0} +// +// t2MRS/t2MRSsys -> Rs +// t2MSR/t2MSRsys -> Rn mask=Inst{11-8} +// t2SMC -> imm4 = Inst{19-16} +static bool DisassembleThumb2BrMiscCtrl(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + if (NumOps == 0) + return true; + + if (t2MiscCtrlInstr(insn)) + return true; + + switch (Opcode) { + case ARM::t2CLREX: + case ARM::t2NOP: + case ARM::t2YIELD: + case ARM::t2WFE: + case ARM::t2WFI: + case ARM::t2SEV: + return true; + default: + break; + } + + // CPS has a singleton $opt operand that contains the following information: + // opt{4-0} = mode from Inst{4-0} + // opt{5} = changemode from Inst{8} + // opt{8-6} = AIF from Inst{7-5} + // opt{10-9} = imod from Inst{10-9} with 0b10 as enable and 0b11 as disable + if (Opcode == ARM::t2CPS) { + unsigned Option = slice(insn, 4, 0) | slice(insn, 8, 8) << 5 | + slice(insn, 7, 5) << 6 | slice(insn, 10, 9) << 9; + MI.addOperand(MCOperand::CreateImm(Option)); + NumOpsAdded = 1; + return true; + } + + // DBG has its option specified in Inst{3-0}. + if (Opcode == ARM::t2DBG) { + MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0))); + NumOpsAdded = 1; + return true; + } + + // MRS and MRSsys take one GPR reg Rs. + if (Opcode == ARM::t2MRS || Opcode == ARM::t2MRSsys) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + NumOpsAdded = 1; + return true; + } + // BXJ takes one GPR reg Rn. + if (Opcode == ARM::t2BXJ) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + NumOpsAdded = 1; + return true; + } + // MSR and MSRsys take one GPR reg Rn, followed by the mask. + if (Opcode == ARM::t2MSR || Opcode == ARM::t2MSRsys || Opcode == ARM::t2BXJ) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8))); + NumOpsAdded = 2; + return true; + } + // SMC take imm4. + if (Opcode == ARM::t2SMC) { + MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16))); + NumOpsAdded = 1; + return true; + } + + // Add the imm operand. + int Offset = 0; + + switch (Opcode) { + default: + assert(0 && "Unexpected opcode"); + return false; + case ARM::t2B: + Offset = decodeImm32_B_EncodingT4(insn); + break; + case ARM::t2Bcc: + Offset = decodeImm32_B_EncodingT3(insn); + break; + case ARM::tBLr9: + Offset = decodeImm32_BL(insn); + break; + case ARM::tBLXi_r9: + Offset = decodeImm32_BLX(insn); + break; + } + // When executing a Thumb instruction, PC reads as the address of the current + // instruction plus 4. The assembler subtracts 4 from the difference between + // the branch instruction and the target address, disassembler has to add 4 to + // to compensate. + MI.addOperand(MCOperand::CreateImm(Offset + 4)); + + NumOpsAdded = 1; + + return true; +} + +static inline bool Thumb2PreloadOpcode(unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::t2PLDi12: case ARM::t2PLDi8: case ARM::t2PLDpci: + case ARM::t2PLDr: case ARM::t2PLDs: + case ARM::t2PLDWi12: case ARM::t2PLDWi8: case ARM::t2PLDWpci: + case ARM::t2PLDWr: case ARM::t2PLDWs: + case ARM::t2PLIi12: case ARM::t2PLIi8: case ARM::t2PLIpci: + case ARM::t2PLIr: case ARM::t2PLIs: + return true; + } +} + +static bool DisassembleThumb2PreLoad(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + // Preload Data/Instruction requires either 2 or 3 operands. + // t2PLDi12, t2PLDi8, t2PLDpci: Rn [+/-]imm12/imm8 + // t2PLDr: Rn Rm + // t2PLDs: Rn Rm imm2=Inst{5-4} + // Same pattern applies for t2PLDW* and t2PLI*. + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + "Expect >= 2 operands and first one as reg operand"); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + + if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + } else { + assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() + && !OpInfo[OpIdx].isOptionalDef() + && "Pure imm operand expected"); + int Offset = 0; + if (Opcode == ARM::t2PLDpci || Opcode == ARM::t2PLDWpci || + Opcode == ARM::t2PLIpci) { + bool Negative = slice(insn, 23, 23) == 0; + unsigned Imm12 = getImm12(insn); + Offset = Negative ? -1 - Imm12 : 1 * Imm12; + } else if (Opcode == ARM::t2PLDi8 || Opcode == ARM::t2PLDWi8 || + Opcode == ARM::t2PLIi8) { + // A8.6.117 Encoding T2: add = FALSE + unsigned Imm8 = getImm8(insn); + Offset = -1 - Imm8; + } else // The i12 forms. See, for example, A8.6.117 Encoding T1. + Offset = decodeImm12(insn); + MI.addOperand(MCOperand::CreateImm(Offset)); + } + ++OpIdx; + + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 && + !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + // Fills in the shift amount for t2PLDs, t2PLDWs, t2PLIs. + MI.addOperand(MCOperand::CreateImm(slice(insn, 5, 4))); + ++OpIdx; + } + + return true; +} + +// A8.6.63 LDRB (literal) +// A8.6.79 LDRSB (literal) +// A8.6.75 LDRH (literal) +// A8.6.83 LDRSH (literal) +// A8.6.59 LDR (literal) +// +// These instrs calculate an address from the PC value and an immediate offset. +// Rd Rn=PC (+/-)imm12 (+ if Inst{23} == 0b1) +static bool DisassembleThumb2Ldpci(MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + if (!OpInfo) return false; + + assert(NumOps >= 2 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + OpInfo[1].RegClass == 0 && + "Expect >= 2 operands, first as reg, and second as imm operand"); + + // Build the register operand, followed by the (+/-)imm12 immediate. + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + MI.addOperand(MCOperand::CreateImm(decodeImm12(insn))); + + NumOpsAdded = 2; + + return true; +} + +// A6.3.10 Store single data item +// A6.3.9 Load byte, memory hints +// A6.3.8 Load halfword, memory hints +// A6.3.7 Load word +// +// For example, +// +// t2LDRi12: Rd Rn (+)imm12 +// t2LDRi8: Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1) +// t2LDRs: Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg) +// t2LDR_POST: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1) +// t2LDR_PRE: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1) +// +// t2STRi12: Rd Rn (+)imm12 +// t2STRi8: Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1) +// t2STRs: Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg) +// t2STR_POST: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1) +// t2STR_PRE: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1) +// +// Note that for indexed modes, the Rn(TIED_TO) operand needs to be populated +// correctly, as LLVM AsmPrinter depends on it. For indexed stores, the first +// operand is Rn; for all the other instructions, Rd is the first operand. +// +// Delegates to DisassembleThumb2PreLoad() for preload data/instruction. +// Delegates to DisassembleThumb2Ldpci() for load * literal operations. +static bool DisassembleThumb2LdSt(bool Load, MCInst &MI, unsigned Opcode, + uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + unsigned Rn = decodeRn(insn); + + if (Thumb2PreloadOpcode(Opcode)) + return DisassembleThumb2PreLoad(MI, Opcode, insn, NumOps, NumOpsAdded, B); + + // See, for example, A6.3.7 Load word: Table A6-18 Load word. + if (Load && Rn == 15) + return DisassembleThumb2Ldpci(MI, Opcode, insn, NumOps, NumOpsAdded, B); + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 3 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + OpInfo[1].RegClass == ARM::GPRRegClassID && + "Expect >= 3 operands and first two as reg operands"); + + bool ThreeReg = (OpInfo[2].RegClass == ARM::GPRRegClassID); + bool TIED_TO = ThreeReg && TID.getOperandConstraint(2, TOI::TIED_TO) != -1; + bool Imm12 = !ThreeReg && slice(insn, 23, 23) == 1; // ARMInstrThumb2.td + + // Build the register operands, followed by the immediate. + unsigned R0, R1, R2 = 0; + unsigned Rd = decodeRd(insn); + int Imm = 0; + + if (!Load && TIED_TO) { + R0 = Rn; + R1 = Rd; + } else { + R0 = Rd; + R1 = Rn; + } + if (ThreeReg) { + if (TIED_TO) { + R2 = Rn; + Imm = decodeImm8(insn); + } else { + R2 = decodeRm(insn); + // See, for example, A8.6.64 LDRB (register). + // And ARMAsmPrinter::printT2AddrModeSoRegOperand(). + // LSL is the default shift opc, and LLVM does not expect it to be encoded + // as part of the immediate operand. + // Imm = ARM_AM::getSORegOpc(ARM_AM::lsl, slice(insn, 5, 4)); + Imm = slice(insn, 5, 4); + } + } else { + if (Imm12) + Imm = getImm12(insn); + else + Imm = decodeImm8(insn); + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + R0))); + ++OpIdx; + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + R1))); + ++OpIdx; + + if (ThreeReg) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + R2))); + ++OpIdx; + } + + assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() + && !OpInfo[OpIdx].isOptionalDef() + && "Pure imm operand expected"); + + MI.addOperand(MCOperand::CreateImm(Imm)); + ++OpIdx; + + return true; +} + +// A6.3.12 Data-processing (register) +// +// Two register operands [rotate]: Rs Rm [rotation(= (rotate:'000'))] +// Three register operands only: Rs Rn Rm +// Three register operands [rotate]: Rs Rn Rm [rotation(= (rotate:'000'))] +// +// Parallel addition and subtraction 32-bit Thumb instructions: Rs Rn Rm +// +// Miscellaneous operations: Rs [Rn] Rm +static bool DisassembleThumb2DPReg(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetInstrDesc &TID = ARMInsts[Opcode]; + const TargetOperandInfo *OpInfo = TID.OpInfo; + unsigned &OpIdx = NumOpsAdded; + + OpIdx = 0; + + assert(NumOps >= 2 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + OpInfo[1].RegClass == ARM::GPRRegClassID && + "Expect >= 2 operands and first two as reg operands"); + + // Build the register operands, followed by the optional rotation amount. + + bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID; + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + ++OpIdx; + + if (ThreeReg) { + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + ++OpIdx; + } + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + ++OpIdx; + + if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 + && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) { + // Add the rotation amount immediate. + MI.addOperand(MCOperand::CreateImm(decodeRotate(insn))); + ++OpIdx; + } + + return true; +} + +// A6.3.16 Multiply, multiply accumulate, and absolute difference +// +// t2MLA, t2MLS, t2SMMLA, t2SMMLS: Rs Rn Rm Ra=Inst{15-12} +// t2MUL, t2SMMUL: Rs Rn Rm +// t2SMLA[BB|BT|TB|TT|WB|WT]: Rs Rn Rm Ra=Inst{15-12} +// t2SMUL[BB|BT|TB|TT|WB|WT]: Rs Rn Rm +// +// Dual halfword multiply: t2SMUAD[X], t2SMUSD[X], t2SMLAD[X], t2SMLSD[X]: +// Rs Rn Rm Ra=Inst{15-12} +// +// Unsigned Sum of Absolute Differences [and Accumulate] +// Rs Rn Rm [Ra=Inst{15-12}] +static bool DisassembleThumb2Mul(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + + assert(NumOps >= 3 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + OpInfo[1].RegClass == ARM::GPRRegClassID && + OpInfo[2].RegClass == ARM::GPRRegClassID && + "Expect >= 3 operands and first three as reg operands"); + + // Build the register operands. + + bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID; + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + + if (FourReg) + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + NumOpsAdded = FourReg ? 4 : 3; + + return true; +} + +// A6.3.17 Long multiply, long multiply accumulate, and divide +// +// t2SMULL, t2UMULL, t2SMLAL, t2UMLAL, t2UMAAL: RdLo RdHi Rn Rm +// where RdLo = Inst{15-12} and RdHi = Inst{11-8} +// +// Halfword multiple accumulate long: t2SMLAL<x><y>: RdLo RdHi Rn Rm +// where RdLo = Inst{15-12} and RdHi = Inst{11-8} +// +// Dual halfword multiple: t2SMLALD[X], t2SMLSLD[X]: RdLo RdHi Rn Rm +// where RdLo = Inst{15-12} and RdHi = Inst{11-8} +// +// Signed/Unsigned divide: t2SDIV, t2UDIV: Rs Rn Rm +static bool DisassembleThumb2LongMul(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO B) { + + const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo; + + assert(NumOps >= 3 && + OpInfo[0].RegClass == ARM::GPRRegClassID && + OpInfo[1].RegClass == ARM::GPRRegClassID && + OpInfo[2].RegClass == ARM::GPRRegClassID && + "Expect >= 3 operands and first three as reg operands"); + + bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID; + + // Build the register operands. + + if (FourReg) + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRd(insn)))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRs(insn)))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRn(insn)))); + + MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID, + decodeRm(insn)))); + + if (FourReg) + NumOpsAdded = 4; + else + NumOpsAdded = 3; + + return true; +} + +// See A6.3 32-bit Thumb instruction encoding for instruction classes +// corresponding to (op1, op2, op). +// +// Table A6-9 32-bit Thumb instruction encoding +// op1 op2 op Instruction class, see +// --- ------- -- ------------------------------------------------------------ +// 01 00xx0xx - Load/store multiple on page A6-23 +// 00xx1xx - Load/store dual, load/store exclusive, table branch on page A6-24 +// 01xxxxx - Data-processing (shifted register) on page A6-31 +// 1xxxxxx - Coprocessor instructions on page A6-40 +// 10 x0xxxxx 0 Data-processing (modified immediate) on page A6-15 +// x1xxxxx 0 Data-processing (plain binary immediate) on page A6-19 +// - 1 Branches and miscellaneous control on page A6-20 +// 11 000xxx0 - Store single data item on page A6-30 +// 001xxx0 - Advanced SIMD element or structure load/store instructions on page A7-27 +// 00xx001 - Load byte, memory hints on page A6-28 +// 00xx011 - Load halfword, memory hints on page A6-26 +// 00xx101 - Load word on page A6-25 +// 00xx111 - UNDEFINED +// 010xxxx - Data-processing (register) on page A6-33 +// 0110xxx - Multiply, multiply accumulate, and absolute difference on page A6-38 +// 0111xxx - Long multiply, long multiply accumulate, and divide on page A6-39 +// 1xxxxxx - Coprocessor instructions on page A6-40 +// +static bool DisassembleThumb2(uint16_t op1, uint16_t op2, uint16_t op, + MCInst &MI, unsigned Opcode, uint32_t insn, unsigned short NumOps, + unsigned &NumOpsAdded, BO B) { + + switch (op1) { + case 1: + if (slice(op2, 6, 5) == 0) { + if (slice(op2, 2, 2) == 0) { + // Load/store multiple. + return DisassembleThumb2LdStMul(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + + // Load/store dual, load/store exclusive, table branch, otherwise. + assert(slice(op2, 2, 2) == 1 && "Thumb2 encoding error!"); + if ((ARM::t2LDREX <= Opcode && Opcode <= ARM::t2LDREXH) || + (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH)) { + // Load/store exclusive. + return DisassembleThumb2LdStEx(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + if (Opcode == ARM::t2LDRDi8 || + Opcode == ARM::t2LDRD_PRE || Opcode == ARM::t2LDRD_POST || + Opcode == ARM::t2STRDi8 || + Opcode == ARM::t2STRD_PRE || Opcode == ARM::t2STRD_POST) { + // Load/store dual. + return DisassembleThumb2LdStDual(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + if (Opcode == ARM::t2TBBgen || Opcode == ARM::t2TBHgen) { + // Table branch. + return DisassembleThumb2TB(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } + } else if (slice(op2, 6, 5) == 1) { + // Data-processing (shifted register). + return DisassembleThumb2DPSoReg(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } + + // FIXME: A6.3.18 Coprocessor instructions + // But see ThumbDisassembler::getInstruction(). + + break; + case 2: + if (op == 0) { + if (slice(op2, 5, 5) == 0) { + // Data-processing (modified immediate) + return DisassembleThumb2DPModImm(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } else { + // Data-processing (plain binary immediate) + return DisassembleThumb2DPBinImm(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + } else { + // Branches and miscellaneous control on page A6-20. + return DisassembleThumb2BrMiscCtrl(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + + break; + case 3: + switch (slice(op2, 6, 5)) { + case 0: + // Load/store instructions... + if (slice(op2, 0, 0) == 0) { + if (slice(op2, 4, 4) == 0) { + // Store single data item on page A6-30 + return DisassembleThumb2LdSt(false, MI,Opcode,insn,NumOps,NumOpsAdded, + B); + } else { + // FIXME: Advanced SIMD element or structure load/store instructions. + // But see ThumbDisassembler::getInstruction(). + ; + } + } else { + // Table A6-9 32-bit Thumb instruction encoding: Load byte|halfword|word + return DisassembleThumb2LdSt(true, MI,Opcode,insn,NumOps,NumOpsAdded, B); + } + break; + case 1: + if (slice(op2, 4, 4) == 0) { + // A6.3.12 Data-processing (register) + return DisassembleThumb2DPReg(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } else if (slice(op2, 3, 3) == 0) { + // A6.3.16 Multiply, multiply accumulate, and absolute difference + return DisassembleThumb2Mul(MI, Opcode, insn, NumOps, NumOpsAdded, B); + } else { + // A6.3.17 Long multiply, long multiply accumulate, and divide + return DisassembleThumb2LongMul(MI, Opcode, insn, NumOps, NumOpsAdded, + B); + } + break; + default: + // FIXME: A6.3.18 Coprocessor instructions + // But see ThumbDisassembler::getInstruction(). + ; + break; + } + + break; + default: + assert(0 && "Thumb2 encoding error!"); + break; + } + + return false; +} + +static bool DisassembleThumbFrm(MCInst &MI, unsigned Opcode, uint32_t insn, + unsigned short NumOps, unsigned &NumOpsAdded, BO Builder) { + + uint16_t HalfWord = slice(insn, 31, 16); + + if (HalfWord == 0) { + // A6.2 16-bit Thumb instruction encoding + // op = bits[15:10] + uint16_t op = slice(insn, 15, 10); + return DisassembleThumb1(op, MI, Opcode, insn, NumOps, NumOpsAdded, + Builder); + } + + unsigned bits15_11 = slice(HalfWord, 15, 11); + + // A6.1 Thumb instruction set encoding + if (!(bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F)) { + assert("Bits[15:11] first halfword of Thumb2 instruction is out of range"); + return false; + } + + // A6.3 32-bit Thumb instruction encoding + + uint16_t op1 = slice(HalfWord, 12, 11); + uint16_t op2 = slice(HalfWord, 10, 4); + uint16_t op = slice(insn, 15, 15); + + return DisassembleThumb2(op1, op2, op, MI, Opcode, insn, NumOps, NumOpsAdded, + Builder); +} |