aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM64/ARM64ISelDAGToDAG.cpp')
-rw-r--r--lib/Target/ARM64/ARM64ISelDAGToDAG.cpp2381
1 files changed, 0 insertions, 2381 deletions
diff --git a/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp b/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp
deleted file mode 100644
index 2e234c9..0000000
--- a/lib/Target/ARM64/ARM64ISelDAGToDAG.cpp
+++ /dev/null
@@ -1,2381 +0,0 @@
-//===-- ARM64ISelDAGToDAG.cpp - A dag to dag inst selector for ARM64 ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines an instruction selector for the ARM64 target.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "arm64-isel"
-#include "ARM64TargetMachine.h"
-#include "MCTargetDesc/ARM64AddressingModes.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/IR/Function.h" // To access function attributes.
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-
-//===--------------------------------------------------------------------===//
-/// ARM64DAGToDAGISel - ARM64 specific code to select ARM64 machine
-/// instructions for SelectionDAG operations.
-///
-namespace {
-
-class ARM64DAGToDAGISel : public SelectionDAGISel {
- ARM64TargetMachine &TM;
-
- /// Subtarget - Keep a pointer to the ARM64Subtarget around so that we can
- /// make the right decision when generating code for different targets.
- const ARM64Subtarget *Subtarget;
-
- bool ForCodeSize;
-
-public:
- explicit ARM64DAGToDAGISel(ARM64TargetMachine &tm, CodeGenOpt::Level OptLevel)
- : SelectionDAGISel(tm, OptLevel), TM(tm),
- Subtarget(&TM.getSubtarget<ARM64Subtarget>()), ForCodeSize(false) {}
-
- virtual const char *getPassName() const {
- return "ARM64 Instruction Selection";
- }
-
- virtual bool runOnMachineFunction(MachineFunction &MF) {
- AttributeSet FnAttrs = MF.getFunction()->getAttributes();
- ForCodeSize =
- FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize) ||
- FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
- return SelectionDAGISel::runOnMachineFunction(MF);
- }
-
- SDNode *Select(SDNode *Node);
-
- /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
- /// inline asm expressions.
- virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
- char ConstraintCode,
- std::vector<SDValue> &OutOps);
-
- SDNode *SelectMLAV64LaneV128(SDNode *N);
- SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
- bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
- bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
- bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
- bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
- return SelectShiftedRegister(N, false, Reg, Shift);
- }
- bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
- return SelectShiftedRegister(N, true, Reg, Shift);
- }
- bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeIndexed(N, 1, Base, OffImm);
- }
- bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeIndexed(N, 2, Base, OffImm);
- }
- bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeIndexed(N, 4, Base, OffImm);
- }
- bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeIndexed(N, 8, Base, OffImm);
- }
- bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeIndexed(N, 16, Base, OffImm);
- }
- bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeUnscaled(N, 1, Base, OffImm);
- }
- bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeUnscaled(N, 2, Base, OffImm);
- }
- bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeUnscaled(N, 4, Base, OffImm);
- }
- bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeUnscaled(N, 8, Base, OffImm);
- }
- bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
- return SelectAddrModeUnscaled(N, 16, Base, OffImm);
- }
-
- bool SelectAddrModeRO8(SDValue N, SDValue &Base, SDValue &Offset,
- SDValue &Imm) {
- return SelectAddrModeRO(N, 1, Base, Offset, Imm);
- }
- bool SelectAddrModeRO16(SDValue N, SDValue &Base, SDValue &Offset,
- SDValue &Imm) {
- return SelectAddrModeRO(N, 2, Base, Offset, Imm);
- }
- bool SelectAddrModeRO32(SDValue N, SDValue &Base, SDValue &Offset,
- SDValue &Imm) {
- return SelectAddrModeRO(N, 4, Base, Offset, Imm);
- }
- bool SelectAddrModeRO64(SDValue N, SDValue &Base, SDValue &Offset,
- SDValue &Imm) {
- return SelectAddrModeRO(N, 8, Base, Offset, Imm);
- }
- bool SelectAddrModeRO128(SDValue N, SDValue &Base, SDValue &Offset,
- SDValue &Imm) {
- return SelectAddrModeRO(N, 16, Base, Offset, Imm);
- }
- bool SelectAddrModeNoIndex(SDValue N, SDValue &Val);
-
- /// Form sequences of consecutive 64/128-bit registers for use in NEON
- /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
- /// between 1 and 4 elements. If it contains a single element that is returned
- /// unchanged; otherwise a REG_SEQUENCE value is returned.
- SDValue createDTuple(ArrayRef<SDValue> Vecs);
- SDValue createQTuple(ArrayRef<SDValue> Vecs);
-
- /// Generic helper for the createDTuple/createQTuple
- /// functions. Those should almost always be called instead.
- SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
- unsigned SubRegs[]);
-
- SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
-
- SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
-
- SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
- unsigned SubRegIdx);
- SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
-
- SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
- SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
-
- SDNode *SelectSIMDAddSubNarrowing(unsigned IntNo, SDNode *Node);
- SDNode *SelectSIMDXtnNarrowing(unsigned IntNo, SDNode *Node);
-
- SDNode *SelectAtomic(SDNode *Node, unsigned Op8, unsigned Op16, unsigned Op32,
- unsigned Op64);
-
- SDNode *SelectBitfieldExtractOp(SDNode *N);
- SDNode *SelectBitfieldInsertOp(SDNode *N);
-
- SDNode *SelectLIBM(SDNode *N);
-
-// Include the pieces autogenerated from the target description.
-#include "ARM64GenDAGISel.inc"
-
-private:
- bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
- SDValue &Shift);
- bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
- SDValue &OffImm);
- bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
- SDValue &OffImm);
- bool SelectAddrModeRO(SDValue N, unsigned Size, SDValue &Base,
- SDValue &Offset, SDValue &Imm);
- bool isWorthFolding(SDValue V) const;
- bool SelectExtendedSHL(SDValue N, unsigned Size, SDValue &Offset,
- SDValue &Imm);
-};
-} // end anonymous namespace
-
-/// isIntImmediate - This method tests to see if the node is a constant
-/// operand. If so Imm will receive the 32-bit value.
-static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
- if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
- Imm = C->getZExtValue();
- return true;
- }
- return false;
-}
-
-// isIntImmediate - This method tests to see if a constant operand.
-// If so Imm will receive the value.
-static bool isIntImmediate(SDValue N, uint64_t &Imm) {
- return isIntImmediate(N.getNode(), Imm);
-}
-
-// isOpcWithIntImmediate - This method tests to see if the node is a specific
-// opcode and that it has a immediate integer right operand.
-// If so Imm will receive the 32 bit value.
-static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
- uint64_t &Imm) {
- return N->getOpcode() == Opc &&
- isIntImmediate(N->getOperand(1).getNode(), Imm);
-}
-
-bool ARM64DAGToDAGISel::SelectAddrModeNoIndex(SDValue N, SDValue &Val) {
- EVT ValTy = N.getValueType();
- if (ValTy != MVT::i64)
- return false;
- Val = N;
- return true;
-}
-
-bool ARM64DAGToDAGISel::SelectInlineAsmMemoryOperand(
- const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
- assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
- // Require the address to be in a register. That is safe for all ARM64
- // variants and it is hard to do anything much smarter without knowing
- // how the operand is used.
- OutOps.push_back(Op);
- return false;
-}
-
-/// SelectArithImmed - Select an immediate value that can be represented as
-/// a 12-bit value shifted left by either 0 or 12. If so, return true with
-/// Val set to the 12-bit value and Shift set to the shifter operand.
-bool ARM64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
- SDValue &Shift) {
- // This function is called from the addsub_shifted_imm ComplexPattern,
- // which lists [imm] as the list of opcode it's interested in, however
- // we still need to check whether the operand is actually an immediate
- // here because the ComplexPattern opcode list is only used in
- // root-level opcode matching.
- if (!isa<ConstantSDNode>(N.getNode()))
- return false;
-
- uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
- unsigned ShiftAmt;
-
- if (Immed >> 12 == 0) {
- ShiftAmt = 0;
- } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
- ShiftAmt = 12;
- Immed = Immed >> 12;
- } else
- return false;
-
- unsigned ShVal = ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftAmt);
- Val = CurDAG->getTargetConstant(Immed, MVT::i32);
- Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
- return true;
-}
-
-/// SelectNegArithImmed - As above, but negates the value before trying to
-/// select it.
-bool ARM64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
- SDValue &Shift) {
- // This function is called from the addsub_shifted_imm ComplexPattern,
- // which lists [imm] as the list of opcode it's interested in, however
- // we still need to check whether the operand is actually an immediate
- // here because the ComplexPattern opcode list is only used in
- // root-level opcode matching.
- if (!isa<ConstantSDNode>(N.getNode()))
- return false;
-
- // The immediate operand must be a 24-bit zero-extended immediate.
- uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
-
- // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
- // have the opposite effect on the C flag, so this pattern mustn't match under
- // those circumstances.
- if (Immed == 0)
- return false;
-
- if (N.getValueType() == MVT::i32)
- Immed = ~((uint32_t)Immed) + 1;
- else
- Immed = ~Immed + 1ULL;
- if (Immed & 0xFFFFFFFFFF000000ULL)
- return false;
-
- Immed &= 0xFFFFFFULL;
- return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
-}
-
-/// getShiftTypeForNode - Translate a shift node to the corresponding
-/// ShiftType value.
-static ARM64_AM::ShiftType getShiftTypeForNode(SDValue N) {
- switch (N.getOpcode()) {
- default:
- return ARM64_AM::InvalidShift;
- case ISD::SHL:
- return ARM64_AM::LSL;
- case ISD::SRL:
- return ARM64_AM::LSR;
- case ISD::SRA:
- return ARM64_AM::ASR;
- case ISD::ROTR:
- return ARM64_AM::ROR;
- }
-}
-
-/// \brief Determine wether it is worth to fold V into an extended register.
-bool ARM64DAGToDAGISel::isWorthFolding(SDValue V) const {
- // it hurts if the a value is used at least twice, unless we are optimizing
- // for code size.
- if (ForCodeSize || V.hasOneUse())
- return true;
- return false;
-}
-
-/// SelectShiftedRegister - Select a "shifted register" operand. If the value
-/// is not shifted, set the Shift operand to default of "LSL 0". The logical
-/// instructions allow the shifted register to be rotated, but the arithmetic
-/// instructions do not. The AllowROR parameter specifies whether ROR is
-/// supported.
-bool ARM64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
- SDValue &Reg, SDValue &Shift) {
- ARM64_AM::ShiftType ShType = getShiftTypeForNode(N);
- if (ShType == ARM64_AM::InvalidShift)
- return false;
- if (!AllowROR && ShType == ARM64_AM::ROR)
- return false;
-
- if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- unsigned BitSize = N.getValueType().getSizeInBits();
- unsigned Val = RHS->getZExtValue() & (BitSize - 1);
- unsigned ShVal = ARM64_AM::getShifterImm(ShType, Val);
-
- Reg = N.getOperand(0);
- Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
- return isWorthFolding(N);
- }
-
- return false;
-}
-
-/// getExtendTypeForNode - Translate an extend node to the corresponding
-/// ExtendType value.
-static ARM64_AM::ExtendType getExtendTypeForNode(SDValue N,
- bool IsLoadStore = false) {
- if (N.getOpcode() == ISD::SIGN_EXTEND ||
- N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- EVT SrcVT;
- if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
- SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
- else
- SrcVT = N.getOperand(0).getValueType();
-
- if (!IsLoadStore && SrcVT == MVT::i8)
- return ARM64_AM::SXTB;
- else if (!IsLoadStore && SrcVT == MVT::i16)
- return ARM64_AM::SXTH;
- else if (SrcVT == MVT::i32)
- return ARM64_AM::SXTW;
- else if (SrcVT == MVT::i64)
- return ARM64_AM::SXTX;
-
- return ARM64_AM::InvalidExtend;
- } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
- N.getOpcode() == ISD::ANY_EXTEND) {
- EVT SrcVT = N.getOperand(0).getValueType();
- if (!IsLoadStore && SrcVT == MVT::i8)
- return ARM64_AM::UXTB;
- else if (!IsLoadStore && SrcVT == MVT::i16)
- return ARM64_AM::UXTH;
- else if (SrcVT == MVT::i32)
- return ARM64_AM::UXTW;
- else if (SrcVT == MVT::i64)
- return ARM64_AM::UXTX;
-
- return ARM64_AM::InvalidExtend;
- } else if (N.getOpcode() == ISD::AND) {
- ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (!CSD)
- return ARM64_AM::InvalidExtend;
- uint64_t AndMask = CSD->getZExtValue();
-
- switch (AndMask) {
- default:
- return ARM64_AM::InvalidExtend;
- case 0xFF:
- return !IsLoadStore ? ARM64_AM::UXTB : ARM64_AM::InvalidExtend;
- case 0xFFFF:
- return !IsLoadStore ? ARM64_AM::UXTH : ARM64_AM::InvalidExtend;
- case 0xFFFFFFFF:
- return ARM64_AM::UXTW;
- }
- }
-
- return ARM64_AM::InvalidExtend;
-}
-
-// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
-static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
- if (DL->getOpcode() != ARM64ISD::DUPLANE16 &&
- DL->getOpcode() != ARM64ISD::DUPLANE32)
- return false;
-
- SDValue SV = DL->getOperand(0);
- if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
- return false;
-
- SDValue EV = SV.getOperand(1);
- if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return false;
-
- ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
- ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
- LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
- LaneOp = EV.getOperand(0);
-
- return true;
-}
-
-// Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
-// high lane extract.
-static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
- SDValue &LaneOp, int &LaneIdx) {
-
- if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
- std::swap(Op0, Op1);
- if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
- return false;
- }
- StdOp = Op1;
- return true;
-}
-
-/// SelectMLAV64LaneV128 - ARM64 supports 64-bit vector MLAs (v4i16 and v2i32)
-/// where one multiplicand is a lane in the upper half of a 128-bit vector.
-/// Recognize and select this so that we don't emit unnecessary lane extracts.
-SDNode *ARM64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
- SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
- int LaneIdx = -1; // Will hold the lane index.
-
- if (Op1.getOpcode() != ISD::MUL ||
- !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
- LaneIdx)) {
- std::swap(Op0, Op1);
- if (Op1.getOpcode() != ISD::MUL ||
- !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
- LaneIdx))
- return 0;
- }
-
- SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
-
- SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
-
- unsigned MLAOpc = ~0U;
-
- switch (N->getSimpleValueType(0).SimpleTy) {
- default:
- llvm_unreachable("Unrecognized MLA.");
- case MVT::v4i16:
- MLAOpc = ARM64::MLAv4i16_indexed;
- break;
- case MVT::v2i32:
- MLAOpc = ARM64::MLAv2i32_indexed;
- break;
- }
-
- return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
-}
-
-SDNode *ARM64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
- SDValue SMULLOp0;
- SDValue SMULLOp1;
- int LaneIdx;
-
- if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
- LaneIdx))
- return 0;
-
- SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
-
- SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
-
- unsigned SMULLOpc = ~0U;
-
- if (IntNo == Intrinsic::arm64_neon_smull) {
- switch (N->getSimpleValueType(0).SimpleTy) {
- default:
- llvm_unreachable("Unrecognized SMULL.");
- case MVT::v4i32:
- SMULLOpc = ARM64::SMULLv4i16_indexed;
- break;
- case MVT::v2i64:
- SMULLOpc = ARM64::SMULLv2i32_indexed;
- break;
- }
- } else if (IntNo == Intrinsic::arm64_neon_umull) {
- switch (N->getSimpleValueType(0).SimpleTy) {
- default:
- llvm_unreachable("Unrecognized SMULL.");
- case MVT::v4i32:
- SMULLOpc = ARM64::UMULLv4i16_indexed;
- break;
- case MVT::v2i64:
- SMULLOpc = ARM64::UMULLv2i32_indexed;
- break;
- }
- } else
- llvm_unreachable("Unrecognized intrinsic.");
-
- return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
-}
-
-/// SelectArithExtendedRegister - Select a "extended register" operand. This
-/// operand folds in an extend followed by an optional left shift.
-bool ARM64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
- SDValue &Shift) {
- unsigned ShiftVal = 0;
- ARM64_AM::ExtendType Ext;
-
- if (N.getOpcode() == ISD::SHL) {
- ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (!CSD)
- return false;
- ShiftVal = CSD->getZExtValue();
- if ((ShiftVal & 0x3) != ShiftVal)
- return false;
-
- Ext = getExtendTypeForNode(N.getOperand(0));
- if (Ext == ARM64_AM::InvalidExtend)
- return false;
-
- Reg = N.getOperand(0).getOperand(0);
- } else {
- Ext = getExtendTypeForNode(N);
- if (Ext == ARM64_AM::InvalidExtend)
- return false;
-
- Reg = N.getOperand(0);
- }
-
- // ARM64 mandates that the RHS of the operation must use the smallest
- // register classs that could contain the size being extended from. Thus,
- // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
- // there might not be an actual 32-bit value in the program. We can
- // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
- if (Reg.getValueType() == MVT::i64 && Ext != ARM64_AM::UXTX &&
- Ext != ARM64_AM::SXTX) {
- SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
- MachineSDNode *Node = CurDAG->getMachineNode(
- TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32, Reg, SubReg);
- Reg = SDValue(Node, 0);
- }
-
- Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
- return isWorthFolding(N);
-}
-
-/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
-/// immediate" address. The "Size" argument is the size in bytes of the memory
-/// reference, which determines the scale.
-bool ARM64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
- SDValue &Base, SDValue &OffImm) {
- const TargetLowering *TLI = getTargetLowering();
- if (N.getOpcode() == ISD::FrameIndex) {
- int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
- OffImm = CurDAG->getTargetConstant(0, MVT::i64);
- return true;
- }
-
- if (N.getOpcode() == ARM64ISD::ADDlow) {
- GlobalAddressSDNode *GAN =
- dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
- Base = N.getOperand(0);
- OffImm = N.getOperand(1);
- if (!GAN)
- return true;
-
- const GlobalValue *GV = GAN->getGlobal();
- unsigned Alignment = GV->getAlignment();
- const DataLayout *DL = TLI->getDataLayout();
- if (Alignment == 0 && !Subtarget->isTargetDarwin())
- Alignment = DL->getABITypeAlignment(GV->getType()->getElementType());
-
- if (Alignment >= Size)
- return true;
- }
-
- if (CurDAG->isBaseWithConstantOffset(N)) {
- if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- int64_t RHSC = (int64_t)RHS->getZExtValue();
- unsigned Scale = Log2_32(Size);
- if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
- Base = N.getOperand(0);
- if (Base.getOpcode() == ISD::FrameIndex) {
- int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
- }
- OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
- return true;
- }
- }
- }
-
- // Before falling back to our general case, check if the unscaled
- // instructions can handle this. If so, that's preferable.
- if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
- return false;
-
- // Base only. The address will be materialized into a register before
- // the memory is accessed.
- // add x0, Xbase, #offset
- // ldr x0, [x0]
- Base = N;
- OffImm = CurDAG->getTargetConstant(0, MVT::i64);
- return true;
-}
-
-/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
-/// immediate" address. This should only match when there is an offset that
-/// is not valid for a scaled immediate addressing mode. The "Size" argument
-/// is the size in bytes of the memory reference, which is needed here to know
-/// what is valid for a scaled immediate.
-bool ARM64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
- SDValue &Base, SDValue &OffImm) {
- if (!CurDAG->isBaseWithConstantOffset(N))
- return false;
- if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- int64_t RHSC = RHS->getSExtValue();
- // If the offset is valid as a scaled immediate, don't match here.
- if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
- RHSC < (0x1000 << Log2_32(Size)))
- return false;
- if (RHSC >= -256 && RHSC < 256) {
- Base = N.getOperand(0);
- if (Base.getOpcode() == ISD::FrameIndex) {
- int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- const TargetLowering *TLI = getTargetLowering();
- Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
- }
- OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
- return true;
- }
- }
- return false;
-}
-
-static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
- SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
- SDValue ImpDef = SDValue(
- CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
- 0);
- MachineSDNode *Node = CurDAG->getMachineNode(
- TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
- return SDValue(Node, 0);
-}
-
-static SDValue WidenIfNeeded(SelectionDAG *CurDAG, SDValue N) {
- if (N.getValueType() == MVT::i32) {
- return Widen(CurDAG, N);
- }
-
- return N;
-}
-
-/// \brief Check if the given SHL node (\p N), can be used to form an
-/// extended register for an addressing mode.
-bool ARM64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
- SDValue &Offset, SDValue &Imm) {
- assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
- ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (CSD && (CSD->getZExtValue() & 0x7) == CSD->getZExtValue()) {
-
- ARM64_AM::ExtendType Ext = getExtendTypeForNode(N.getOperand(0), true);
- if (Ext == ARM64_AM::InvalidExtend) {
- Ext = ARM64_AM::UXTX;
- Offset = WidenIfNeeded(CurDAG, N.getOperand(0));
- } else {
- Offset = WidenIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
- }
-
- unsigned LegalShiftVal = Log2_32(Size);
- unsigned ShiftVal = CSD->getZExtValue();
-
- if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
- return false;
-
- Imm = CurDAG->getTargetConstant(
- ARM64_AM::getMemExtendImm(Ext, ShiftVal != 0), MVT::i32);
- if (isWorthFolding(N))
- return true;
- }
- return false;
-}
-
-bool ARM64DAGToDAGISel::SelectAddrModeRO(SDValue N, unsigned Size,
- SDValue &Base, SDValue &Offset,
- SDValue &Imm) {
- if (N.getOpcode() != ISD::ADD)
- return false;
- SDValue LHS = N.getOperand(0);
- SDValue RHS = N.getOperand(1);
-
- // We don't want to match immediate adds here, because they are better lowered
- // to the register-immediate addressing modes.
- if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
- return false;
-
- // Check if this particular node is reused in any non-memory related
- // operation. If yes, do not try to fold this node into the address
- // computation, since the computation will be kept.
- const SDNode *Node = N.getNode();
- for (SDNode::use_iterator UI = Node->use_begin(), UE = Node->use_end();
- UI != UE; ++UI) {
- if (!isa<MemSDNode>(*UI))
- return false;
- }
-
- // Remember if it is worth folding N when it produces extended register.
- bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
-
- // Try to match a shifted extend on the RHS.
- if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
- SelectExtendedSHL(RHS, Size, Offset, Imm)) {
- Base = LHS;
- return true;
- }
-
- // Try to match a shifted extend on the LHS.
- if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
- SelectExtendedSHL(LHS, Size, Offset, Imm)) {
- Base = RHS;
- return true;
- }
-
- ARM64_AM::ExtendType Ext = ARM64_AM::UXTX;
- // Try to match an unshifted extend on the LHS.
- if (IsExtendedRegisterWorthFolding &&
- (Ext = getExtendTypeForNode(LHS, true)) != ARM64_AM::InvalidExtend) {
- Base = RHS;
- Offset = WidenIfNeeded(CurDAG, LHS.getOperand(0));
- Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
- MVT::i32);
- if (isWorthFolding(LHS))
- return true;
- }
-
- // Try to match an unshifted extend on the RHS.
- if (IsExtendedRegisterWorthFolding &&
- (Ext = getExtendTypeForNode(RHS, true)) != ARM64_AM::InvalidExtend) {
- Base = LHS;
- Offset = WidenIfNeeded(CurDAG, RHS.getOperand(0));
- Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
- MVT::i32);
- if (isWorthFolding(RHS))
- return true;
- }
-
- // Match any non-shifted, non-extend, non-immediate add expression.
- Base = LHS;
- Offset = WidenIfNeeded(CurDAG, RHS);
- Ext = ARM64_AM::UXTX;
- Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
- MVT::i32);
- // Reg1 + Reg2 is free: no check needed.
- return true;
-}
-
-SDValue ARM64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
- static unsigned RegClassIDs[] = { ARM64::DDRegClassID, ARM64::DDDRegClassID,
- ARM64::DDDDRegClassID };
- static unsigned SubRegs[] = { ARM64::dsub0, ARM64::dsub1,
- ARM64::dsub2, ARM64::dsub3 };
-
- return createTuple(Regs, RegClassIDs, SubRegs);
-}
-
-SDValue ARM64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
- static unsigned RegClassIDs[] = { ARM64::QQRegClassID, ARM64::QQQRegClassID,
- ARM64::QQQQRegClassID };
- static unsigned SubRegs[] = { ARM64::qsub0, ARM64::qsub1,
- ARM64::qsub2, ARM64::qsub3 };
-
- return createTuple(Regs, RegClassIDs, SubRegs);
-}
-
-SDValue ARM64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
- unsigned RegClassIDs[],
- unsigned SubRegs[]) {
- // There's no special register-class for a vector-list of 1 element: it's just
- // a vector.
- if (Regs.size() == 1)
- return Regs[0];
-
- assert(Regs.size() >= 2 && Regs.size() <= 4);
-
- SDLoc DL(Regs[0].getNode());
-
- SmallVector<SDValue, 4> Ops;
-
- // First operand of REG_SEQUENCE is the desired RegClass.
- Ops.push_back(
- CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
-
- // Then we get pairs of source & subregister-position for the components.
- for (unsigned i = 0; i < Regs.size(); ++i) {
- Ops.push_back(Regs[i]);
- Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
- }
-
- SDNode *N =
- CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
- return SDValue(N, 0);
-}
-
-SDNode *ARM64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
- unsigned Opc, bool isExt) {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
-
- unsigned ExtOff = isExt;
-
- // Form a REG_SEQUENCE to force register allocation.
- unsigned Vec0Off = ExtOff + 1;
- SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
- N->op_begin() + Vec0Off + NumVecs);
- SDValue RegSeq = createQTuple(Regs);
-
- SmallVector<SDValue, 6> Ops;
- if (isExt)
- Ops.push_back(N->getOperand(1));
- Ops.push_back(RegSeq);
- Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
- return CurDAG->getMachineNode(Opc, dl, VT, Ops);
-}
-
-SDNode *ARM64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- if (LD->isUnindexed())
- return NULL;
- EVT VT = LD->getMemoryVT();
- EVT DstVT = N->getValueType(0);
- ISD::MemIndexedMode AM = LD->getAddressingMode();
- bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
-
- // We're not doing validity checking here. That was done when checking
- // if we should mark the load as indexed or not. We're just selecting
- // the right instruction.
- unsigned Opcode = 0;
-
- ISD::LoadExtType ExtType = LD->getExtensionType();
- bool InsertTo64 = false;
- if (VT == MVT::i64)
- Opcode = IsPre ? ARM64::LDRXpre_isel : ARM64::LDRXpost_isel;
- else if (VT == MVT::i32) {
- if (ExtType == ISD::NON_EXTLOAD)
- Opcode = IsPre ? ARM64::LDRWpre_isel : ARM64::LDRWpost_isel;
- else if (ExtType == ISD::SEXTLOAD)
- Opcode = IsPre ? ARM64::LDRSWpre_isel : ARM64::LDRSWpost_isel;
- else {
- Opcode = IsPre ? ARM64::LDRWpre_isel : ARM64::LDRWpost_isel;
- InsertTo64 = true;
- // The result of the load is only i32. It's the subreg_to_reg that makes
- // it into an i64.
- DstVT = MVT::i32;
- }
- } else if (VT == MVT::i16) {
- if (ExtType == ISD::SEXTLOAD) {
- if (DstVT == MVT::i64)
- Opcode = IsPre ? ARM64::LDRSHXpre_isel : ARM64::LDRSHXpost_isel;
- else
- Opcode = IsPre ? ARM64::LDRSHWpre_isel : ARM64::LDRSHWpost_isel;
- } else {
- Opcode = IsPre ? ARM64::LDRHHpre_isel : ARM64::LDRHHpost_isel;
- InsertTo64 = DstVT == MVT::i64;
- // The result of the load is only i32. It's the subreg_to_reg that makes
- // it into an i64.
- DstVT = MVT::i32;
- }
- } else if (VT == MVT::i8) {
- if (ExtType == ISD::SEXTLOAD) {
- if (DstVT == MVT::i64)
- Opcode = IsPre ? ARM64::LDRSBXpre_isel : ARM64::LDRSBXpost_isel;
- else
- Opcode = IsPre ? ARM64::LDRSBWpre_isel : ARM64::LDRSBWpost_isel;
- } else {
- Opcode = IsPre ? ARM64::LDRBBpre_isel : ARM64::LDRBBpost_isel;
- InsertTo64 = DstVT == MVT::i64;
- // The result of the load is only i32. It's the subreg_to_reg that makes
- // it into an i64.
- DstVT = MVT::i32;
- }
- } else if (VT == MVT::f32) {
- Opcode = IsPre ? ARM64::LDRSpre_isel : ARM64::LDRSpost_isel;
- } else if (VT == MVT::f64) {
- Opcode = IsPre ? ARM64::LDRDpre_isel : ARM64::LDRDpost_isel;
- } else
- return NULL;
- SDValue Chain = LD->getChain();
- SDValue Base = LD->getBasePtr();
- ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
- int OffsetVal = (int)OffsetOp->getZExtValue();
- SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
- SDValue Ops[] = { Base, Offset, Chain };
- SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), DstVT, MVT::i64,
- MVT::Other, Ops);
- // Either way, we're replacing the node, so tell the caller that.
- Done = true;
- if (InsertTo64) {
- SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
- SDNode *Sub = CurDAG->getMachineNode(
- ARM64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
- CurDAG->getTargetConstant(0, MVT::i64), SDValue(Res, 0), SubReg);
- ReplaceUses(SDValue(N, 0), SDValue(Sub, 0));
- ReplaceUses(SDValue(N, 1), SDValue(Res, 1));
- ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
- return 0;
- }
- return Res;
-}
-
-SDNode *ARM64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
- unsigned SubRegIdx) {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- SDValue Chain = N->getOperand(0);
-
- SmallVector<SDValue, 6> Ops;
- Ops.push_back(N->getOperand(2)); // Mem operand;
- Ops.push_back(Chain);
-
- std::vector<EVT> ResTys;
- ResTys.push_back(MVT::Untyped);
- ResTys.push_back(MVT::Other);
-
- SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
- SDValue SuperReg = SDValue(Ld, 0);
-
- // MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- // MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
- // cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
-
- switch (NumVecs) {
- case 4:
- ReplaceUses(SDValue(N, 3), CurDAG->getTargetExtractSubreg(SubRegIdx + 3, dl,
- VT, SuperReg));
- // FALLTHROUGH
- case 3:
- ReplaceUses(SDValue(N, 2), CurDAG->getTargetExtractSubreg(SubRegIdx + 2, dl,
- VT, SuperReg));
- // FALLTHROUGH
- case 2:
- ReplaceUses(SDValue(N, 1), CurDAG->getTargetExtractSubreg(SubRegIdx + 1, dl,
- VT, SuperReg));
- ReplaceUses(SDValue(N, 0),
- CurDAG->getTargetExtractSubreg(SubRegIdx, dl, VT, SuperReg));
- break;
- case 1:
- ReplaceUses(SDValue(N, 0), SuperReg);
- break;
- }
-
- ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
-
- return 0;
-}
-
-SDNode *ARM64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
- unsigned Opc) {
- SDLoc dl(N);
- EVT VT = N->getOperand(2)->getValueType(0);
-
- // Form a REG_SEQUENCE to force register allocation.
- bool Is128Bit = VT.getSizeInBits() == 128;
- SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
- SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
-
- SmallVector<SDValue, 6> Ops;
- Ops.push_back(RegSeq);
- Ops.push_back(N->getOperand(NumVecs + 2));
- Ops.push_back(N->getOperand(0));
- SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
-
- return St;
-}
-
-/// WidenVector - Given a value in the V64 register class, produce the
-/// equivalent value in the V128 register class.
-class WidenVector {
- SelectionDAG &DAG;
-
-public:
- WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
-
- SDValue operator()(SDValue V64Reg) {
- EVT VT = V64Reg.getValueType();
- unsigned NarrowSize = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType().getSimpleVT();
- MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
- SDLoc DL(V64Reg);
-
- SDValue Undef =
- SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
- return DAG.getTargetInsertSubreg(ARM64::dsub, DL, WideTy, Undef, V64Reg);
- }
-};
-
-/// NarrowVector - Given a value in the V128 register class, produce the
-/// equivalent value in the V64 register class.
-static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
- EVT VT = V128Reg.getValueType();
- unsigned WideSize = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType().getSimpleVT();
- MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
-
- return DAG.getTargetExtractSubreg(ARM64::dsub, SDLoc(V128Reg), NarrowTy,
- V128Reg);
-}
-
-SDNode *ARM64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
- unsigned Opc) {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- bool Narrow = VT.getSizeInBits() == 64;
-
- // Form a REG_SEQUENCE to force register allocation.
- SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
-
- if (Narrow)
- std::transform(Regs.begin(), Regs.end(), Regs.begin(),
- WidenVector(*CurDAG));
-
- SDValue RegSeq = createQTuple(Regs);
-
- std::vector<EVT> ResTys;
- ResTys.push_back(MVT::Untyped);
- ResTys.push_back(MVT::Other);
-
- unsigned LaneNo =
- cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
-
- SmallVector<SDValue, 6> Ops;
- Ops.push_back(RegSeq);
- Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
- Ops.push_back(N->getOperand(NumVecs + 3));
- Ops.push_back(N->getOperand(0));
- SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
- SDValue SuperReg = SDValue(Ld, 0);
-
- EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
- switch (NumVecs) {
- case 4: {
- SDValue NV3 =
- CurDAG->getTargetExtractSubreg(ARM64::qsub3, dl, WideVT, SuperReg);
- if (Narrow)
- ReplaceUses(SDValue(N, 3), NarrowVector(NV3, *CurDAG));
- else
- ReplaceUses(SDValue(N, 3), NV3);
- }
- // FALLTHROUGH
- case 3: {
- SDValue NV2 =
- CurDAG->getTargetExtractSubreg(ARM64::qsub2, dl, WideVT, SuperReg);
- if (Narrow)
- ReplaceUses(SDValue(N, 2), NarrowVector(NV2, *CurDAG));
- else
- ReplaceUses(SDValue(N, 2), NV2);
- }
- // FALLTHROUGH
- case 2: {
- SDValue NV1 =
- CurDAG->getTargetExtractSubreg(ARM64::qsub1, dl, WideVT, SuperReg);
- SDValue NV0 =
- CurDAG->getTargetExtractSubreg(ARM64::qsub0, dl, WideVT, SuperReg);
- if (Narrow) {
- ReplaceUses(SDValue(N, 1), NarrowVector(NV1, *CurDAG));
- ReplaceUses(SDValue(N, 0), NarrowVector(NV0, *CurDAG));
- } else {
- ReplaceUses(SDValue(N, 1), NV1);
- ReplaceUses(SDValue(N, 0), NV0);
- }
- break;
- }
- }
-
- ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
-
- return Ld;
-}
-
-SDNode *ARM64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
- unsigned Opc) {
- SDLoc dl(N);
- EVT VT = N->getOperand(2)->getValueType(0);
- bool Narrow = VT.getSizeInBits() == 64;
-
- // Form a REG_SEQUENCE to force register allocation.
- SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
-
- if (Narrow)
- std::transform(Regs.begin(), Regs.end(), Regs.begin(),
- WidenVector(*CurDAG));
-
- SDValue RegSeq = createQTuple(Regs);
-
- unsigned LaneNo =
- cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
-
- SmallVector<SDValue, 6> Ops;
- Ops.push_back(RegSeq);
- Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
- Ops.push_back(N->getOperand(NumVecs + 3));
- Ops.push_back(N->getOperand(0));
- SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
-
- // Transfer memoperands.
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
- cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
-
- return St;
-}
-
-SDNode *ARM64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
- unsigned Op16, unsigned Op32,
- unsigned Op64) {
- // Mostly direct translation to the given operations, except that we preserve
- // the AtomicOrdering for use later on.
- AtomicSDNode *AN = cast<AtomicSDNode>(Node);
- EVT VT = AN->getMemoryVT();
-
- unsigned Op;
- if (VT == MVT::i8)
- Op = Op8;
- else if (VT == MVT::i16)
- Op = Op16;
- else if (VT == MVT::i32)
- Op = Op32;
- else if (VT == MVT::i64)
- Op = Op64;
- else
- llvm_unreachable("Unexpected atomic operation");
-
- SmallVector<SDValue, 4> Ops;
- for (unsigned i = 1; i < AN->getNumOperands(); ++i)
- Ops.push_back(AN->getOperand(i));
-
- Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
- Ops.push_back(AN->getOperand(0)); // Chain moves to the end
-
- return CurDAG->SelectNodeTo(Node, Op, AN->getValueType(0), MVT::Other,
- &Ops[0], Ops.size());
-}
-
-static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
- unsigned &Opc, SDValue &Opd0,
- unsigned &LSB, unsigned &MSB,
- unsigned NumberOfIgnoredLowBits,
- bool BiggerPattern) {
- assert(N->getOpcode() == ISD::AND &&
- "N must be a AND operation to call this function");
-
- EVT VT = N->getValueType(0);
-
- // Here we can test the type of VT and return false when the type does not
- // match, but since it is done prior to that call in the current context
- // we turned that into an assert to avoid redundant code.
- assert((VT == MVT::i32 || VT == MVT::i64) &&
- "Type checking must have been done before calling this function");
-
- // FIXME: simplify-demanded-bits in DAGCombine will probably have
- // changed the AND node to a 32-bit mask operation. We'll have to
- // undo that as part of the transform here if we want to catch all
- // the opportunities.
- // Currently the NumberOfIgnoredLowBits argument helps to recover
- // form these situations when matching bigger pattern (bitfield insert).
-
- // For unsigned extracts, check for a shift right and mask
- uint64_t And_imm = 0;
- if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
- return false;
-
- const SDNode *Op0 = N->getOperand(0).getNode();
-
- // Because of simplify-demanded-bits in DAGCombine, the mask may have been
- // simplified. Try to undo that
- And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
-
- // The immediate is a mask of the low bits iff imm & (imm+1) == 0
- if (And_imm & (And_imm + 1))
- return false;
-
- bool ClampMSB = false;
- uint64_t Srl_imm = 0;
- // Handle the SRL + ANY_EXTEND case.
- if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
- isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
- // Extend the incoming operand of the SRL to 64-bit.
- Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
- // Make sure to clamp the MSB so that we preserve the semantics of the
- // original operations.
- ClampMSB = true;
- } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
- Opd0 = Op0->getOperand(0);
- } else if (BiggerPattern) {
- // Let's pretend a 0 shift right has been performed.
- // The resulting code will be at least as good as the original one
- // plus it may expose more opportunities for bitfield insert pattern.
- // FIXME: Currently we limit this to the bigger pattern, because
- // some optimizations expect AND and not UBFM
- Opd0 = N->getOperand(0);
- } else
- return false;
-
- assert((BiggerPattern || (Srl_imm > 0 && Srl_imm < VT.getSizeInBits())) &&
- "bad amount in shift node!");
-
- LSB = Srl_imm;
- MSB = Srl_imm + (VT == MVT::i32 ? CountTrailingOnes_32(And_imm)
- : CountTrailingOnes_64(And_imm)) -
- 1;
- if (ClampMSB)
- // Since we're moving the extend before the right shift operation, we need
- // to clamp the MSB to make sure we don't shift in undefined bits instead of
- // the zeros which would get shifted in with the original right shift
- // operation.
- MSB = MSB > 31 ? 31 : MSB;
-
- Opc = VT == MVT::i32 ? ARM64::UBFMWri : ARM64::UBFMXri;
- return true;
-}
-
-static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
- unsigned &LSB, unsigned &MSB) {
- // We are looking for the following pattern which basically extracts a single
- // bit from the source value and places it in the LSB of the destination
- // value, all other bits of the destination value or set to zero:
- //
- // Value2 = AND Value, MaskImm
- // SRL Value2, ShiftImm
- //
- // with MaskImm >> ShiftImm == 1.
- //
- // This gets selected into a single UBFM:
- //
- // UBFM Value, ShiftImm, ShiftImm
- //
-
- if (N->getOpcode() != ISD::SRL)
- return false;
-
- uint64_t And_mask = 0;
- if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
- return false;
-
- Opd0 = N->getOperand(0).getOperand(0);
-
- uint64_t Srl_imm = 0;
- if (!isIntImmediate(N->getOperand(1), Srl_imm))
- return false;
-
- // Check whether we really have a one bit extract here.
- if (And_mask >> Srl_imm == 0x1) {
- if (N->getValueType(0) == MVT::i32)
- Opc = ARM64::UBFMWri;
- else
- Opc = ARM64::UBFMXri;
-
- LSB = MSB = Srl_imm;
-
- return true;
- }
-
- return false;
-}
-
-static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
- unsigned &LSB, unsigned &MSB,
- bool BiggerPattern) {
- assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
- "N must be a SHR/SRA operation to call this function");
-
- EVT VT = N->getValueType(0);
-
- // Here we can test the type of VT and return false when the type does not
- // match, but since it is done prior to that call in the current context
- // we turned that into an assert to avoid redundant code.
- assert((VT == MVT::i32 || VT == MVT::i64) &&
- "Type checking must have been done before calling this function");
-
- // Check for AND + SRL doing a one bit extract.
- if (isOneBitExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
- return true;
-
- // we're looking for a shift of a shift
- uint64_t Shl_imm = 0;
- if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
- Opd0 = N->getOperand(0).getOperand(0);
- } else if (BiggerPattern) {
- // Let's pretend a 0 shift left has been performed.
- // FIXME: Currently we limit this to the bigger pattern case,
- // because some optimizations expect AND and not UBFM
- Opd0 = N->getOperand(0);
- } else
- return false;
-
- assert(Shl_imm < VT.getSizeInBits() && "bad amount in shift node!");
- uint64_t Srl_imm = 0;
- if (!isIntImmediate(N->getOperand(1), Srl_imm))
- return false;
-
- assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
- "bad amount in shift node!");
- // Note: The width operand is encoded as width-1.
- unsigned Width = VT.getSizeInBits() - Srl_imm - 1;
- int sLSB = Srl_imm - Shl_imm;
- if (sLSB < 0)
- return false;
- LSB = sLSB;
- MSB = LSB + Width;
- // SRA requires a signed extraction
- if (VT == MVT::i32)
- Opc = N->getOpcode() == ISD::SRA ? ARM64::SBFMWri : ARM64::UBFMWri;
- else
- Opc = N->getOpcode() == ISD::SRA ? ARM64::SBFMXri : ARM64::UBFMXri;
- return true;
-}
-
-static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
- SDValue &Opd0, unsigned &LSB, unsigned &MSB,
- unsigned NumberOfIgnoredLowBits = 0,
- bool BiggerPattern = false) {
- if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
- return false;
-
- switch (N->getOpcode()) {
- default:
- if (!N->isMachineOpcode())
- return false;
- break;
- case ISD::AND:
- return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
- NumberOfIgnoredLowBits, BiggerPattern);
- case ISD::SRL:
- case ISD::SRA:
- return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
- }
-
- unsigned NOpc = N->getMachineOpcode();
- switch (NOpc) {
- default:
- return false;
- case ARM64::SBFMWri:
- case ARM64::UBFMWri:
- case ARM64::SBFMXri:
- case ARM64::UBFMXri:
- Opc = NOpc;
- Opd0 = N->getOperand(0);
- LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
- MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
- return true;
- }
- // Unreachable
- return false;
-}
-
-SDNode *ARM64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
- unsigned Opc, LSB, MSB;
- SDValue Opd0;
- if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
- return NULL;
-
- EVT VT = N->getValueType(0);
- SDValue Ops[] = { Opd0, CurDAG->getTargetConstant(LSB, VT),
- CurDAG->getTargetConstant(MSB, VT) };
- return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 3);
-}
-
-// Is mask a i32 or i64 binary sequence 1..10..0 and
-// CountTrailingZeros(mask) == ExpectedTrailingZeros
-static bool isHighMask(uint64_t Mask, unsigned ExpectedTrailingZeros,
- unsigned NumberOfIgnoredHighBits, EVT VT) {
- assert((VT == MVT::i32 || VT == MVT::i64) &&
- "i32 or i64 mask type expected!");
-
- uint64_t ExpectedMask;
- if (VT == MVT::i32) {
- uint32_t ExpectedMaski32 = ~0 << ExpectedTrailingZeros;
- ExpectedMask = ExpectedMaski32;
- if (NumberOfIgnoredHighBits) {
- uint32_t highMask = ~0 << (32 - NumberOfIgnoredHighBits);
- Mask |= highMask;
- }
- } else {
- ExpectedMask = ((uint64_t) ~0) << ExpectedTrailingZeros;
- if (NumberOfIgnoredHighBits)
- Mask |= ((uint64_t) ~0) << (64 - NumberOfIgnoredHighBits);
- }
-
- return Mask == ExpectedMask;
-}
-
-// Look for bits that will be useful for later uses.
-// A bit is consider useless as soon as it is dropped and never used
-// before it as been dropped.
-// E.g., looking for useful bit of x
-// 1. y = x & 0x7
-// 2. z = y >> 2
-// After #1, x useful bits are 0x7, then the useful bits of x, live through
-// y.
-// After #2, the useful bits of x are 0x4.
-// However, if x is used on an unpredicatable instruction, then all its bits
-// are useful.
-// E.g.
-// 1. y = x & 0x7
-// 2. z = y >> 2
-// 3. str x, [@x]
-static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
-
-static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
- unsigned Depth) {
- uint64_t Imm =
- cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
- Imm = ARM64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
- UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
- getUsefulBits(Op, UsefulBits, Depth + 1);
-}
-
-static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
- uint64_t Imm, uint64_t MSB,
- unsigned Depth) {
- // inherit the bitwidth value
- APInt OpUsefulBits(UsefulBits);
- OpUsefulBits = 1;
-
- if (MSB >= Imm) {
- OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
- --OpUsefulBits;
- // The interesting part will be in the lower part of the result
- getUsefulBits(Op, OpUsefulBits, Depth + 1);
- // The interesting part was starting at Imm in the argument
- OpUsefulBits = OpUsefulBits.shl(Imm);
- } else {
- OpUsefulBits = OpUsefulBits.shl(MSB + 1);
- --OpUsefulBits;
- // The interesting part will be shifted in the result
- OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
- getUsefulBits(Op, OpUsefulBits, Depth + 1);
- // The interesting part was at zero in the argument
- OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
- }
-
- UsefulBits &= OpUsefulBits;
-}
-
-static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
- unsigned Depth) {
- uint64_t Imm =
- cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
- uint64_t MSB =
- cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
-
- getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
-}
-
-static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
- unsigned Depth) {
- uint64_t ShiftTypeAndValue =
- cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
- APInt Mask(UsefulBits);
- Mask.clearAllBits();
- Mask.flipAllBits();
-
- if (ARM64_AM::getShiftType(ShiftTypeAndValue) == ARM64_AM::LSL) {
- // Shift Left
- uint64_t ShiftAmt = ARM64_AM::getShiftValue(ShiftTypeAndValue);
- Mask = Mask.shl(ShiftAmt);
- getUsefulBits(Op, Mask, Depth + 1);
- Mask = Mask.lshr(ShiftAmt);
- } else if (ARM64_AM::getShiftType(ShiftTypeAndValue) == ARM64_AM::LSR) {
- // Shift Right
- // We do not handle ARM64_AM::ASR, because the sign will change the
- // number of useful bits
- uint64_t ShiftAmt = ARM64_AM::getShiftValue(ShiftTypeAndValue);
- Mask = Mask.lshr(ShiftAmt);
- getUsefulBits(Op, Mask, Depth + 1);
- Mask = Mask.shl(ShiftAmt);
- } else
- return;
-
- UsefulBits &= Mask;
-}
-
-static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
- unsigned Depth) {
- uint64_t Imm =
- cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
- uint64_t MSB =
- cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
-
- if (Op.getOperand(1) == Orig)
- return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
-
- APInt OpUsefulBits(UsefulBits);
- OpUsefulBits = 1;
-
- if (MSB >= Imm) {
- OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
- --OpUsefulBits;
- UsefulBits &= ~OpUsefulBits;
- getUsefulBits(Op, UsefulBits, Depth + 1);
- } else {
- OpUsefulBits = OpUsefulBits.shl(MSB + 1);
- --OpUsefulBits;
- UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
- getUsefulBits(Op, UsefulBits, Depth + 1);
- }
-}
-
-static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
- SDValue Orig, unsigned Depth) {
-
- // Users of this node should have already been instruction selected
- // FIXME: Can we turn that into an assert?
- if (!UserNode->isMachineOpcode())
- return;
-
- switch (UserNode->getMachineOpcode()) {
- default:
- return;
- case ARM64::ANDSWri:
- case ARM64::ANDSXri:
- case ARM64::ANDWri:
- case ARM64::ANDXri:
- // We increment Depth only when we call the getUsefulBits
- return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
- Depth);
- case ARM64::UBFMWri:
- case ARM64::UBFMXri:
- return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
-
- case ARM64::ORRWrs:
- case ARM64::ORRXrs:
- if (UserNode->getOperand(1) != Orig)
- return;
- return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
- Depth);
- case ARM64::BFMWri:
- case ARM64::BFMXri:
- return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
- }
-}
-
-static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
- if (Depth >= 6)
- return;
- // Initialize UsefulBits
- if (!Depth) {
- unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
- // At the beginning, assume every produced bits is useful
- UsefulBits = APInt(Bitwidth, 0);
- UsefulBits.flipAllBits();
- }
- APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
-
- for (SDNode::use_iterator UseIt = Op.getNode()->use_begin(),
- UseEnd = Op.getNode()->use_end();
- UseIt != UseEnd; ++UseIt) {
- // A use cannot produce useful bits
- APInt UsefulBitsForUse = APInt(UsefulBits);
- getUsefulBitsForUse(*UseIt, UsefulBitsForUse, Op, Depth);
- UsersUsefulBits |= UsefulBitsForUse;
- }
- // UsefulBits contains the produced bits that are meaningful for the
- // current definition, thus a user cannot make a bit meaningful at
- // this point
- UsefulBits &= UsersUsefulBits;
-}
-
-// Given a OR operation, check if we have the following pattern
-// ubfm c, b, imm, imm2 (or something that does the same jobs, see
-// isBitfieldExtractOp)
-// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
-// countTrailingZeros(mask2) == imm2 - imm + 1
-// f = d | c
-// if yes, given reference arguments will be update so that one can replace
-// the OR instruction with:
-// f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
-static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Opd0,
- SDValue &Opd1, unsigned &LSB,
- unsigned &MSB, SelectionDAG *CurDAG) {
- assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
-
- // Set Opc
- EVT VT = N->getValueType(0);
- if (VT == MVT::i32)
- Opc = ARM64::BFMWri;
- else if (VT == MVT::i64)
- Opc = ARM64::BFMXri;
- else
- return false;
-
- // Because of simplify-demanded-bits in DAGCombine, involved masks may not
- // have the expected shape. Try to undo that.
- APInt UsefulBits;
- getUsefulBits(SDValue(N, 0), UsefulBits);
-
- unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
- unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
-
- // OR is commutative, check both possibilities (does llvm provide a
- // way to do that directely, e.g., via code matcher?)
- SDValue OrOpd1Val = N->getOperand(1);
- SDNode *OrOpd0 = N->getOperand(0).getNode();
- SDNode *OrOpd1 = N->getOperand(1).getNode();
- for (int i = 0; i < 2;
- ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
- unsigned BFXOpc;
- // Set Opd1, LSB and MSB arguments by looking for
- // c = ubfm b, imm, imm2
- if (!isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Opd1, LSB, MSB,
- NumberOfIgnoredLowBits, true))
- continue;
-
- // Check that the returned opcode is compatible with the pattern,
- // i.e., same type and zero extended (U and not S)
- if ((BFXOpc != ARM64::UBFMXri && VT == MVT::i64) ||
- (BFXOpc != ARM64::UBFMWri && VT == MVT::i32))
- continue;
-
- // Compute the width of the bitfield insertion
- int sMSB = MSB - LSB + 1;
- // FIXME: This constraints is to catch bitfield insertion we may
- // want to widen the pattern if we want to grab general bitfied
- // move case
- if (sMSB <= 0)
- continue;
-
- // Check the second part of the pattern
- EVT VT = OrOpd1->getValueType(0);
- if (VT != MVT::i32 && VT != MVT::i64)
- continue;
-
- // Compute the Known Zero for the candidate of the first operand.
- // This allows to catch more general case than just looking for
- // AND with imm. Indeed, simplify-demanded-bits may have removed
- // the AND instruction because it proves it was useless.
- APInt KnownZero, KnownOne;
- CurDAG->ComputeMaskedBits(OrOpd1Val, KnownZero, KnownOne);
-
- // Check if there is enough room for the second operand to appear
- // in the first one
- if (KnownZero.countTrailingOnes() < (unsigned)sMSB)
- continue;
-
- // Set the first operand
- uint64_t Imm;
- if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
- isHighMask(Imm, sMSB, NumberOfIgnoredHighBits, VT))
- // In that case, we can eliminate the AND
- Opd0 = OrOpd1->getOperand(0);
- else
- // Maybe the AND has been removed by simplify-demanded-bits
- // or is useful because it discards more bits
- Opd0 = OrOpd1Val;
-
- // both parts match
- return true;
- }
-
- return false;
-}
-
-SDNode *ARM64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
- if (N->getOpcode() != ISD::OR)
- return NULL;
-
- unsigned Opc;
- unsigned LSB, MSB;
- SDValue Opd0, Opd1;
-
- if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
- return NULL;
-
- EVT VT = N->getValueType(0);
- SDValue Ops[] = { Opd0,
- Opd1,
- CurDAG->getTargetConstant(LSB, VT),
- CurDAG->getTargetConstant(MSB, VT) };
- return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 4);
-}
-
-SDNode *ARM64DAGToDAGISel::SelectLIBM(SDNode *N) {
- EVT VT = N->getValueType(0);
- unsigned Variant;
- unsigned Opc;
- unsigned FRINTXOpcs[] = { ARM64::FRINTXSr, ARM64::FRINTXDr };
-
- if (VT == MVT::f32) {
- Variant = 0;
- } else if (VT == MVT::f64) {
- Variant = 1;
- } else
- return 0; // Unrecognized argument type. Fall back on default codegen.
-
- // Pick the FRINTX variant needed to set the flags.
- unsigned FRINTXOpc = FRINTXOpcs[Variant];
-
- switch (N->getOpcode()) {
- default:
- return 0; // Unrecognized libm ISD node. Fall back on default codegen.
- case ISD::FCEIL: {
- unsigned FRINTPOpcs[] = { ARM64::FRINTPSr, ARM64::FRINTPDr };
- Opc = FRINTPOpcs[Variant];
- break;
- }
- case ISD::FFLOOR: {
- unsigned FRINTMOpcs[] = { ARM64::FRINTMSr, ARM64::FRINTMDr };
- Opc = FRINTMOpcs[Variant];
- break;
- }
- case ISD::FTRUNC: {
- unsigned FRINTZOpcs[] = { ARM64::FRINTZSr, ARM64::FRINTZDr };
- Opc = FRINTZOpcs[Variant];
- break;
- }
- case ISD::FROUND: {
- unsigned FRINTAOpcs[] = { ARM64::FRINTASr, ARM64::FRINTADr };
- Opc = FRINTAOpcs[Variant];
- break;
- }
- }
-
- SDLoc dl(N);
- SDValue In = N->getOperand(0);
- SmallVector<SDValue, 2> Ops;
- Ops.push_back(In);
-
- if (!TM.Options.UnsafeFPMath) {
- SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
- Ops.push_back(SDValue(FRINTX, 1));
- }
-
- return CurDAG->getMachineNode(Opc, dl, VT, Ops);
-}
-
-SDNode *ARM64DAGToDAGISel::Select(SDNode *Node) {
- // Dump information about the Node being selected
- DEBUG(errs() << "Selecting: ");
- DEBUG(Node->dump(CurDAG));
- DEBUG(errs() << "\n");
-
- // If we have a custom node, we already have selected!
- if (Node->isMachineOpcode()) {
- DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
- Node->setNodeId(-1);
- return NULL;
- }
-
- // Few custom selection stuff.
- SDNode *ResNode = 0;
- EVT VT = Node->getValueType(0);
-
- switch (Node->getOpcode()) {
- default:
- break;
-
- case ISD::ADD:
- if (SDNode *I = SelectMLAV64LaneV128(Node))
- return I;
- break;
-
- case ISD::ATOMIC_LOAD_ADD:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_ADD_I8,
- ARM64::ATOMIC_LOAD_ADD_I16, ARM64::ATOMIC_LOAD_ADD_I32,
- ARM64::ATOMIC_LOAD_ADD_I64);
- case ISD::ATOMIC_LOAD_SUB:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_SUB_I8,
- ARM64::ATOMIC_LOAD_SUB_I16, ARM64::ATOMIC_LOAD_SUB_I32,
- ARM64::ATOMIC_LOAD_SUB_I64);
- case ISD::ATOMIC_LOAD_AND:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_AND_I8,
- ARM64::ATOMIC_LOAD_AND_I16, ARM64::ATOMIC_LOAD_AND_I32,
- ARM64::ATOMIC_LOAD_AND_I64);
- case ISD::ATOMIC_LOAD_OR:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_OR_I8,
- ARM64::ATOMIC_LOAD_OR_I16, ARM64::ATOMIC_LOAD_OR_I32,
- ARM64::ATOMIC_LOAD_OR_I64);
- case ISD::ATOMIC_LOAD_XOR:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_XOR_I8,
- ARM64::ATOMIC_LOAD_XOR_I16, ARM64::ATOMIC_LOAD_XOR_I32,
- ARM64::ATOMIC_LOAD_XOR_I64);
- case ISD::ATOMIC_LOAD_NAND:
- return SelectAtomic(
- Node, ARM64::ATOMIC_LOAD_NAND_I8, ARM64::ATOMIC_LOAD_NAND_I16,
- ARM64::ATOMIC_LOAD_NAND_I32, ARM64::ATOMIC_LOAD_NAND_I64);
- case ISD::ATOMIC_LOAD_MIN:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_MIN_I8,
- ARM64::ATOMIC_LOAD_MIN_I16, ARM64::ATOMIC_LOAD_MIN_I32,
- ARM64::ATOMIC_LOAD_MIN_I64);
- case ISD::ATOMIC_LOAD_MAX:
- return SelectAtomic(Node, ARM64::ATOMIC_LOAD_MAX_I8,
- ARM64::ATOMIC_LOAD_MAX_I16, ARM64::ATOMIC_LOAD_MAX_I32,
- ARM64::ATOMIC_LOAD_MAX_I64);
- case ISD::ATOMIC_LOAD_UMIN:
- return SelectAtomic(
- Node, ARM64::ATOMIC_LOAD_UMIN_I8, ARM64::ATOMIC_LOAD_UMIN_I16,
- ARM64::ATOMIC_LOAD_UMIN_I32, ARM64::ATOMIC_LOAD_UMIN_I64);
- case ISD::ATOMIC_LOAD_UMAX:
- return SelectAtomic(
- Node, ARM64::ATOMIC_LOAD_UMAX_I8, ARM64::ATOMIC_LOAD_UMAX_I16,
- ARM64::ATOMIC_LOAD_UMAX_I32, ARM64::ATOMIC_LOAD_UMAX_I64);
- case ISD::ATOMIC_SWAP:
- return SelectAtomic(Node, ARM64::ATOMIC_SWAP_I8, ARM64::ATOMIC_SWAP_I16,
- ARM64::ATOMIC_SWAP_I32, ARM64::ATOMIC_SWAP_I64);
- case ISD::ATOMIC_CMP_SWAP:
- return SelectAtomic(Node, ARM64::ATOMIC_CMP_SWAP_I8,
- ARM64::ATOMIC_CMP_SWAP_I16, ARM64::ATOMIC_CMP_SWAP_I32,
- ARM64::ATOMIC_CMP_SWAP_I64);
-
- case ISD::LOAD: {
- // Try to select as an indexed load. Fall through to normal processing
- // if we can't.
- bool Done = false;
- SDNode *I = SelectIndexedLoad(Node, Done);
- if (Done)
- return I;
- break;
- }
-
- case ISD::SRL:
- case ISD::AND:
- case ISD::SRA:
- if (SDNode *I = SelectBitfieldExtractOp(Node))
- return I;
- break;
-
- case ISD::OR:
- if (SDNode *I = SelectBitfieldInsertOp(Node))
- return I;
- break;
-
- case ISD::EXTRACT_VECTOR_ELT: {
- // Extracting lane zero is a special case where we can just use a plain
- // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
- // the rest of the compiler, especially the register allocator and copyi
- // propagation, to reason about, so is preferred when it's possible to
- // use it.
- ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
- // Bail and use the default Select() for non-zero lanes.
- if (LaneNode->getZExtValue() != 0)
- break;
- // If the element type is not the same as the result type, likewise
- // bail and use the default Select(), as there's more to do than just
- // a cross-class COPY. This catches extracts of i8 and i16 elements
- // since they will need an explicit zext.
- if (VT != Node->getOperand(0).getValueType().getVectorElementType())
- break;
- unsigned SubReg;
- switch (Node->getOperand(0)
- .getValueType()
- .getVectorElementType()
- .getSizeInBits()) {
- default:
- assert(0 && "Unexpected vector element type!");
- case 64:
- SubReg = ARM64::dsub;
- break;
- case 32:
- SubReg = ARM64::ssub;
- break;
- case 16: // FALLTHROUGH
- case 8:
- llvm_unreachable("unexpected zext-requiring extract element!");
- }
- SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
- Node->getOperand(0));
- DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
- DEBUG(Extract->dumpr(CurDAG));
- DEBUG(dbgs() << "\n");
- return Extract.getNode();
- }
- case ISD::Constant: {
- // Materialize zero constants as copies from WZR/XZR. This allows
- // the coalescer to propagate these into other instructions.
- ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
- if (ConstNode->isNullValue()) {
- if (VT == MVT::i32)
- return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
- ARM64::WZR, MVT::i32).getNode();
- else if (VT == MVT::i64)
- return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
- ARM64::XZR, MVT::i64).getNode();
- }
- break;
- }
-
- case ISD::FrameIndex: {
- // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
- int FI = cast<FrameIndexSDNode>(Node)->getIndex();
- unsigned Shifter = ARM64_AM::getShifterImm(ARM64_AM::LSL, 0);
- const TargetLowering *TLI = getTargetLowering();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
- SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
- CurDAG->getTargetConstant(Shifter, MVT::i32) };
- return CurDAG->SelectNodeTo(Node, ARM64::ADDXri, MVT::i64, Ops, 3);
- }
- case ISD::INTRINSIC_W_CHAIN: {
- unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
- switch (IntNo) {
- default:
- break;
- case Intrinsic::arm64_ldxp: {
- SDValue MemAddr = Node->getOperand(2);
- SDLoc DL(Node);
- SDValue Chain = Node->getOperand(0);
-
- SDNode *Ld = CurDAG->getMachineNode(ARM64::LDXPX, DL, MVT::i64, MVT::i64,
- MVT::Other, MemAddr, Chain);
-
- // Transfer memoperands.
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
- cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
- return Ld;
- }
- case Intrinsic::arm64_stxp: {
- SDLoc DL(Node);
- SDValue Chain = Node->getOperand(0);
- SDValue ValLo = Node->getOperand(2);
- SDValue ValHi = Node->getOperand(3);
- SDValue MemAddr = Node->getOperand(4);
-
- // Place arguments in the right order.
- SmallVector<SDValue, 7> Ops;
- Ops.push_back(ValLo);
- Ops.push_back(ValHi);
- Ops.push_back(MemAddr);
- Ops.push_back(Chain);
-
- SDNode *St =
- CurDAG->getMachineNode(ARM64::STXPX, DL, MVT::i32, MVT::Other, Ops);
- // Transfer memoperands.
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
- cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
-
- return St;
- }
- case Intrinsic::arm64_neon_ld1x2:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 2, ARM64::LD1Twov8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 2, ARM64::LD1Twov16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 2, ARM64::LD1Twov4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 2, ARM64::LD1Twov8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 2, ARM64::LD1Twov2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 2, ARM64::LD1Twov4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 2, ARM64::LD1Twov1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 2, ARM64::LD1Twov2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld1x3:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 3, ARM64::LD1Threev8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 3, ARM64::LD1Threev16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 3, ARM64::LD1Threev4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 3, ARM64::LD1Threev8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 3, ARM64::LD1Threev2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 3, ARM64::LD1Threev4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 3, ARM64::LD1Threev1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 3, ARM64::LD1Threev2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld1x4:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 4, ARM64::LD1Fourv8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 4, ARM64::LD1Fourv16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 4, ARM64::LD1Fourv4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 4, ARM64::LD1Fourv8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 4, ARM64::LD1Fourv2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 4, ARM64::LD1Fourv4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 4, ARM64::LD1Fourv1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 4, ARM64::LD1Fourv2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld2:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 2, ARM64::LD2Twov8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 2, ARM64::LD2Twov16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 2, ARM64::LD2Twov4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 2, ARM64::LD2Twov8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 2, ARM64::LD2Twov2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 2, ARM64::LD2Twov4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 2, ARM64::LD1Twov1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 2, ARM64::LD2Twov2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld3:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 3, ARM64::LD3Threev8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 3, ARM64::LD3Threev16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 3, ARM64::LD3Threev4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 3, ARM64::LD3Threev8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 3, ARM64::LD3Threev2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 3, ARM64::LD3Threev4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 3, ARM64::LD1Threev1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 3, ARM64::LD3Threev2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld4:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 4, ARM64::LD4Fourv8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 4, ARM64::LD4Fourv16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 4, ARM64::LD4Fourv4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 4, ARM64::LD4Fourv8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 4, ARM64::LD4Fourv2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 4, ARM64::LD4Fourv4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 4, ARM64::LD1Fourv1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 4, ARM64::LD4Fourv2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld2r:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 2, ARM64::LD2Rv8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 2, ARM64::LD2Rv16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 2, ARM64::LD2Rv4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 2, ARM64::LD2Rv8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 2, ARM64::LD2Rv2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 2, ARM64::LD2Rv4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 2, ARM64::LD2Rv1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 2, ARM64::LD2Rv2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld3r:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 3, ARM64::LD3Rv8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 3, ARM64::LD3Rv16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 3, ARM64::LD3Rv4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 3, ARM64::LD3Rv8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 3, ARM64::LD3Rv2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 3, ARM64::LD3Rv4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 3, ARM64::LD3Rv1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 3, ARM64::LD3Rv2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld4r:
- if (VT == MVT::v8i8)
- return SelectLoad(Node, 4, ARM64::LD4Rv8b, ARM64::dsub0);
- else if (VT == MVT::v16i8)
- return SelectLoad(Node, 4, ARM64::LD4Rv16b, ARM64::qsub0);
- else if (VT == MVT::v4i16)
- return SelectLoad(Node, 4, ARM64::LD4Rv4h, ARM64::dsub0);
- else if (VT == MVT::v8i16)
- return SelectLoad(Node, 4, ARM64::LD4Rv8h, ARM64::qsub0);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectLoad(Node, 4, ARM64::LD4Rv2s, ARM64::dsub0);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectLoad(Node, 4, ARM64::LD4Rv4s, ARM64::qsub0);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectLoad(Node, 4, ARM64::LD4Rv1d, ARM64::dsub0);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectLoad(Node, 4, ARM64::LD4Rv2d, ARM64::qsub0);
- break;
- case Intrinsic::arm64_neon_ld2lane:
- if (VT == MVT::v16i8 || VT == MVT::v8i8)
- return SelectLoadLane(Node, 2, ARM64::LD2i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
- return SelectLoadLane(Node, 2, ARM64::LD2i16);
- else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
- VT == MVT::v2f32)
- return SelectLoadLane(Node, 2, ARM64::LD2i32);
- else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
- VT == MVT::v1f64)
- return SelectLoadLane(Node, 2, ARM64::LD2i64);
- break;
- case Intrinsic::arm64_neon_ld3lane:
- if (VT == MVT::v16i8 || VT == MVT::v8i8)
- return SelectLoadLane(Node, 3, ARM64::LD3i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
- return SelectLoadLane(Node, 3, ARM64::LD3i16);
- else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
- VT == MVT::v2f32)
- return SelectLoadLane(Node, 3, ARM64::LD3i32);
- else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
- VT == MVT::v1f64)
- return SelectLoadLane(Node, 3, ARM64::LD3i64);
- break;
- case Intrinsic::arm64_neon_ld4lane:
- if (VT == MVT::v16i8 || VT == MVT::v8i8)
- return SelectLoadLane(Node, 4, ARM64::LD4i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
- return SelectLoadLane(Node, 4, ARM64::LD4i16);
- else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
- VT == MVT::v2f32)
- return SelectLoadLane(Node, 4, ARM64::LD4i32);
- else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
- VT == MVT::v1f64)
- return SelectLoadLane(Node, 4, ARM64::LD4i64);
- break;
- }
- } break;
- case ISD::INTRINSIC_WO_CHAIN: {
- unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
- switch (IntNo) {
- default:
- break;
- case Intrinsic::arm64_neon_tbl2:
- return SelectTable(Node, 2, VT == MVT::v8i8 ? ARM64::TBLv8i8Two
- : ARM64::TBLv16i8Two,
- false);
- case Intrinsic::arm64_neon_tbl3:
- return SelectTable(Node, 3, VT == MVT::v8i8 ? ARM64::TBLv8i8Three
- : ARM64::TBLv16i8Three,
- false);
- case Intrinsic::arm64_neon_tbl4:
- return SelectTable(Node, 4, VT == MVT::v8i8 ? ARM64::TBLv8i8Four
- : ARM64::TBLv16i8Four,
- false);
- case Intrinsic::arm64_neon_tbx2:
- return SelectTable(Node, 2, VT == MVT::v8i8 ? ARM64::TBXv8i8Two
- : ARM64::TBXv16i8Two,
- true);
- case Intrinsic::arm64_neon_tbx3:
- return SelectTable(Node, 3, VT == MVT::v8i8 ? ARM64::TBXv8i8Three
- : ARM64::TBXv16i8Three,
- true);
- case Intrinsic::arm64_neon_tbx4:
- return SelectTable(Node, 4, VT == MVT::v8i8 ? ARM64::TBXv8i8Four
- : ARM64::TBXv16i8Four,
- true);
- case Intrinsic::arm64_neon_smull:
- case Intrinsic::arm64_neon_umull:
- if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
- return N;
- break;
- }
- break;
- }
- case ISD::INTRINSIC_VOID: {
- unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
- if (Node->getNumOperands() >= 3)
- VT = Node->getOperand(2)->getValueType(0);
- switch (IntNo) {
- default:
- break;
- case Intrinsic::arm64_neon_st1x2: {
- if (VT == MVT::v8i8)
- return SelectStore(Node, 2, ARM64::ST1Twov8b);
- else if (VT == MVT::v16i8)
- return SelectStore(Node, 2, ARM64::ST1Twov16b);
- else if (VT == MVT::v4i16)
- return SelectStore(Node, 2, ARM64::ST1Twov4h);
- else if (VT == MVT::v8i16)
- return SelectStore(Node, 2, ARM64::ST1Twov8h);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectStore(Node, 2, ARM64::ST1Twov2s);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectStore(Node, 2, ARM64::ST1Twov4s);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectStore(Node, 2, ARM64::ST1Twov2d);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectStore(Node, 2, ARM64::ST1Twov1d);
- break;
- }
- case Intrinsic::arm64_neon_st1x3: {
- if (VT == MVT::v8i8)
- return SelectStore(Node, 3, ARM64::ST1Threev8b);
- else if (VT == MVT::v16i8)
- return SelectStore(Node, 3, ARM64::ST1Threev16b);
- else if (VT == MVT::v4i16)
- return SelectStore(Node, 3, ARM64::ST1Threev4h);
- else if (VT == MVT::v8i16)
- return SelectStore(Node, 3, ARM64::ST1Threev8h);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectStore(Node, 3, ARM64::ST1Threev2s);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectStore(Node, 3, ARM64::ST1Threev4s);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectStore(Node, 3, ARM64::ST1Threev2d);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectStore(Node, 3, ARM64::ST1Threev1d);
- break;
- }
- case Intrinsic::arm64_neon_st1x4: {
- if (VT == MVT::v8i8)
- return SelectStore(Node, 4, ARM64::ST1Fourv8b);
- else if (VT == MVT::v16i8)
- return SelectStore(Node, 4, ARM64::ST1Fourv16b);
- else if (VT == MVT::v4i16)
- return SelectStore(Node, 4, ARM64::ST1Fourv4h);
- else if (VT == MVT::v8i16)
- return SelectStore(Node, 4, ARM64::ST1Fourv8h);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectStore(Node, 4, ARM64::ST1Fourv2s);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectStore(Node, 4, ARM64::ST1Fourv4s);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectStore(Node, 4, ARM64::ST1Fourv2d);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectStore(Node, 4, ARM64::ST1Fourv1d);
- break;
- }
- case Intrinsic::arm64_neon_st2: {
- if (VT == MVT::v8i8)
- return SelectStore(Node, 2, ARM64::ST2Twov8b);
- else if (VT == MVT::v16i8)
- return SelectStore(Node, 2, ARM64::ST2Twov16b);
- else if (VT == MVT::v4i16)
- return SelectStore(Node, 2, ARM64::ST2Twov4h);
- else if (VT == MVT::v8i16)
- return SelectStore(Node, 2, ARM64::ST2Twov8h);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectStore(Node, 2, ARM64::ST2Twov2s);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectStore(Node, 2, ARM64::ST2Twov4s);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectStore(Node, 2, ARM64::ST2Twov2d);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectStore(Node, 2, ARM64::ST1Twov1d);
- break;
- }
- case Intrinsic::arm64_neon_st3: {
- if (VT == MVT::v8i8)
- return SelectStore(Node, 3, ARM64::ST3Threev8b);
- else if (VT == MVT::v16i8)
- return SelectStore(Node, 3, ARM64::ST3Threev16b);
- else if (VT == MVT::v4i16)
- return SelectStore(Node, 3, ARM64::ST3Threev4h);
- else if (VT == MVT::v8i16)
- return SelectStore(Node, 3, ARM64::ST3Threev8h);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectStore(Node, 3, ARM64::ST3Threev2s);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectStore(Node, 3, ARM64::ST3Threev4s);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectStore(Node, 3, ARM64::ST3Threev2d);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectStore(Node, 3, ARM64::ST1Threev1d);
- break;
- }
- case Intrinsic::arm64_neon_st4: {
- if (VT == MVT::v8i8)
- return SelectStore(Node, 4, ARM64::ST4Fourv8b);
- else if (VT == MVT::v16i8)
- return SelectStore(Node, 4, ARM64::ST4Fourv16b);
- else if (VT == MVT::v4i16)
- return SelectStore(Node, 4, ARM64::ST4Fourv4h);
- else if (VT == MVT::v8i16)
- return SelectStore(Node, 4, ARM64::ST4Fourv8h);
- else if (VT == MVT::v2i32 || VT == MVT::v2f32)
- return SelectStore(Node, 4, ARM64::ST4Fourv2s);
- else if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return SelectStore(Node, 4, ARM64::ST4Fourv4s);
- else if (VT == MVT::v2i64 || VT == MVT::v2f64)
- return SelectStore(Node, 4, ARM64::ST4Fourv2d);
- else if (VT == MVT::v1i64 || VT == MVT::v1f64)
- return SelectStore(Node, 4, ARM64::ST1Fourv1d);
- break;
- }
- case Intrinsic::arm64_neon_st2lane: {
- if (VT == MVT::v16i8 || VT == MVT::v8i8)
- return SelectStoreLane(Node, 2, ARM64::ST2i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
- return SelectStoreLane(Node, 2, ARM64::ST2i16);
- else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
- VT == MVT::v2f32)
- return SelectStoreLane(Node, 2, ARM64::ST2i32);
- else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
- VT == MVT::v1f64)
- return SelectStoreLane(Node, 2, ARM64::ST2i64);
- break;
- }
- case Intrinsic::arm64_neon_st3lane: {
- if (VT == MVT::v16i8 || VT == MVT::v8i8)
- return SelectStoreLane(Node, 3, ARM64::ST3i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
- return SelectStoreLane(Node, 3, ARM64::ST3i16);
- else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
- VT == MVT::v2f32)
- return SelectStoreLane(Node, 3, ARM64::ST3i32);
- else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
- VT == MVT::v1f64)
- return SelectStoreLane(Node, 3, ARM64::ST3i64);
- break;
- }
- case Intrinsic::arm64_neon_st4lane: {
- if (VT == MVT::v16i8 || VT == MVT::v8i8)
- return SelectStoreLane(Node, 4, ARM64::ST4i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
- return SelectStoreLane(Node, 4, ARM64::ST4i16);
- else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
- VT == MVT::v2f32)
- return SelectStoreLane(Node, 4, ARM64::ST4i32);
- else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
- VT == MVT::v1f64)
- return SelectStoreLane(Node, 4, ARM64::ST4i64);
- break;
- }
- }
- }
-
- case ISD::FCEIL:
- case ISD::FFLOOR:
- case ISD::FTRUNC:
- case ISD::FROUND:
- if (SDNode *I = SelectLIBM(Node))
- return I;
- break;
- }
-
- // Select the default instruction
- ResNode = SelectCode(Node);
-
- DEBUG(errs() << "=> ");
- if (ResNode == NULL || ResNode == Node)
- DEBUG(Node->dump(CurDAG));
- else
- DEBUG(ResNode->dump(CurDAG));
- DEBUG(errs() << "\n");
-
- return ResNode;
-}
-
-/// createARM64ISelDag - This pass converts a legalized DAG into a
-/// ARM64-specific DAG, ready for instruction scheduling.
-FunctionPass *llvm::createARM64ISelDag(ARM64TargetMachine &TM,
- CodeGenOpt::Level OptLevel) {
- return new ARM64DAGToDAGISel(TM, OptLevel);
-}