aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM64/ARM64ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM64/ARM64ISelLowering.cpp')
-rw-r--r--lib/Target/ARM64/ARM64ISelLowering.cpp7551
1 files changed, 0 insertions, 7551 deletions
diff --git a/lib/Target/ARM64/ARM64ISelLowering.cpp b/lib/Target/ARM64/ARM64ISelLowering.cpp
deleted file mode 100644
index 641f591..0000000
--- a/lib/Target/ARM64/ARM64ISelLowering.cpp
+++ /dev/null
@@ -1,7551 +0,0 @@
-//===-- ARM64ISelLowering.cpp - ARM64 DAG Lowering Implementation --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the ARM64TargetLowering class.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "arm64-lower"
-
-#include "ARM64ISelLowering.h"
-#include "ARM64PerfectShuffle.h"
-#include "ARM64Subtarget.h"
-#include "ARM64CallingConv.h"
-#include "ARM64MachineFunctionInfo.h"
-#include "ARM64TargetMachine.h"
-#include "ARM64TargetObjectFile.h"
-#include "MCTargetDesc/ARM64AddressingModes.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/CallingConvLower.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetOptions.h"
-using namespace llvm;
-
-STATISTIC(NumTailCalls, "Number of tail calls");
-STATISTIC(NumShiftInserts, "Number of vector shift inserts");
-
-// This option should go away when tail calls fully work.
-static cl::opt<bool>
-EnableARM64TailCalls("arm64-tail-calls", cl::Hidden,
- cl::desc("Generate ARM64 tail calls (TEMPORARY OPTION)."),
- cl::init(true));
-
-static cl::opt<bool>
-StrictAlign("arm64-strict-align", cl::Hidden,
- cl::desc("Disallow all unaligned memory accesses"));
-
-// Place holder until extr generation is tested fully.
-static cl::opt<bool>
-EnableARM64ExtrGeneration("arm64-extr-generation", cl::Hidden,
- cl::desc("Allow ARM64 (or (shift)(shift))->extract"),
- cl::init(true));
-
-static cl::opt<bool>
-EnableARM64SlrGeneration("arm64-shift-insert-generation", cl::Hidden,
- cl::desc("Allow ARM64 SLI/SRI formation"),
- cl::init(false));
-
-//===----------------------------------------------------------------------===//
-// ARM64 Lowering public interface.
-//===----------------------------------------------------------------------===//
-static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
- if (TM.getSubtarget<ARM64Subtarget>().isTargetDarwin())
- return new ARM64_MachoTargetObjectFile();
-
- return new ARM64_ELFTargetObjectFile();
-}
-
-ARM64TargetLowering::ARM64TargetLowering(ARM64TargetMachine &TM)
- : TargetLowering(TM, createTLOF(TM)) {
- Subtarget = &TM.getSubtarget<ARM64Subtarget>();
-
- // ARM64 doesn't have comparisons which set GPRs or setcc instructions, so
- // we have to make something up. Arbitrarily, choose ZeroOrOne.
- setBooleanContents(ZeroOrOneBooleanContent);
- // When comparing vectors the result sets the different elements in the
- // vector to all-one or all-zero.
- setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
-
- // Set up the register classes.
- addRegisterClass(MVT::i32, &ARM64::GPR32allRegClass);
- addRegisterClass(MVT::i64, &ARM64::GPR64allRegClass);
- addRegisterClass(MVT::f32, &ARM64::FPR32RegClass);
- addRegisterClass(MVT::f64, &ARM64::FPR64RegClass);
- addRegisterClass(MVT::f128, &ARM64::FPR128RegClass);
- addRegisterClass(MVT::v16i8, &ARM64::FPR8RegClass);
- addRegisterClass(MVT::v8i16, &ARM64::FPR16RegClass);
-
- // Someone set us up the NEON.
- addDRTypeForNEON(MVT::v2f32);
- addDRTypeForNEON(MVT::v8i8);
- addDRTypeForNEON(MVT::v4i16);
- addDRTypeForNEON(MVT::v2i32);
- addDRTypeForNEON(MVT::v1i64);
- addDRTypeForNEON(MVT::v1f64);
-
- addQRTypeForNEON(MVT::v4f32);
- addQRTypeForNEON(MVT::v2f64);
- addQRTypeForNEON(MVT::v16i8);
- addQRTypeForNEON(MVT::v8i16);
- addQRTypeForNEON(MVT::v4i32);
- addQRTypeForNEON(MVT::v2i64);
-
- // Compute derived properties from the register classes
- computeRegisterProperties();
-
- // Provide all sorts of operation actions
- setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
- setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
- setOperationAction(ISD::SETCC, MVT::i32, Custom);
- setOperationAction(ISD::SETCC, MVT::i64, Custom);
- setOperationAction(ISD::SETCC, MVT::f32, Custom);
- setOperationAction(ISD::SETCC, MVT::f64, Custom);
- setOperationAction(ISD::BRCOND, MVT::Other, Expand);
- setOperationAction(ISD::BR_CC, MVT::i32, Custom);
- setOperationAction(ISD::BR_CC, MVT::i64, Custom);
- setOperationAction(ISD::BR_CC, MVT::f32, Custom);
- setOperationAction(ISD::BR_CC, MVT::f64, Custom);
- setOperationAction(ISD::SELECT, MVT::i32, Custom);
- setOperationAction(ISD::SELECT, MVT::i64, Custom);
- setOperationAction(ISD::SELECT, MVT::f32, Custom);
- setOperationAction(ISD::SELECT, MVT::f64, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
- setOperationAction(ISD::BR_JT, MVT::Other, Expand);
- setOperationAction(ISD::JumpTable, MVT::i64, Custom);
-
- setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
- setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
- setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
-
- setOperationAction(ISD::FREM, MVT::f32, Expand);
- setOperationAction(ISD::FREM, MVT::f64, Expand);
- setOperationAction(ISD::FREM, MVT::f80, Expand);
-
- // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
- // silliness like this:
- setOperationAction(ISD::FABS, MVT::v1f64, Expand);
- setOperationAction(ISD::FADD, MVT::v1f64, Expand);
- setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
- setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
- setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
- setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
- setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
- setOperationAction(ISD::FMA, MVT::v1f64, Expand);
- setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
- setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
- setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
- setOperationAction(ISD::FREM, MVT::v1f64, Expand);
- setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
- setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
- setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
- setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
- setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
- setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
- setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
- setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
- setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
- setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
- setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
- setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
-
- setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
- setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
- setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
- setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
- setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
-
- // Custom lowering hooks are needed for XOR
- // to fold it into CSINC/CSINV.
- setOperationAction(ISD::XOR, MVT::i32, Custom);
- setOperationAction(ISD::XOR, MVT::i64, Custom);
-
- // Virtually no operation on f128 is legal, but LLVM can't expand them when
- // there's a valid register class, so we need custom operations in most cases.
- setOperationAction(ISD::FABS, MVT::f128, Expand);
- setOperationAction(ISD::FADD, MVT::f128, Custom);
- setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
- setOperationAction(ISD::FCOS, MVT::f128, Expand);
- setOperationAction(ISD::FDIV, MVT::f128, Custom);
- setOperationAction(ISD::FMA, MVT::f128, Expand);
- setOperationAction(ISD::FMUL, MVT::f128, Custom);
- setOperationAction(ISD::FNEG, MVT::f128, Expand);
- setOperationAction(ISD::FPOW, MVT::f128, Expand);
- setOperationAction(ISD::FREM, MVT::f128, Expand);
- setOperationAction(ISD::FRINT, MVT::f128, Expand);
- setOperationAction(ISD::FSIN, MVT::f128, Expand);
- setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
- setOperationAction(ISD::FSQRT, MVT::f128, Expand);
- setOperationAction(ISD::FSUB, MVT::f128, Custom);
- setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
- setOperationAction(ISD::SETCC, MVT::f128, Custom);
- setOperationAction(ISD::BR_CC, MVT::f128, Custom);
- setOperationAction(ISD::SELECT, MVT::f128, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
- setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
-
- // Lowering for many of the conversions is actually specified by the non-f128
- // type. The LowerXXX function will be trivial when f128 isn't involved.
- setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
- setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
- setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
-
- // 128-bit atomics
- setOperationAction(ISD::ATOMIC_SWAP, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i128, Custom);
- // These are surprisingly difficult. The only single-copy atomic 128-bit
- // instruction on AArch64 is stxp (when it succeeds). So a store can safely
- // become a simple swap, but a load can only be determined to have been atomic
- // if storing the same value back succeeds.
- setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
- setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Expand);
-
- // Variable arguments.
- setOperationAction(ISD::VASTART, MVT::Other, Custom);
- setOperationAction(ISD::VAARG, MVT::Other, Custom);
- setOperationAction(ISD::VACOPY, MVT::Other, Custom);
- setOperationAction(ISD::VAEND, MVT::Other, Expand);
-
- // Variable-sized objects.
- setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
- setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
- setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
-
- // Exception handling.
- // FIXME: These are guesses. Has this been defined yet?
- setExceptionPointerRegister(ARM64::X0);
- setExceptionSelectorRegister(ARM64::X1);
-
- // Constant pool entries
- setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
-
- // BlockAddress
- setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
-
- // Add/Sub overflow ops with MVT::Glues are lowered to CPSR dependences.
- setOperationAction(ISD::ADDC, MVT::i32, Custom);
- setOperationAction(ISD::ADDE, MVT::i32, Custom);
- setOperationAction(ISD::SUBC, MVT::i32, Custom);
- setOperationAction(ISD::SUBE, MVT::i32, Custom);
- setOperationAction(ISD::ADDC, MVT::i64, Custom);
- setOperationAction(ISD::ADDE, MVT::i64, Custom);
- setOperationAction(ISD::SUBC, MVT::i64, Custom);
- setOperationAction(ISD::SUBE, MVT::i64, Custom);
-
- // ARM64 lacks both left-rotate and popcount instructions.
- setOperationAction(ISD::ROTL, MVT::i32, Expand);
- setOperationAction(ISD::ROTL, MVT::i64, Expand);
-
- // ARM64 doesn't have a direct vector ->f32 conversion instructions for
- // elements smaller than i32, so promote the input to i32 first.
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
- // Similarly, there is no direct i32 -> f64 vector conversion instruction.
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
-
- // ARM64 doesn't have {U|S}MUL_LOHI.
- setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
- setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
-
- // ARM64 doesn't have MUL.2d:
- setOperationAction(ISD::MUL, MVT::v2i64, Expand);
-
- // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
- // counterparts, which ARM64 supports directly.
- setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
- setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
- setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
- setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
-
- setOperationAction(ISD::CTPOP, MVT::i32, Custom);
- setOperationAction(ISD::CTPOP, MVT::i64, Custom);
-
- setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
- setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
- setOperationAction(ISD::SREM, MVT::i32, Expand);
- setOperationAction(ISD::SREM, MVT::i64, Expand);
- setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
- setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
- setOperationAction(ISD::UREM, MVT::i32, Expand);
- setOperationAction(ISD::UREM, MVT::i64, Expand);
-
- // Custom lower Add/Sub/Mul with overflow.
- setOperationAction(ISD::SADDO, MVT::i32, Custom);
- setOperationAction(ISD::SADDO, MVT::i64, Custom);
- setOperationAction(ISD::UADDO, MVT::i32, Custom);
- setOperationAction(ISD::UADDO, MVT::i64, Custom);
- setOperationAction(ISD::SSUBO, MVT::i32, Custom);
- setOperationAction(ISD::SSUBO, MVT::i64, Custom);
- setOperationAction(ISD::USUBO, MVT::i32, Custom);
- setOperationAction(ISD::USUBO, MVT::i64, Custom);
- setOperationAction(ISD::SMULO, MVT::i32, Custom);
- setOperationAction(ISD::SMULO, MVT::i64, Custom);
- setOperationAction(ISD::UMULO, MVT::i32, Custom);
- setOperationAction(ISD::UMULO, MVT::i64, Custom);
-
- setOperationAction(ISD::FSIN, MVT::f32, Expand);
- setOperationAction(ISD::FSIN, MVT::f64, Expand);
- setOperationAction(ISD::FCOS, MVT::f32, Expand);
- setOperationAction(ISD::FCOS, MVT::f64, Expand);
- setOperationAction(ISD::FPOW, MVT::f32, Expand);
- setOperationAction(ISD::FPOW, MVT::f64, Expand);
- setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
- setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
-
- // ARM64 has implementations of a lot of rounding-like FP operations.
- static MVT RoundingTypes[] = { MVT::f32, MVT::f64, MVT::v2f32,
- MVT::v4f32, MVT::v2f64 };
- for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
- MVT Ty = RoundingTypes[I];
- setOperationAction(ISD::FFLOOR, Ty, Legal);
- setOperationAction(ISD::FNEARBYINT, Ty, Legal);
- setOperationAction(ISD::FCEIL, Ty, Legal);
- setOperationAction(ISD::FRINT, Ty, Legal);
- setOperationAction(ISD::FTRUNC, Ty, Legal);
- setOperationAction(ISD::FROUND, Ty, Legal);
- }
-
- setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
-
- if (Subtarget->isTargetMachO()) {
- // For iOS, we don't want to the normal expansion of a libcall to
- // sincos. We want to issue a libcall to __sincos_stret to avoid memory
- // traffic.
- setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
- setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
- } else {
- setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
- setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
- }
-
- // ARM64 does not have floating-point extending loads, i1 sign-extending load,
- // floating-point truncating stores, or v2i32->v2i16 truncating store.
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
- setTruncStoreAction(MVT::f64, MVT::f32, Expand);
- setTruncStoreAction(MVT::f128, MVT::f80, Expand);
- setTruncStoreAction(MVT::f128, MVT::f64, Expand);
- setTruncStoreAction(MVT::f128, MVT::f32, Expand);
- setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
- // Indexed loads and stores are supported.
- for (unsigned im = (unsigned)ISD::PRE_INC;
- im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
- setIndexedLoadAction(im, MVT::i8, Legal);
- setIndexedLoadAction(im, MVT::i16, Legal);
- setIndexedLoadAction(im, MVT::i32, Legal);
- setIndexedLoadAction(im, MVT::i64, Legal);
- setIndexedLoadAction(im, MVT::f64, Legal);
- setIndexedLoadAction(im, MVT::f32, Legal);
- setIndexedStoreAction(im, MVT::i8, Legal);
- setIndexedStoreAction(im, MVT::i16, Legal);
- setIndexedStoreAction(im, MVT::i32, Legal);
- setIndexedStoreAction(im, MVT::i64, Legal);
- setIndexedStoreAction(im, MVT::f64, Legal);
- setIndexedStoreAction(im, MVT::f32, Legal);
- }
-
- // Likewise, narrowing and extending vector loads/stores aren't handled
- // directly.
- for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
-
- setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
- Expand);
-
- for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
- setTruncStoreAction((MVT::SimpleValueType)VT,
- (MVT::SimpleValueType)InnerVT, Expand);
- setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
- setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
- }
-
- // Trap.
- setOperationAction(ISD::TRAP, MVT::Other, Legal);
- setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
-
- // We combine OR nodes for bitfield operations.
- setTargetDAGCombine(ISD::OR);
-
- // Vector add and sub nodes may conceal a high-half opportunity.
- // Also, try to fold ADD into CSINC/CSINV..
- setTargetDAGCombine(ISD::ADD);
- setTargetDAGCombine(ISD::SUB);
-
- setTargetDAGCombine(ISD::XOR);
- setTargetDAGCombine(ISD::SINT_TO_FP);
- setTargetDAGCombine(ISD::UINT_TO_FP);
-
- setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
-
- setTargetDAGCombine(ISD::ANY_EXTEND);
- setTargetDAGCombine(ISD::ZERO_EXTEND);
- setTargetDAGCombine(ISD::SIGN_EXTEND);
- setTargetDAGCombine(ISD::BITCAST);
- setTargetDAGCombine(ISD::CONCAT_VECTORS);
- setTargetDAGCombine(ISD::STORE);
-
- setTargetDAGCombine(ISD::MUL);
-
- MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
- MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
- MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
-
- setStackPointerRegisterToSaveRestore(ARM64::SP);
-
- setSchedulingPreference(Sched::Hybrid);
-
- // Enable TBZ/TBNZ
- MaskAndBranchFoldingIsLegal = true;
-
- setMinFunctionAlignment(2);
-
- RequireStrictAlign = StrictAlign;
-}
-
-void ARM64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
- if (VT == MVT::v2f32) {
- setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
- AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
-
- setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
- AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
- } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
- setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
- AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
-
- setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
- AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
- }
-
- // Mark vector float intrinsics as expand.
- if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
- setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
- }
-
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::SCALAR_TO_VECTOR, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
-
- setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
- setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
-
- setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
- setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
-
- setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
- setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
-}
-
-void ARM64TargetLowering::addDRTypeForNEON(MVT VT) {
- addRegisterClass(VT, &ARM64::FPR64RegClass);
- addTypeForNEON(VT, MVT::v2i32);
-}
-
-void ARM64TargetLowering::addQRTypeForNEON(MVT VT) {
- addRegisterClass(VT, &ARM64::FPR128RegClass);
- addTypeForNEON(VT, MVT::v4i32);
-}
-
-EVT ARM64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
- if (!VT.isVector())
- return MVT::i32;
- return VT.changeVectorElementTypeToInteger();
-}
-
-/// computeMaskedBitsForTargetNode - Determine which of the bits specified in
-/// Mask are known to be either zero or one and return them in the
-/// KnownZero/KnownOne bitsets.
-void ARM64TargetLowering::computeMaskedBitsForTargetNode(
- const SDValue Op, APInt &KnownZero, APInt &KnownOne,
- const SelectionDAG &DAG, unsigned Depth) const {
- switch (Op.getOpcode()) {
- default:
- break;
- case ARM64ISD::CSEL: {
- APInt KnownZero2, KnownOne2;
- DAG.ComputeMaskedBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
- DAG.ComputeMaskedBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
- break;
- }
- case ISD::INTRINSIC_W_CHAIN:
- break;
- case ISD::INTRINSIC_WO_CHAIN:
- case ISD::INTRINSIC_VOID: {
- unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- switch (IntNo) {
- default:
- break;
- case Intrinsic::arm64_neon_umaxv:
- case Intrinsic::arm64_neon_uminv: {
- // Figure out the datatype of the vector operand. The UMINV instruction
- // will zero extend the result, so we can mark as known zero all the
- // bits larger than the element datatype. 32-bit or larget doesn't need
- // this as those are legal types and will be handled by isel directly.
- MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
- unsigned BitWidth = KnownZero.getBitWidth();
- if (VT == MVT::v8i8 || VT == MVT::v16i8) {
- assert(BitWidth >= 8 && "Unexpected width!");
- APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
- KnownZero |= Mask;
- } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
- assert(BitWidth >= 16 && "Unexpected width!");
- APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
- KnownZero |= Mask;
- }
- break;
- } break;
- }
- }
- }
-}
-
-MVT ARM64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
- return MVT::i64;
-}
-
-unsigned ARM64TargetLowering::getMaximalGlobalOffset() const {
- // FIXME: On ARM64, this depends on the type.
- // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes().
- // and the offset has to be a multiple of the related size in bytes.
- return 4095;
-}
-
-FastISel *
-ARM64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo) const {
- return ARM64::createFastISel(funcInfo, libInfo);
-}
-
-const char *ARM64TargetLowering::getTargetNodeName(unsigned Opcode) const {
- switch (Opcode) {
- default:
- return 0;
- case ARM64ISD::CALL: return "ARM64ISD::CALL";
- case ARM64ISD::ADRP: return "ARM64ISD::ADRP";
- case ARM64ISD::ADDlow: return "ARM64ISD::ADDlow";
- case ARM64ISD::LOADgot: return "ARM64ISD::LOADgot";
- case ARM64ISD::RET_FLAG: return "ARM64ISD::RET_FLAG";
- case ARM64ISD::BRCOND: return "ARM64ISD::BRCOND";
- case ARM64ISD::CSEL: return "ARM64ISD::CSEL";
- case ARM64ISD::FCSEL: return "ARM64ISD::FCSEL";
- case ARM64ISD::CSINV: return "ARM64ISD::CSINV";
- case ARM64ISD::CSNEG: return "ARM64ISD::CSNEG";
- case ARM64ISD::CSINC: return "ARM64ISD::CSINC";
- case ARM64ISD::THREAD_POINTER: return "ARM64ISD::THREAD_POINTER";
- case ARM64ISD::TLSDESC_CALL: return "ARM64ISD::TLSDESC_CALL";
- case ARM64ISD::ADC: return "ARM64ISD::ADC";
- case ARM64ISD::SBC: return "ARM64ISD::SBC";
- case ARM64ISD::ADDS: return "ARM64ISD::ADDS";
- case ARM64ISD::SUBS: return "ARM64ISD::SUBS";
- case ARM64ISD::ADCS: return "ARM64ISD::ADCS";
- case ARM64ISD::SBCS: return "ARM64ISD::SBCS";
- case ARM64ISD::ANDS: return "ARM64ISD::ANDS";
- case ARM64ISD::FCMP: return "ARM64ISD::FCMP";
- case ARM64ISD::FMIN: return "ARM64ISD::FMIN";
- case ARM64ISD::FMAX: return "ARM64ISD::FMAX";
- case ARM64ISD::DUP: return "ARM64ISD::DUP";
- case ARM64ISD::DUPLANE8: return "ARM64ISD::DUPLANE8";
- case ARM64ISD::DUPLANE16: return "ARM64ISD::DUPLANE16";
- case ARM64ISD::DUPLANE32: return "ARM64ISD::DUPLANE32";
- case ARM64ISD::DUPLANE64: return "ARM64ISD::DUPLANE64";
- case ARM64ISD::MOVI: return "ARM64ISD::MOVI";
- case ARM64ISD::MOVIshift: return "ARM64ISD::MOVIshift";
- case ARM64ISD::MOVIedit: return "ARM64ISD::MOVIedit";
- case ARM64ISD::MOVImsl: return "ARM64ISD::MOVImsl";
- case ARM64ISD::FMOV: return "ARM64ISD::FMOV";
- case ARM64ISD::MVNIshift: return "ARM64ISD::MVNIshift";
- case ARM64ISD::MVNImsl: return "ARM64ISD::MVNImsl";
- case ARM64ISD::BICi: return "ARM64ISD::BICi";
- case ARM64ISD::ORRi: return "ARM64ISD::ORRi";
- case ARM64ISD::NEG: return "ARM64ISD::NEG";
- case ARM64ISD::EXTR: return "ARM64ISD::EXTR";
- case ARM64ISD::ZIP1: return "ARM64ISD::ZIP1";
- case ARM64ISD::ZIP2: return "ARM64ISD::ZIP2";
- case ARM64ISD::UZP1: return "ARM64ISD::UZP1";
- case ARM64ISD::UZP2: return "ARM64ISD::UZP2";
- case ARM64ISD::TRN1: return "ARM64ISD::TRN1";
- case ARM64ISD::TRN2: return "ARM64ISD::TRN2";
- case ARM64ISD::REV16: return "ARM64ISD::REV16";
- case ARM64ISD::REV32: return "ARM64ISD::REV32";
- case ARM64ISD::REV64: return "ARM64ISD::REV64";
- case ARM64ISD::EXT: return "ARM64ISD::EXT";
- case ARM64ISD::VSHL: return "ARM64ISD::VSHL";
- case ARM64ISD::VLSHR: return "ARM64ISD::VLSHR";
- case ARM64ISD::VASHR: return "ARM64ISD::VASHR";
- case ARM64ISD::CMEQ: return "ARM64ISD::CMEQ";
- case ARM64ISD::CMGE: return "ARM64ISD::CMGE";
- case ARM64ISD::CMGT: return "ARM64ISD::CMGT";
- case ARM64ISD::CMHI: return "ARM64ISD::CMHI";
- case ARM64ISD::CMHS: return "ARM64ISD::CMHS";
- case ARM64ISD::FCMEQ: return "ARM64ISD::FCMEQ";
- case ARM64ISD::FCMGE: return "ARM64ISD::FCMGE";
- case ARM64ISD::FCMGT: return "ARM64ISD::FCMGT";
- case ARM64ISD::CMEQz: return "ARM64ISD::CMEQz";
- case ARM64ISD::CMGEz: return "ARM64ISD::CMGEz";
- case ARM64ISD::CMGTz: return "ARM64ISD::CMGTz";
- case ARM64ISD::CMLEz: return "ARM64ISD::CMLEz";
- case ARM64ISD::CMLTz: return "ARM64ISD::CMLTz";
- case ARM64ISD::FCMEQz: return "ARM64ISD::FCMEQz";
- case ARM64ISD::FCMGEz: return "ARM64ISD::FCMGEz";
- case ARM64ISD::FCMGTz: return "ARM64ISD::FCMGTz";
- case ARM64ISD::FCMLEz: return "ARM64ISD::FCMLEz";
- case ARM64ISD::FCMLTz: return "ARM64ISD::FCMLTz";
- case ARM64ISD::NOT: return "ARM64ISD::NOT";
- case ARM64ISD::BIT: return "ARM64ISD::BIT";
- case ARM64ISD::CBZ: return "ARM64ISD::CBZ";
- case ARM64ISD::CBNZ: return "ARM64ISD::CBNZ";
- case ARM64ISD::TBZ: return "ARM64ISD::TBZ";
- case ARM64ISD::TBNZ: return "ARM64ISD::TBNZ";
- case ARM64ISD::TC_RETURN: return "ARM64ISD::TC_RETURN";
- case ARM64ISD::SITOF: return "ARM64ISD::SITOF";
- case ARM64ISD::UITOF: return "ARM64ISD::UITOF";
- case ARM64ISD::SQSHL_I: return "ARM64ISD::SQSHL_I";
- case ARM64ISD::UQSHL_I: return "ARM64ISD::UQSHL_I";
- case ARM64ISD::SRSHR_I: return "ARM64ISD::SRSHR_I";
- case ARM64ISD::URSHR_I: return "ARM64ISD::URSHR_I";
- case ARM64ISD::SQSHLU_I: return "ARM64ISD::SQSHLU_I";
- case ARM64ISD::WrapperLarge: return "ARM64ISD::WrapperLarge";
- }
-}
-
-static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
- unsigned &LdrOpc, unsigned &StrOpc) {
- static unsigned LoadBares[] = { ARM64::LDXRB, ARM64::LDXRH, ARM64::LDXRW,
- ARM64::LDXRX, ARM64::LDXPX };
- static unsigned LoadAcqs[] = { ARM64::LDAXRB, ARM64::LDAXRH, ARM64::LDAXRW,
- ARM64::LDAXRX, ARM64::LDAXPX };
- static unsigned StoreBares[] = { ARM64::STXRB, ARM64::STXRH, ARM64::STXRW,
- ARM64::STXRX, ARM64::STXPX };
- static unsigned StoreRels[] = { ARM64::STLXRB, ARM64::STLXRH, ARM64::STLXRW,
- ARM64::STLXRX, ARM64::STLXPX };
-
- unsigned *LoadOps, *StoreOps;
- if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
- LoadOps = LoadAcqs;
- else
- LoadOps = LoadBares;
-
- if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
- StoreOps = StoreRels;
- else
- StoreOps = StoreBares;
-
- assert(isPowerOf2_32(Size) && Size <= 16 &&
- "unsupported size for atomic binary op!");
-
- LdrOpc = LoadOps[Log2_32(Size)];
- StrOpc = StoreOps[Log2_32(Size)];
-}
-
-MachineBasicBlock *ARM64TargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
- MachineBasicBlock *BB,
- unsigned Size) const {
- unsigned dest = MI->getOperand(0).getReg();
- unsigned ptr = MI->getOperand(1).getReg();
- unsigned oldval = MI->getOperand(2).getReg();
- unsigned newval = MI->getOperand(3).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
- unsigned scratch = BB->getParent()->getRegInfo().createVirtualRegister(
- &ARM64::GPR32RegClass);
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
- DebugLoc dl = MI->getDebugLoc();
-
- // FIXME: We currently always generate a seq_cst operation; we should
- // be able to relax this in some cases.
- unsigned ldrOpc, strOpc;
- getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
-
- MachineFunction *MF = BB->getParent();
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction::iterator It = BB;
- ++It; // insert the new blocks after the current block
-
- MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, loop1MBB);
- MF->insert(It, loop2MBB);
- MF->insert(It, exitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- // thisMBB:
- // ...
- // fallthrough --> loop1MBB
- BB->addSuccessor(loop1MBB);
-
- // loop1MBB:
- // ldrex dest, [ptr]
- // cmp dest, oldval
- // bne exitMBB
- BB = loop1MBB;
- BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
- BuildMI(BB, dl, TII->get(Size == 8 ? ARM64::SUBSXrr : ARM64::SUBSWrr))
- .addReg(Size == 8 ? ARM64::XZR : ARM64::WZR, RegState::Define)
- .addReg(dest)
- .addReg(oldval);
- BuildMI(BB, dl, TII->get(ARM64::Bcc)).addImm(ARM64CC::NE).addMBB(exitMBB);
- BB->addSuccessor(loop2MBB);
- BB->addSuccessor(exitMBB);
-
- // loop2MBB:
- // strex scratch, newval, [ptr]
- // cmp scratch, #0
- // bne loop1MBB
- BB = loop2MBB;
- BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
- BuildMI(BB, dl, TII->get(ARM64::CBNZW)).addReg(scratch).addMBB(loop1MBB);
- BB->addSuccessor(loop1MBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *
-ARM64TargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
- unsigned Size, unsigned BinOpcode) const {
- // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *MF = BB->getParent();
- MachineFunction::iterator It = BB;
- ++It;
-
- unsigned dest = MI->getOperand(0).getReg();
- unsigned ptr = MI->getOperand(1).getReg();
- unsigned incr = MI->getOperand(2).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
- DebugLoc dl = MI->getDebugLoc();
-
- unsigned ldrOpc, strOpc;
- getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
-
- MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, loopMBB);
- MF->insert(It, exitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- MachineRegisterInfo &RegInfo = MF->getRegInfo();
- unsigned scratch = RegInfo.createVirtualRegister(&ARM64::GPR32RegClass);
- unsigned scratch2 =
- (!BinOpcode)
- ? incr
- : RegInfo.createVirtualRegister(Size == 8 ? &ARM64::GPR64RegClass
- : &ARM64::GPR32RegClass);
-
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loopMBB);
-
- // loopMBB:
- // ldxr dest, ptr
- // <binop> scratch2, dest, incr
- // stxr scratch, scratch2, ptr
- // cbnz scratch, loopMBB
- // fallthrough --> exitMBB
- BB = loopMBB;
- BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
- if (BinOpcode) {
- // operand order needs to go the other way for NAND
- if (BinOpcode == ARM64::BICWrr || BinOpcode == ARM64::BICXrr)
- BuildMI(BB, dl, TII->get(BinOpcode), scratch2).addReg(incr).addReg(dest);
- else
- BuildMI(BB, dl, TII->get(BinOpcode), scratch2).addReg(dest).addReg(incr);
- }
-
- BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
- BuildMI(BB, dl, TII->get(ARM64::CBNZW)).addReg(scratch).addMBB(loopMBB);
-
- BB->addSuccessor(loopMBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *ARM64TargetLowering::EmitAtomicBinary128(
- MachineInstr *MI, MachineBasicBlock *BB, unsigned BinOpcodeLo,
- unsigned BinOpcodeHi) const {
- // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *MF = BB->getParent();
- MachineFunction::iterator It = BB;
- ++It;
-
- unsigned DestLo = MI->getOperand(0).getReg();
- unsigned DestHi = MI->getOperand(1).getReg();
- unsigned Ptr = MI->getOperand(2).getReg();
- unsigned IncrLo = MI->getOperand(3).getReg();
- unsigned IncrHi = MI->getOperand(4).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(5).getImm());
- DebugLoc DL = MI->getDebugLoc();
-
- unsigned LdrOpc, StrOpc;
- getExclusiveOperation(16, Ord, LdrOpc, StrOpc);
-
- MachineBasicBlock *LoopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *ExitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, LoopMBB);
- MF->insert(It, ExitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- ExitMBB->splice(ExitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- ExitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- MachineRegisterInfo &RegInfo = MF->getRegInfo();
- unsigned ScratchRes = RegInfo.createVirtualRegister(&ARM64::GPR32RegClass);
- unsigned ScratchLo = IncrLo, ScratchHi = IncrHi;
- if (BinOpcodeLo) {
- assert(BinOpcodeHi && "Expect neither or both opcodes to be defined");
- ScratchLo = RegInfo.createVirtualRegister(&ARM64::GPR64RegClass);
- ScratchHi = RegInfo.createVirtualRegister(&ARM64::GPR64RegClass);
- }
-
- // ThisMBB:
- // ...
- // fallthrough --> LoopMBB
- BB->addSuccessor(LoopMBB);
-
- // LoopMBB:
- // ldxp DestLo, DestHi, Ptr
- // <binoplo> ScratchLo, DestLo, IncrLo
- // <binophi> ScratchHi, DestHi, IncrHi
- // stxp ScratchRes, ScratchLo, ScratchHi, ptr
- // cbnz ScratchRes, LoopMBB
- // fallthrough --> ExitMBB
- BB = LoopMBB;
- BuildMI(BB, DL, TII->get(LdrOpc), DestLo)
- .addReg(DestHi, RegState::Define)
- .addReg(Ptr);
- if (BinOpcodeLo) {
- // operand order needs to go the other way for NAND
- if (BinOpcodeLo == ARM64::BICXrr) {
- std::swap(IncrLo, DestLo);
- std::swap(IncrHi, DestHi);
- }
-
- BuildMI(BB, DL, TII->get(BinOpcodeLo), ScratchLo).addReg(DestLo).addReg(
- IncrLo);
- BuildMI(BB, DL, TII->get(BinOpcodeHi), ScratchHi).addReg(DestHi).addReg(
- IncrHi);
- }
-
- BuildMI(BB, DL, TII->get(StrOpc), ScratchRes)
- .addReg(ScratchLo)
- .addReg(ScratchHi)
- .addReg(Ptr);
- BuildMI(BB, DL, TII->get(ARM64::CBNZW)).addReg(ScratchRes).addMBB(LoopMBB);
-
- BB->addSuccessor(LoopMBB);
- BB->addSuccessor(ExitMBB);
-
- // ExitMBB:
- // ...
- BB = ExitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *
-ARM64TargetLowering::EmitAtomicCmpSwap128(MachineInstr *MI,
- MachineBasicBlock *BB) const {
- unsigned DestLo = MI->getOperand(0).getReg();
- unsigned DestHi = MI->getOperand(1).getReg();
- unsigned Ptr = MI->getOperand(2).getReg();
- unsigned OldValLo = MI->getOperand(3).getReg();
- unsigned OldValHi = MI->getOperand(4).getReg();
- unsigned NewValLo = MI->getOperand(5).getReg();
- unsigned NewValHi = MI->getOperand(6).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(7).getImm());
- unsigned ScratchRes = BB->getParent()->getRegInfo().createVirtualRegister(
- &ARM64::GPR32RegClass);
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
- DebugLoc DL = MI->getDebugLoc();
-
- unsigned LdrOpc, StrOpc;
- getExclusiveOperation(16, Ord, LdrOpc, StrOpc);
-
- MachineFunction *MF = BB->getParent();
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction::iterator It = BB;
- ++It; // insert the new blocks after the current block
-
- MachineBasicBlock *Loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *Loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *ExitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, Loop1MBB);
- MF->insert(It, Loop2MBB);
- MF->insert(It, ExitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- ExitMBB->splice(ExitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- ExitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- // ThisMBB:
- // ...
- // fallthrough --> Loop1MBB
- BB->addSuccessor(Loop1MBB);
-
- // Loop1MBB:
- // ldxp DestLo, DestHi, [Ptr]
- // cmp DestLo, OldValLo
- // sbc xzr, DestHi, OldValHi
- // bne ExitMBB
- BB = Loop1MBB;
- BuildMI(BB, DL, TII->get(LdrOpc), DestLo)
- .addReg(DestHi, RegState::Define)
- .addReg(Ptr);
- BuildMI(BB, DL, TII->get(ARM64::SUBSXrr), ARM64::XZR).addReg(DestLo).addReg(
- OldValLo);
- BuildMI(BB, DL, TII->get(ARM64::SBCXr), ARM64::XZR).addReg(DestHi).addReg(
- OldValHi);
-
- BuildMI(BB, DL, TII->get(ARM64::Bcc)).addImm(ARM64CC::NE).addMBB(ExitMBB);
- BB->addSuccessor(Loop2MBB);
- BB->addSuccessor(ExitMBB);
-
- // Loop2MBB:
- // stxp ScratchRes, NewValLo, NewValHi, [Ptr]
- // cbnz ScratchRes, Loop1MBB
- BB = Loop2MBB;
- BuildMI(BB, DL, TII->get(StrOpc), ScratchRes)
- .addReg(NewValLo)
- .addReg(NewValHi)
- .addReg(Ptr);
- BuildMI(BB, DL, TII->get(ARM64::CBNZW)).addReg(ScratchRes).addMBB(Loop1MBB);
- BB->addSuccessor(Loop1MBB);
- BB->addSuccessor(ExitMBB);
-
- // ExitMBB:
- // ...
- BB = ExitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *ARM64TargetLowering::EmitAtomicMinMax128(
- MachineInstr *MI, MachineBasicBlock *BB, unsigned CondCode) const {
- // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *MF = BB->getParent();
- MachineFunction::iterator It = BB;
- ++It;
-
- unsigned DestLo = MI->getOperand(0).getReg();
- unsigned DestHi = MI->getOperand(1).getReg();
- unsigned Ptr = MI->getOperand(2).getReg();
- unsigned IncrLo = MI->getOperand(3).getReg();
- unsigned IncrHi = MI->getOperand(4).getReg();
- AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(5).getImm());
- DebugLoc DL = MI->getDebugLoc();
-
- unsigned LdrOpc, StrOpc;
- getExclusiveOperation(16, Ord, LdrOpc, StrOpc);
-
- MachineBasicBlock *LoopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *ExitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, LoopMBB);
- MF->insert(It, ExitMBB);
-
- // Transfer the remainder of BB and its successor edges to exitMBB.
- ExitMBB->splice(ExitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- ExitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- MachineRegisterInfo &RegInfo = MF->getRegInfo();
- unsigned ScratchRes = RegInfo.createVirtualRegister(&ARM64::GPR32RegClass);
- unsigned ScratchLo = RegInfo.createVirtualRegister(&ARM64::GPR64RegClass);
- unsigned ScratchHi = RegInfo.createVirtualRegister(&ARM64::GPR64RegClass);
-
- // ThisMBB:
- // ...
- // fallthrough --> LoopMBB
- BB->addSuccessor(LoopMBB);
-
- // LoopMBB:
- // ldxp DestLo, DestHi, Ptr
- // cmp ScratchLo, DestLo, IncrLo
- // sbc xzr, ScratchHi, DestHi, IncrHi
- // csel ScratchLo, DestLo, IncrLo, <cmp-op>
- // csel ScratchHi, DestHi, IncrHi, <cmp-op>
- // stxp ScratchRes, ScratchLo, ScratchHi, ptr
- // cbnz ScratchRes, LoopMBB
- // fallthrough --> ExitMBB
- BB = LoopMBB;
- BuildMI(BB, DL, TII->get(LdrOpc), DestLo)
- .addReg(DestHi, RegState::Define)
- .addReg(Ptr);
-
- BuildMI(BB, DL, TII->get(ARM64::SUBSXrr), ARM64::XZR).addReg(DestLo).addReg(
- IncrLo);
- BuildMI(BB, DL, TII->get(ARM64::SBCXr), ARM64::XZR).addReg(DestHi).addReg(
- IncrHi);
-
- BuildMI(BB, DL, TII->get(ARM64::CSELXr), ScratchLo)
- .addReg(DestLo)
- .addReg(IncrLo)
- .addImm(CondCode);
- BuildMI(BB, DL, TII->get(ARM64::CSELXr), ScratchHi)
- .addReg(DestHi)
- .addReg(IncrHi)
- .addImm(CondCode);
-
- BuildMI(BB, DL, TII->get(StrOpc), ScratchRes)
- .addReg(ScratchLo)
- .addReg(ScratchHi)
- .addReg(Ptr);
- BuildMI(BB, DL, TII->get(ARM64::CBNZW)).addReg(ScratchRes).addMBB(LoopMBB);
-
- BB->addSuccessor(LoopMBB);
- BB->addSuccessor(ExitMBB);
-
- // ExitMBB:
- // ...
- BB = ExitMBB;
-
- MI->eraseFromParent(); // The instruction is gone now.
-
- return BB;
-}
-
-MachineBasicBlock *
-ARM64TargetLowering::EmitF128CSEL(MachineInstr *MI,
- MachineBasicBlock *MBB) const {
- // We materialise the F128CSEL pseudo-instruction as some control flow and a
- // phi node:
-
- // OrigBB:
- // [... previous instrs leading to comparison ...]
- // b.ne TrueBB
- // b EndBB
- // TrueBB:
- // ; Fallthrough
- // EndBB:
- // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
-
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
- MachineFunction *MF = MBB->getParent();
- const BasicBlock *LLVM_BB = MBB->getBasicBlock();
- DebugLoc DL = MI->getDebugLoc();
- MachineFunction::iterator It = MBB;
- ++It;
-
- unsigned DestReg = MI->getOperand(0).getReg();
- unsigned IfTrueReg = MI->getOperand(1).getReg();
- unsigned IfFalseReg = MI->getOperand(2).getReg();
- unsigned CondCode = MI->getOperand(3).getImm();
- bool CPSRKilled = MI->getOperand(4).isKill();
-
- MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(It, TrueBB);
- MF->insert(It, EndBB);
-
- // Transfer rest of current basic-block to EndBB
- EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
- MBB->end());
- EndBB->transferSuccessorsAndUpdatePHIs(MBB);
-
- BuildMI(MBB, DL, TII->get(ARM64::Bcc)).addImm(CondCode).addMBB(TrueBB);
- BuildMI(MBB, DL, TII->get(ARM64::B)).addMBB(EndBB);
- MBB->addSuccessor(TrueBB);
- MBB->addSuccessor(EndBB);
-
- // TrueBB falls through to the end.
- TrueBB->addSuccessor(EndBB);
-
- if (!CPSRKilled) {
- TrueBB->addLiveIn(ARM64::CPSR);
- EndBB->addLiveIn(ARM64::CPSR);
- }
-
- BuildMI(*EndBB, EndBB->begin(), DL, TII->get(ARM64::PHI), DestReg)
- .addReg(IfTrueReg)
- .addMBB(TrueBB)
- .addReg(IfFalseReg)
- .addMBB(MBB);
-
- MI->eraseFromParent();
- return EndBB;
-}
-
-MachineBasicBlock *
-ARM64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
- switch (MI->getOpcode()) {
- default:
-#ifndef NDEBUG
- MI->dump();
-#endif
- assert(0 && "Unexpected instruction for custom inserter!");
- break;
-
- case ARM64::ATOMIC_LOAD_ADD_I8:
- return EmitAtomicBinary(MI, BB, 1, ARM64::ADDWrr);
- case ARM64::ATOMIC_LOAD_ADD_I16:
- return EmitAtomicBinary(MI, BB, 2, ARM64::ADDWrr);
- case ARM64::ATOMIC_LOAD_ADD_I32:
- return EmitAtomicBinary(MI, BB, 4, ARM64::ADDWrr);
- case ARM64::ATOMIC_LOAD_ADD_I64:
- return EmitAtomicBinary(MI, BB, 8, ARM64::ADDXrr);
- case ARM64::ATOMIC_LOAD_ADD_I128:
- return EmitAtomicBinary128(MI, BB, ARM64::ADDSXrr, ARM64::ADCXr);
-
- case ARM64::ATOMIC_LOAD_AND_I8:
- return EmitAtomicBinary(MI, BB, 1, ARM64::ANDWrr);
- case ARM64::ATOMIC_LOAD_AND_I16:
- return EmitAtomicBinary(MI, BB, 2, ARM64::ANDWrr);
- case ARM64::ATOMIC_LOAD_AND_I32:
- return EmitAtomicBinary(MI, BB, 4, ARM64::ANDWrr);
- case ARM64::ATOMIC_LOAD_AND_I64:
- return EmitAtomicBinary(MI, BB, 8, ARM64::ANDXrr);
- case ARM64::ATOMIC_LOAD_AND_I128:
- return EmitAtomicBinary128(MI, BB, ARM64::ANDXrr, ARM64::ANDXrr);
-
- case ARM64::ATOMIC_LOAD_OR_I8:
- return EmitAtomicBinary(MI, BB, 1, ARM64::ORRWrr);
- case ARM64::ATOMIC_LOAD_OR_I16:
- return EmitAtomicBinary(MI, BB, 2, ARM64::ORRWrr);
- case ARM64::ATOMIC_LOAD_OR_I32:
- return EmitAtomicBinary(MI, BB, 4, ARM64::ORRWrr);
- case ARM64::ATOMIC_LOAD_OR_I64:
- return EmitAtomicBinary(MI, BB, 8, ARM64::ORRXrr);
- case ARM64::ATOMIC_LOAD_OR_I128:
- return EmitAtomicBinary128(MI, BB, ARM64::ORRXrr, ARM64::ORRXrr);
-
- case ARM64::ATOMIC_LOAD_XOR_I8:
- return EmitAtomicBinary(MI, BB, 1, ARM64::EORWrr);
- case ARM64::ATOMIC_LOAD_XOR_I16:
- return EmitAtomicBinary(MI, BB, 2, ARM64::EORWrr);
- case ARM64::ATOMIC_LOAD_XOR_I32:
- return EmitAtomicBinary(MI, BB, 4, ARM64::EORWrr);
- case ARM64::ATOMIC_LOAD_XOR_I64:
- return EmitAtomicBinary(MI, BB, 8, ARM64::EORXrr);
- case ARM64::ATOMIC_LOAD_XOR_I128:
- return EmitAtomicBinary128(MI, BB, ARM64::EORXrr, ARM64::EORXrr);
-
- case ARM64::ATOMIC_LOAD_NAND_I8:
- return EmitAtomicBinary(MI, BB, 1, ARM64::BICWrr);
- case ARM64::ATOMIC_LOAD_NAND_I16:
- return EmitAtomicBinary(MI, BB, 2, ARM64::BICWrr);
- case ARM64::ATOMIC_LOAD_NAND_I32:
- return EmitAtomicBinary(MI, BB, 4, ARM64::BICWrr);
- case ARM64::ATOMIC_LOAD_NAND_I64:
- return EmitAtomicBinary(MI, BB, 8, ARM64::BICXrr);
- case ARM64::ATOMIC_LOAD_NAND_I128:
- return EmitAtomicBinary128(MI, BB, ARM64::BICXrr, ARM64::BICXrr);
-
- case ARM64::ATOMIC_LOAD_SUB_I8:
- return EmitAtomicBinary(MI, BB, 1, ARM64::SUBWrr);
- case ARM64::ATOMIC_LOAD_SUB_I16:
- return EmitAtomicBinary(MI, BB, 2, ARM64::SUBWrr);
- case ARM64::ATOMIC_LOAD_SUB_I32:
- return EmitAtomicBinary(MI, BB, 4, ARM64::SUBWrr);
- case ARM64::ATOMIC_LOAD_SUB_I64:
- return EmitAtomicBinary(MI, BB, 8, ARM64::SUBXrr);
- case ARM64::ATOMIC_LOAD_SUB_I128:
- return EmitAtomicBinary128(MI, BB, ARM64::SUBSXrr, ARM64::SBCXr);
-
- case ARM64::ATOMIC_LOAD_MIN_I128:
- return EmitAtomicMinMax128(MI, BB, ARM64CC::LT);
-
- case ARM64::ATOMIC_LOAD_MAX_I128:
- return EmitAtomicMinMax128(MI, BB, ARM64CC::GT);
-
- case ARM64::ATOMIC_LOAD_UMIN_I128:
- return EmitAtomicMinMax128(MI, BB, ARM64CC::CC);
-
- case ARM64::ATOMIC_LOAD_UMAX_I128:
- return EmitAtomicMinMax128(MI, BB, ARM64CC::HI);
-
- case ARM64::ATOMIC_SWAP_I8:
- return EmitAtomicBinary(MI, BB, 1, 0);
- case ARM64::ATOMIC_SWAP_I16:
- return EmitAtomicBinary(MI, BB, 2, 0);
- case ARM64::ATOMIC_SWAP_I32:
- return EmitAtomicBinary(MI, BB, 4, 0);
- case ARM64::ATOMIC_SWAP_I64:
- return EmitAtomicBinary(MI, BB, 8, 0);
- case ARM64::ATOMIC_SWAP_I128:
- return EmitAtomicBinary128(MI, BB, 0, 0);
-
- case ARM64::ATOMIC_CMP_SWAP_I8:
- return EmitAtomicCmpSwap(MI, BB, 1);
- case ARM64::ATOMIC_CMP_SWAP_I16:
- return EmitAtomicCmpSwap(MI, BB, 2);
- case ARM64::ATOMIC_CMP_SWAP_I32:
- return EmitAtomicCmpSwap(MI, BB, 4);
- case ARM64::ATOMIC_CMP_SWAP_I64:
- return EmitAtomicCmpSwap(MI, BB, 8);
- case ARM64::ATOMIC_CMP_SWAP_I128:
- return EmitAtomicCmpSwap128(MI, BB);
-
- case ARM64::F128CSEL:
- return EmitF128CSEL(MI, BB);
-
- case TargetOpcode::STACKMAP:
- case TargetOpcode::PATCHPOINT:
- return emitPatchPoint(MI, BB);
- }
- llvm_unreachable("Unexpected instruction for custom inserter!");
-}
-
-//===----------------------------------------------------------------------===//
-// ARM64 Lowering private implementation.
-//===----------------------------------------------------------------------===//
-
-//===----------------------------------------------------------------------===//
-// Lowering Code
-//===----------------------------------------------------------------------===//
-
-/// changeIntCCToARM64CC - Convert a DAG integer condition code to an ARM64 CC
-static ARM64CC::CondCode changeIntCCToARM64CC(ISD::CondCode CC) {
- switch (CC) {
- default:
- llvm_unreachable("Unknown condition code!");
- case ISD::SETNE:
- return ARM64CC::NE;
- case ISD::SETEQ:
- return ARM64CC::EQ;
- case ISD::SETGT:
- return ARM64CC::GT;
- case ISD::SETGE:
- return ARM64CC::GE;
- case ISD::SETLT:
- return ARM64CC::LT;
- case ISD::SETLE:
- return ARM64CC::LE;
- case ISD::SETUGT:
- return ARM64CC::HI;
- case ISD::SETUGE:
- return ARM64CC::CS;
- case ISD::SETULT:
- return ARM64CC::CC;
- case ISD::SETULE:
- return ARM64CC::LS;
- }
-}
-
-/// changeFPCCToARM64CC - Convert a DAG fp condition code to an ARM64 CC.
-static void changeFPCCToARM64CC(ISD::CondCode CC, ARM64CC::CondCode &CondCode,
- ARM64CC::CondCode &CondCode2) {
- CondCode2 = ARM64CC::AL;
- switch (CC) {
- default:
- llvm_unreachable("Unknown FP condition!");
- case ISD::SETEQ:
- case ISD::SETOEQ:
- CondCode = ARM64CC::EQ;
- break;
- case ISD::SETGT:
- case ISD::SETOGT:
- CondCode = ARM64CC::GT;
- break;
- case ISD::SETGE:
- case ISD::SETOGE:
- CondCode = ARM64CC::GE;
- break;
- case ISD::SETOLT:
- CondCode = ARM64CC::MI;
- break;
- case ISD::SETOLE:
- CondCode = ARM64CC::LS;
- break;
- case ISD::SETONE:
- CondCode = ARM64CC::MI;
- CondCode2 = ARM64CC::GT;
- break;
- case ISD::SETO:
- CondCode = ARM64CC::VC;
- break;
- case ISD::SETUO:
- CondCode = ARM64CC::VS;
- break;
- case ISD::SETUEQ:
- CondCode = ARM64CC::EQ;
- CondCode2 = ARM64CC::VS;
- break;
- case ISD::SETUGT:
- CondCode = ARM64CC::HI;
- break;
- case ISD::SETUGE:
- CondCode = ARM64CC::PL;
- break;
- case ISD::SETLT:
- case ISD::SETULT:
- CondCode = ARM64CC::LT;
- break;
- case ISD::SETLE:
- case ISD::SETULE:
- CondCode = ARM64CC::LE;
- break;
- case ISD::SETNE:
- case ISD::SETUNE:
- CondCode = ARM64CC::NE;
- break;
- }
-}
-
-static bool isLegalArithImmed(uint64_t C) {
- // Matches ARM64DAGToDAGISel::SelectArithImmed().
- return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
-}
-
-static SDValue emitComparison(SDValue LHS, SDValue RHS, SDLoc dl,
- SelectionDAG &DAG) {
- EVT VT = LHS.getValueType();
-
- if (VT.isFloatingPoint())
- return DAG.getNode(ARM64ISD::FCMP, dl, VT, LHS, RHS);
-
- // The CMP instruction is just an alias for SUBS, and representing it as
- // SUBS means that it's possible to get CSE with subtract operations.
- // A later phase can perform the optimization of setting the destination
- // register to WZR/XZR if it ends up being unused.
- return DAG.getNode(ARM64ISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
- .getValue(1);
-}
-
-static SDValue getARM64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- SDValue &ARM64cc, SelectionDAG &DAG, SDLoc dl) {
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
- EVT VT = RHS.getValueType();
- uint64_t C = RHSC->getZExtValue();
- if (!isLegalArithImmed(C)) {
- // Constant does not fit, try adjusting it by one?
- switch (CC) {
- default:
- break;
- case ISD::SETLT:
- case ISD::SETGE:
- if ((VT == MVT::i32 && C != 0x80000000 &&
- isLegalArithImmed((uint32_t)(C - 1))) ||
- (VT == MVT::i64 && C != 0x80000000ULL &&
- isLegalArithImmed(C - 1ULL))) {
- CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
- C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
- RHS = DAG.getConstant(C, VT);
- }
- break;
- case ISD::SETULT:
- case ISD::SETUGE:
- if ((VT == MVT::i32 && C != 0 &&
- isLegalArithImmed((uint32_t)(C - 1))) ||
- (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
- CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
- C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
- RHS = DAG.getConstant(C, VT);
- }
- break;
- case ISD::SETLE:
- case ISD::SETGT:
- if ((VT == MVT::i32 && C != 0x7fffffff &&
- isLegalArithImmed((uint32_t)(C + 1))) ||
- (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
- isLegalArithImmed(C + 1ULL))) {
- CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
- C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
- RHS = DAG.getConstant(C, VT);
- }
- break;
- case ISD::SETULE:
- case ISD::SETUGT:
- if ((VT == MVT::i32 && C != 0xffffffff &&
- isLegalArithImmed((uint32_t)(C + 1))) ||
- (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
- isLegalArithImmed(C + 1ULL))) {
- CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
- C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
- RHS = DAG.getConstant(C, VT);
- }
- break;
- }
- }
- }
-
- SDValue Cmp = emitComparison(LHS, RHS, dl, DAG);
- ARM64CC::CondCode ARM64CC = changeIntCCToARM64CC(CC);
- ARM64cc = DAG.getConstant(ARM64CC, MVT::i32);
- return Cmp;
-}
-
-static std::pair<SDValue, SDValue>
-getARM64XALUOOp(ARM64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
- assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
- "Unsupported value type");
- SDValue Value, Overflow;
- SDLoc DL(Op);
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- unsigned Opc = 0;
- switch (Op.getOpcode()) {
- default:
- llvm_unreachable("Unknown overflow instruction!");
- case ISD::SADDO:
- Opc = ARM64ISD::ADDS;
- CC = ARM64CC::VS;
- break;
- case ISD::UADDO:
- Opc = ARM64ISD::ADDS;
- CC = ARM64CC::CS;
- break;
- case ISD::SSUBO:
- Opc = ARM64ISD::SUBS;
- CC = ARM64CC::VS;
- break;
- case ISD::USUBO:
- Opc = ARM64ISD::SUBS;
- CC = ARM64CC::CC;
- break;
- // Multiply needs a little bit extra work.
- case ISD::SMULO:
- case ISD::UMULO: {
- CC = ARM64CC::NE;
- bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
- if (Op.getValueType() == MVT::i32) {
- unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- // For a 32 bit multiply with overflow check we want the instruction
- // selector to generate a widening multiply (SMADDL/UMADDL). For that we
- // need to generate the following pattern:
- // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
- LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
- RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
- SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
- SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
- DAG.getConstant(0, MVT::i64));
- // On ARM64 the upper 32 bits are always zero extended for a 32 bit
- // operation. We need to clear out the upper 32 bits, because we used a
- // widening multiply that wrote all 64 bits. In the end this should be a
- // noop.
- Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
- if (IsSigned) {
- // The signed overflow check requires more than just a simple check for
- // any bit set in the upper 32 bits of the result. These bits could be
- // just the sign bits of a negative number. To perform the overflow
- // check we have to arithmetic shift right the 32nd bit of the result by
- // 31 bits. Then we compare the result to the upper 32 bits.
- SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
- DAG.getConstant(32, MVT::i64));
- UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
- SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
- DAG.getConstant(31, MVT::i64));
- // It is important that LowerBits is last, otherwise the arithmetic
- // shift will not be folded into the compare (SUBS).
- SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
- Overflow = DAG.getNode(ARM64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
- .getValue(1);
- } else {
- // The overflow check for unsigned multiply is easy. We only need to
- // check if any of the upper 32 bits are set. This can be done with a
- // CMP (shifted register). For that we need to generate the following
- // pattern:
- // (i64 ARM64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
- SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
- DAG.getConstant(32, MVT::i64));
- SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
- Overflow =
- DAG.getNode(ARM64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
- UpperBits).getValue(1);
- }
- break;
- }
- assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
- // For the 64 bit multiply
- Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
- if (IsSigned) {
- SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
- SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
- DAG.getConstant(63, MVT::i64));
- // It is important that LowerBits is last, otherwise the arithmetic
- // shift will not be folded into the compare (SUBS).
- SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
- Overflow = DAG.getNode(ARM64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
- .getValue(1);
- } else {
- SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
- SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
- Overflow =
- DAG.getNode(ARM64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
- UpperBits).getValue(1);
- }
- break;
- }
- } // switch (...)
-
- if (Opc) {
- SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
-
- // Emit the ARM64 operation with overflow check.
- Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
- Overflow = Value.getValue(1);
- }
- return std::make_pair(Value, Overflow);
-}
-
-SDValue ARM64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
- RTLIB::Libcall Call) const {
- SmallVector<SDValue, 2> Ops;
- for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
- Ops.push_back(Op.getOperand(i));
-
- return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
- SDLoc(Op)).first;
-}
-
-static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
- SDValue Sel = Op.getOperand(0);
- SDValue Other = Op.getOperand(1);
-
- // If neither operand is a SELECT_CC, give up.
- if (Sel.getOpcode() != ISD::SELECT_CC)
- std::swap(Sel, Other);
- if (Sel.getOpcode() != ISD::SELECT_CC)
- return Op;
-
- // The folding we want to perform is:
- // (xor x, (select_cc a, b, cc, 0, -1) )
- // -->
- // (csel x, (xor x, -1), cc ...)
- //
- // The latter will get matched to a CSINV instruction.
-
- ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
- SDValue LHS = Sel.getOperand(0);
- SDValue RHS = Sel.getOperand(1);
- SDValue TVal = Sel.getOperand(2);
- SDValue FVal = Sel.getOperand(3);
- SDLoc dl(Sel);
-
- // FIXME: This could be generalized to non-integer comparisons.
- if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
- return Op;
-
- ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
- ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
-
- // The the values aren't constants, this isn't the pattern we're looking for.
- if (!CFVal || !CTVal)
- return Op;
-
- // We can commute the SELECT_CC by inverting the condition. This
- // might be needed to make this fit into a CSINV pattern.
- if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
- std::swap(TVal, FVal);
- std::swap(CTVal, CFVal);
- CC = ISD::getSetCCInverse(CC, true);
- }
-
- // If the constants line up, perform the transform!
- if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
- SDValue CCVal;
- SDValue Cmp = getARM64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
-
- FVal = Other;
- TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
- DAG.getConstant(-1ULL, Other.getValueType()));
-
- return DAG.getNode(ARM64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
- CCVal, Cmp);
- }
-
- return Op;
-}
-
-static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
- EVT VT = Op.getValueType();
-
- // Let legalize expand this if it isn't a legal type yet.
- if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
- return SDValue();
-
- SDVTList VTs = DAG.getVTList(VT, MVT::i32);
-
- unsigned Opc;
- bool ExtraOp = false;
- switch (Op.getOpcode()) {
- default:
- assert(0 && "Invalid code");
- case ISD::ADDC:
- Opc = ARM64ISD::ADDS;
- break;
- case ISD::SUBC:
- Opc = ARM64ISD::SUBS;
- break;
- case ISD::ADDE:
- Opc = ARM64ISD::ADCS;
- ExtraOp = true;
- break;
- case ISD::SUBE:
- Opc = ARM64ISD::SBCS;
- ExtraOp = true;
- break;
- }
-
- if (!ExtraOp)
- return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
- return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
- Op.getOperand(2));
-}
-
-static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
- // Let legalize expand this if it isn't a legal type yet.
- if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
- return SDValue();
-
- ARM64CC::CondCode CC;
- // The actual operation that sets the overflow or carry flag.
- SDValue Value, Overflow;
- std::tie(Value, Overflow) = getARM64XALUOOp(CC, Op, DAG);
-
- // We use 0 and 1 as false and true values.
- SDValue TVal = DAG.getConstant(1, MVT::i32);
- SDValue FVal = DAG.getConstant(0, MVT::i32);
-
- // We use an inverted condition, because the conditional select is inverted
- // too. This will allow it to be selected to a single instruction:
- // CSINC Wd, WZR, WZR, invert(cond).
- SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
- Overflow = DAG.getNode(ARM64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal, CCVal,
- Overflow);
-
- SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
- return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
-}
-
-// Prefetch operands are:
-// 1: Address to prefetch
-// 2: bool isWrite
-// 3: int locality (0 = no locality ... 3 = extreme locality)
-// 4: bool isDataCache
-static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
- SDLoc DL(Op);
- unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
- unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
- // The data thing is not used.
- // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
-
- bool IsStream = !Locality;
- // When the locality number is set
- if (Locality) {
- // The front-end should have filtered out the out-of-range values
- assert(Locality <= 3 && "Prefetch locality out-of-range");
- // The locality degree is the opposite of the cache speed.
- // Put the number the other way around.
- // The encoding starts at 0 for level 1
- Locality = 3 - Locality;
- }
-
- // built the mask value encoding the expected behavior.
- unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
- (Locality << 1) | // Cache level bits
- (unsigned)IsStream; // Stream bit
- return DAG.getNode(ARM64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
- DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
-}
-
-SDValue ARM64TargetLowering::LowerFP_EXTEND(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
-
- RTLIB::Libcall LC;
- LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
-
- return LowerF128Call(Op, DAG, LC);
-}
-
-SDValue ARM64TargetLowering::LowerFP_ROUND(SDValue Op,
- SelectionDAG &DAG) const {
- if (Op.getOperand(0).getValueType() != MVT::f128) {
- // It's legal except when f128 is involved
- return Op;
- }
-
- RTLIB::Libcall LC;
- LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
-
- // FP_ROUND node has a second operand indicating whether it is known to be
- // precise. That doesn't take part in the LibCall so we can't directly use
- // LowerF128Call.
- SDValue SrcVal = Op.getOperand(0);
- return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
- /*isSigned*/ false, SDLoc(Op)).first;
-}
-
-static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
- // Warning: We maintain cost tables in ARM64TargetTransformInfo.cpp.
- // Any additional optimization in this function should be recorded
- // in the cost tables.
- EVT InVT = Op.getOperand(0).getValueType();
- EVT VT = Op.getValueType();
-
- // FP_TO_XINT conversion from the same type are legal.
- if (VT.getSizeInBits() == InVT.getSizeInBits())
- return Op;
-
- if (InVT == MVT::v2f64) {
- SDLoc dl(Op);
- SDValue Cv = DAG.getNode(Op.getOpcode(), dl, MVT::v2i64, Op.getOperand(0));
- return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
- }
-
- // Type changing conversions are illegal.
- return SDValue();
-}
-
-SDValue ARM64TargetLowering::LowerFP_TO_INT(SDValue Op,
- SelectionDAG &DAG) const {
- if (Op.getOperand(0).getValueType().isVector())
- return LowerVectorFP_TO_INT(Op, DAG);
-
- if (Op.getOperand(0).getValueType() != MVT::f128) {
- // It's legal except when f128 is involved
- return Op;
- }
-
- RTLIB::Libcall LC;
- if (Op.getOpcode() == ISD::FP_TO_SINT)
- LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
- else
- LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
-
- SmallVector<SDValue, 2> Ops;
- for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
- Ops.push_back(Op.getOperand(i));
-
- return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
- SDLoc(Op)).first;
-}
-
-static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
- // Warning: We maintain cost tables in ARM64TargetTransformInfo.cpp.
- // Any additional optimization in this function should be recorded
- // in the cost tables.
- EVT VT = Op.getValueType();
- SDLoc dl(Op);
- SDValue In = Op.getOperand(0);
- EVT InVT = In.getValueType();
-
- // v2i32 to v2f32 is legal.
- if (VT == MVT::v2f32 && InVT == MVT::v2i32)
- return Op;
-
- // This function only handles v2f64 outputs.
- if (VT == MVT::v2f64) {
- // Extend the input argument to a v2i64 that we can feed into the
- // floating point conversion. Zero or sign extend based on whether
- // we're doing a signed or unsigned float conversion.
- unsigned Opc =
- Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
- assert(Op.getNumOperands() == 1 && "FP conversions take one argument");
- SDValue Promoted = DAG.getNode(Opc, dl, MVT::v2i64, Op.getOperand(0));
- return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Promoted);
- }
-
- // Scalarize v2i64 to v2f32 conversions.
- std::vector<SDValue> BuildVectorOps;
- for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
- SDValue Sclr = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, In,
- DAG.getConstant(i, MVT::i64));
- Sclr = DAG.getNode(Op->getOpcode(), dl, MVT::f32, Sclr);
- BuildVectorOps.push_back(Sclr);
- }
-
- return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &BuildVectorOps[0],
- BuildVectorOps.size());
-}
-
-SDValue ARM64TargetLowering::LowerINT_TO_FP(SDValue Op,
- SelectionDAG &DAG) const {
- if (Op.getValueType().isVector())
- return LowerVectorINT_TO_FP(Op, DAG);
-
- // i128 conversions are libcalls.
- if (Op.getOperand(0).getValueType() == MVT::i128)
- return SDValue();
-
- // Other conversions are legal, unless it's to the completely software-based
- // fp128.
- if (Op.getValueType() != MVT::f128)
- return Op;
-
- RTLIB::Libcall LC;
- if (Op.getOpcode() == ISD::SINT_TO_FP)
- LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
- else
- LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
-
- return LowerF128Call(Op, DAG, LC);
-}
-
-SDValue ARM64TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
- // For iOS, we want to call an alternative entry point: __sincos_stret,
- // which returns the values in two S / D registers.
- SDLoc dl(Op);
- SDValue Arg = Op.getOperand(0);
- EVT ArgVT = Arg.getValueType();
- Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
-
- ArgListTy Args;
- ArgListEntry Entry;
-
- Entry.Node = Arg;
- Entry.Ty = ArgTy;
- Entry.isSExt = false;
- Entry.isZExt = false;
- Args.push_back(Entry);
-
- const char *LibcallName =
- (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
- SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
-
- StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
- TargetLowering::CallLoweringInfo CLI(
- DAG.getEntryNode(), RetTy, false, false, false, false, 0,
- CallingConv::Fast, /*isTaillCall=*/false,
- /*doesNotRet=*/false, /*isReturnValueUsed*/ true, Callee, Args, DAG, dl);
- std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
- return CallResult.first;
-}
-
-SDValue ARM64TargetLowering::LowerOperation(SDValue Op,
- SelectionDAG &DAG) const {
- switch (Op.getOpcode()) {
- default:
- llvm_unreachable("unimplemented operand");
- return SDValue();
- case ISD::GlobalAddress:
- return LowerGlobalAddress(Op, DAG);
- case ISD::GlobalTLSAddress:
- return LowerGlobalTLSAddress(Op, DAG);
- case ISD::SETCC:
- return LowerSETCC(Op, DAG);
- case ISD::BR_CC:
- return LowerBR_CC(Op, DAG);
- case ISD::SELECT:
- return LowerSELECT(Op, DAG);
- case ISD::SELECT_CC:
- return LowerSELECT_CC(Op, DAG);
- case ISD::JumpTable:
- return LowerJumpTable(Op, DAG);
- case ISD::ConstantPool:
- return LowerConstantPool(Op, DAG);
- case ISD::BlockAddress:
- return LowerBlockAddress(Op, DAG);
- case ISD::VASTART:
- return LowerVASTART(Op, DAG);
- case ISD::VACOPY:
- return LowerVACOPY(Op, DAG);
- case ISD::VAARG:
- return LowerVAARG(Op, DAG);
- case ISD::ADDC:
- case ISD::ADDE:
- case ISD::SUBC:
- case ISD::SUBE:
- return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- return LowerXALUO(Op, DAG);
- case ISD::FADD:
- return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
- case ISD::FSUB:
- return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
- case ISD::FMUL:
- return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
- case ISD::FDIV:
- return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
- case ISD::FP_ROUND:
- return LowerFP_ROUND(Op, DAG);
- case ISD::FP_EXTEND:
- return LowerFP_EXTEND(Op, DAG);
- case ISD::FRAMEADDR:
- return LowerFRAMEADDR(Op, DAG);
- case ISD::RETURNADDR:
- return LowerRETURNADDR(Op, DAG);
- case ISD::INSERT_VECTOR_ELT:
- return LowerINSERT_VECTOR_ELT(Op, DAG);
- case ISD::EXTRACT_VECTOR_ELT:
- return LowerEXTRACT_VECTOR_ELT(Op, DAG);
- case ISD::SCALAR_TO_VECTOR:
- return LowerSCALAR_TO_VECTOR(Op, DAG);
- case ISD::BUILD_VECTOR:
- return LowerBUILD_VECTOR(Op, DAG);
- case ISD::VECTOR_SHUFFLE:
- return LowerVECTOR_SHUFFLE(Op, DAG);
- case ISD::EXTRACT_SUBVECTOR:
- return LowerEXTRACT_SUBVECTOR(Op, DAG);
- case ISD::SRA:
- case ISD::SRL:
- case ISD::SHL:
- return LowerVectorSRA_SRL_SHL(Op, DAG);
- case ISD::SHL_PARTS:
- return LowerShiftLeftParts(Op, DAG);
- case ISD::SRL_PARTS:
- case ISD::SRA_PARTS:
- return LowerShiftRightParts(Op, DAG);
- case ISD::CTPOP:
- return LowerCTPOP(Op, DAG);
- case ISD::FCOPYSIGN:
- return LowerFCOPYSIGN(Op, DAG);
- case ISD::AND:
- return LowerVectorAND(Op, DAG);
- case ISD::OR:
- return LowerVectorOR(Op, DAG);
- case ISD::XOR:
- return LowerXOR(Op, DAG);
- case ISD::PREFETCH:
- return LowerPREFETCH(Op, DAG);
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- return LowerINT_TO_FP(Op, DAG);
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- return LowerFP_TO_INT(Op, DAG);
- case ISD::FSINCOS:
- return LowerFSINCOS(Op, DAG);
- }
-}
-
-/// getFunctionAlignment - Return the Log2 alignment of this function.
-unsigned ARM64TargetLowering::getFunctionAlignment(const Function *F) const {
- return 2;
-}
-
-//===----------------------------------------------------------------------===//
-// Calling Convention Implementation
-//===----------------------------------------------------------------------===//
-
-#include "ARM64GenCallingConv.inc"
-
-/// Selects the correct CCAssignFn for a the given CallingConvention
-/// value.
-CCAssignFn *ARM64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
- bool IsVarArg) const {
- switch (CC) {
- default:
- llvm_unreachable("Unsupported calling convention.");
- case CallingConv::WebKit_JS:
- return CC_ARM64_WebKit_JS;
- case CallingConv::C:
- case CallingConv::Fast:
- if (!Subtarget->isTargetDarwin())
- return CC_ARM64_AAPCS;
- return IsVarArg ? CC_ARM64_DarwinPCS_VarArg : CC_ARM64_DarwinPCS;
- }
-}
-
-SDValue ARM64TargetLowering::LowerFormalArguments(
- SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &InVals) const {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
-
- // Assign locations to all of the incoming arguments.
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
-
- // At this point, Ins[].VT may already be promoted to i32. To correctly
- // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
- // i8 to CC_ARM64_AAPCS with i32 being ValVT and i8 being LocVT.
- // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
- // we use a special version of AnalyzeFormalArguments to pass in ValVT and
- // LocVT.
- unsigned NumArgs = Ins.size();
- Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
- unsigned CurArgIdx = 0;
- for (unsigned i = 0; i != NumArgs; ++i) {
- MVT ValVT = Ins[i].VT;
- std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
- CurArgIdx = Ins[i].OrigArgIndex;
-
- // Get type of the original argument.
- EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
- MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
- // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
- MVT LocVT = ValVT;
- if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
- LocVT = MVT::i8;
- else if (ActualMVT == MVT::i16)
- LocVT = MVT::i16;
-
- CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
- bool Res =
- AssignFn(i, ValVT, LocVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
- assert(!Res && "Call operand has unhandled type");
- (void)Res;
- }
-
- SmallVector<SDValue, 16> ArgValues;
- for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
- CCValAssign &VA = ArgLocs[i];
-
- // Arguments stored in registers.
- if (VA.isRegLoc()) {
- EVT RegVT = VA.getLocVT();
-
- SDValue ArgValue;
- const TargetRegisterClass *RC;
-
- if (RegVT == MVT::i32)
- RC = &ARM64::GPR32RegClass;
- else if (RegVT == MVT::i64)
- RC = &ARM64::GPR64RegClass;
- else if (RegVT == MVT::f32)
- RC = &ARM64::FPR32RegClass;
- else if (RegVT == MVT::f64 || RegVT == MVT::v1i64 ||
- RegVT == MVT::v1f64 || RegVT == MVT::v2i32 ||
- RegVT == MVT::v4i16 || RegVT == MVT::v8i8)
- RC = &ARM64::FPR64RegClass;
- else if (RegVT == MVT::v2i64 || RegVT == MVT::v4i32 ||
- RegVT == MVT::v8i16 || RegVT == MVT::v16i8)
- RC = &ARM64::FPR128RegClass;
- else
- llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
-
- // Transform the arguments in physical registers into virtual ones.
- unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
- ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
-
- // If this is an 8, 16 or 32-bit value, it is really passed promoted
- // to 64 bits. Insert an assert[sz]ext to capture this, then
- // truncate to the right size.
- switch (VA.getLocInfo()) {
- default:
- llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full:
- break;
- case CCValAssign::BCvt:
- ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
- break;
- case CCValAssign::SExt:
- ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
- DAG.getValueType(VA.getValVT()));
- ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
- break;
- case CCValAssign::ZExt:
- ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
- DAG.getValueType(VA.getValVT()));
- ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
- break;
- }
-
- InVals.push_back(ArgValue);
-
- } else { // VA.isRegLoc()
- assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
- unsigned ArgOffset = VA.getLocMemOffset();
- unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
- int FI = MFI->CreateFixedObject(ArgSize, ArgOffset, true);
-
- // Create load nodes to retrieve arguments from the stack.
- SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
- InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, FIN,
- MachinePointerInfo::getFixedStack(FI), false,
- false, false, 0));
- }
- }
-
- // varargs
- if (isVarArg) {
- if (!Subtarget->isTargetDarwin()) {
- // The AAPCS variadic function ABI is identical to the non-variadic
- // one. As a result there may be more arguments in registers and we should
- // save them for future reference.
- saveVarArgRegisters(CCInfo, DAG, DL, Chain);
- }
-
- ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>();
- // This will point to the next argument passed via stack.
- unsigned StackOffset = CCInfo.getNextStackOffset();
- // We currently pass all varargs at 8-byte alignment.
- StackOffset = ((StackOffset + 7) & ~7);
- AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
- }
-
- return Chain;
-}
-
-void ARM64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
- SelectionDAG &DAG, SDLoc DL,
- SDValue &Chain) const {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>();
-
- SmallVector<SDValue, 8> MemOps;
-
- static const uint16_t GPRArgRegs[] = { ARM64::X0, ARM64::X1, ARM64::X2,
- ARM64::X3, ARM64::X4, ARM64::X5,
- ARM64::X6, ARM64::X7 };
- static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
- unsigned FirstVariadicGPR =
- CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
-
- static const uint16_t FPRArgRegs[] = { ARM64::Q0, ARM64::Q1, ARM64::Q2,
- ARM64::Q3, ARM64::Q4, ARM64::Q5,
- ARM64::Q6, ARM64::Q7 };
- static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
- unsigned FirstVariadicFPR =
- CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
-
- unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
- int GPRIdx = 0;
- if (GPRSaveSize != 0) {
- GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
-
- SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
-
- for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
- unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &ARM64::GPR64RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
- SDValue Store =
- DAG.getStore(Val.getValue(1), DL, Val, FIN,
- MachinePointerInfo::getStack(i * 8), false, false, 0);
- MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
- DAG.getConstant(8, getPointerTy()));
- }
- }
-
- unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
- int FPRIdx = 0;
- if (FPRSaveSize != 0) {
- FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
-
- SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
-
- for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
- unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &ARM64::FPR128RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::v2i64);
- SDValue Store =
- DAG.getStore(Val.getValue(1), DL, Val, FIN,
- MachinePointerInfo::getStack(i * 16), false, false, 0);
- MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
- DAG.getConstant(16, getPointerTy()));
- }
- }
-
- FuncInfo->setVarArgsGPRIndex(GPRIdx);
- FuncInfo->setVarArgsGPRSize(GPRSaveSize);
- FuncInfo->setVarArgsFPRIndex(FPRIdx);
- FuncInfo->setVarArgsFPRSize(FPRSaveSize);
-
- if (!MemOps.empty()) {
- Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
- MemOps.size());
- }
-}
-
-/// LowerCallResult - Lower the result values of a call into the
-/// appropriate copies out of appropriate physical registers.
-SDValue ARM64TargetLowering::LowerCallResult(
- SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
- SDValue ThisVal) const {
- CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS
- : RetCC_ARM64_AAPCS;
- // Assign locations to each value returned by this call.
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
- CCInfo.AnalyzeCallResult(Ins, RetCC);
-
- // Copy all of the result registers out of their specified physreg.
- for (unsigned i = 0; i != RVLocs.size(); ++i) {
- CCValAssign VA = RVLocs[i];
-
- // Pass 'this' value directly from the argument to return value, to avoid
- // reg unit interference
- if (i == 0 && isThisReturn) {
- assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
- "unexpected return calling convention register assignment");
- InVals.push_back(ThisVal);
- continue;
- }
-
- SDValue Val =
- DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
- Chain = Val.getValue(1);
- InFlag = Val.getValue(2);
-
- switch (VA.getLocInfo()) {
- default:
- llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full:
- break;
- case CCValAssign::BCvt:
- Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
- break;
- }
-
- InVals.push_back(Val);
- }
-
- return Chain;
-}
-
-bool ARM64TargetLowering::isEligibleForTailCallOptimization(
- SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
- bool isCalleeStructRet, bool isCallerStructRet,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
- // Look for obvious safe cases to perform tail call optimization that do not
- // require ABI changes. This is what gcc calls sibcall.
-
- // Do not sibcall optimize vararg calls unless the call site is not passing
- // any arguments.
- if (isVarArg && !Outs.empty())
- return false;
-
- // Also avoid sibcall optimization if either caller or callee uses struct
- // return semantics.
- if (isCalleeStructRet || isCallerStructRet)
- return false;
-
- // Note that currently ARM64 "C" calling convention and "Fast" calling
- // convention are compatible. If/when that ever changes, we'll need to
- // add checks here to make sure any interactions are OK.
-
- // If the callee takes no arguments then go on to check the results of the
- // call.
- if (!Outs.empty()) {
- // Check if stack adjustment is needed. For now, do not do this if any
- // argument is passed on the stack.
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
- CCAssignFn *AssignFn = CCAssignFnForCall(CalleeCC, /*IsVarArg=*/false);
- CCInfo.AnalyzeCallOperands(Outs, AssignFn);
- if (CCInfo.getNextStackOffset()) {
- // Check if the arguments are already laid out in the right way as
- // the caller's fixed stack objects.
- for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
- ++i, ++realArgIdx) {
- CCValAssign &VA = ArgLocs[i];
- if (VA.getLocInfo() == CCValAssign::Indirect)
- return false;
- if (VA.needsCustom()) {
- // Just don't handle anything that needs custom adjustments for now.
- // If need be, we can revisit later, but we shouldn't ever end up
- // here.
- return false;
- } else if (!VA.isRegLoc()) {
- // Likewise, don't try to handle stack based arguments for the
- // time being.
- return false;
- }
- }
- }
- }
-
- return true;
-}
-/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
-/// and add input and output parameter nodes.
-SDValue ARM64TargetLowering::LowerCall(CallLoweringInfo &CLI,
- SmallVectorImpl<SDValue> &InVals) const {
- SelectionDAG &DAG = CLI.DAG;
- SDLoc &DL = CLI.DL;
- SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
- SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
- SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
- SDValue Chain = CLI.Chain;
- SDValue Callee = CLI.Callee;
- bool &IsTailCall = CLI.IsTailCall;
- CallingConv::ID CallConv = CLI.CallConv;
- bool IsVarArg = CLI.IsVarArg;
-
- MachineFunction &MF = DAG.getMachineFunction();
- bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
- bool IsThisReturn = false;
-
- // If tail calls are explicitly disabled, make sure not to use them.
- if (!EnableARM64TailCalls)
- IsTailCall = false;
-
- if (IsTailCall) {
- // Check if it's really possible to do a tail call.
- IsTailCall = isEligibleForTailCallOptimization(
- Callee, CallConv, IsVarArg, IsStructRet,
- MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
- // We don't support GuaranteedTailCallOpt, only automatically
- // detected sibcalls.
- // FIXME: Re-evaluate. Is this true? Should it be true?
- if (IsTailCall)
- ++NumTailCalls;
- }
-
- // Analyze operands of the call, assigning locations to each operand.
- SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
-
- if (IsVarArg) {
- // Handle fixed and variable vector arguments differently.
- // Variable vector arguments always go into memory.
- unsigned NumArgs = Outs.size();
-
- for (unsigned i = 0; i != NumArgs; ++i) {
- MVT ArgVT = Outs[i].VT;
- ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
- CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
- /*IsVarArg=*/ !Outs[i].IsFixed);
- bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
- assert(!Res && "Call operand has unhandled type");
- (void)Res;
- }
- } else {
- // At this point, Outs[].VT may already be promoted to i32. To correctly
- // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
- // i8 to CC_ARM64_AAPCS with i32 being ValVT and i8 being LocVT.
- // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
- // we use a special version of AnalyzeCallOperands to pass in ValVT and
- // LocVT.
- unsigned NumArgs = Outs.size();
- for (unsigned i = 0; i != NumArgs; ++i) {
- MVT ValVT = Outs[i].VT;
- // Get type of the original argument.
- EVT ActualVT = getValueType(CLI.Args[Outs[i].OrigArgIndex].Ty,
- /*AllowUnknown*/ true);
- MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
- ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
- // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
- MVT LocVT = ValVT;
- if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
- LocVT = MVT::i8;
- else if (ActualMVT == MVT::i16)
- LocVT = MVT::i16;
-
- CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
- bool Res = AssignFn(i, ValVT, LocVT, CCValAssign::Full, ArgFlags, CCInfo);
- assert(!Res && "Call operand has unhandled type");
- (void)Res;
- }
- }
-
- // Get a count of how many bytes are to be pushed on the stack.
- unsigned NumBytes = CCInfo.getNextStackOffset();
-
- // Adjust the stack pointer for the new arguments...
- // These operations are automatically eliminated by the prolog/epilog pass
- if (!IsTailCall)
- Chain =
- DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
-
- SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, ARM64::SP, getPointerTy());
-
- SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
- SmallVector<SDValue, 8> MemOpChains;
-
- // Walk the register/memloc assignments, inserting copies/loads.
- for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
- ++i, ++realArgIdx) {
- CCValAssign &VA = ArgLocs[i];
- SDValue Arg = OutVals[realArgIdx];
- ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
-
- // Promote the value if needed.
- switch (VA.getLocInfo()) {
- default:
- llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full:
- break;
- case CCValAssign::SExt:
- Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
- break;
- case CCValAssign::ZExt:
- Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
- break;
- case CCValAssign::AExt:
- Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
- break;
- case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
- break;
- case CCValAssign::FPExt:
- Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
- break;
- }
-
- if (VA.isRegLoc()) {
- if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
- assert(VA.getLocVT() == MVT::i64 &&
- "unexpected calling convention register assignment");
- assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
- "unexpected use of 'returned'");
- IsThisReturn = true;
- }
- RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
- } else {
- assert(VA.isMemLoc());
- // There's no reason we can't support stack args w/ tailcall, but
- // we currently don't, so assert if we see one.
- assert(!IsTailCall && "stack argument with tail call!?");
- unsigned LocMemOffset = VA.getLocMemOffset();
- SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
- PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
-
- // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
- // promoted to a legal register type i32, we should truncate Arg back to
- // i1/i8/i16.
- if (Arg.getValueType().isSimple() &&
- Arg.getValueType().getSimpleVT() == MVT::i32 &&
- (VA.getLocVT() == MVT::i1 || VA.getLocVT() == MVT::i8 ||
- VA.getLocVT() == MVT::i16))
- Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getLocVT(), Arg);
-
- SDValue Store = DAG.getStore(Chain, DL, Arg, PtrOff,
- MachinePointerInfo::getStack(LocMemOffset),
- false, false, 0);
- MemOpChains.push_back(Store);
- }
- }
-
- if (!MemOpChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOpChains[0],
- MemOpChains.size());
-
- // Build a sequence of copy-to-reg nodes chained together with token chain
- // and flag operands which copy the outgoing args into the appropriate regs.
- SDValue InFlag;
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
- RegsToPass[i].second, InFlag);
- InFlag = Chain.getValue(1);
- }
-
- // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
- // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
- // node so that legalize doesn't hack it.
- if (getTargetMachine().getCodeModel() == CodeModel::Large &&
- Subtarget->isTargetMachO()) {
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
- const GlobalValue *GV = G->getGlobal();
- bool InternalLinkage = GV->hasInternalLinkage();
- if (InternalLinkage)
- Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
- else {
- Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
- ARM64II::MO_GOT);
- Callee = DAG.getNode(ARM64ISD::LOADgot, DL, getPointerTy(), Callee);
- }
- } else if (ExternalSymbolSDNode *S =
- dyn_cast<ExternalSymbolSDNode>(Callee)) {
- const char *Sym = S->getSymbol();
- Callee =
- DAG.getTargetExternalSymbol(Sym, getPointerTy(), ARM64II::MO_GOT);
- Callee = DAG.getNode(ARM64ISD::LOADgot, DL, getPointerTy(), Callee);
- }
- } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
- const GlobalValue *GV = G->getGlobal();
- Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
- } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
- const char *Sym = S->getSymbol();
- Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
- }
-
- std::vector<SDValue> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
-
- // Add argument registers to the end of the list so that they are known live
- // into the call.
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
- Ops.push_back(DAG.getRegister(RegsToPass[i].first,
- RegsToPass[i].second.getValueType()));
-
- // Add a register mask operand representing the call-preserved registers.
- const uint32_t *Mask;
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const ARM64RegisterInfo *ARI = static_cast<const ARM64RegisterInfo *>(TRI);
- if (IsThisReturn) {
- // For 'this' returns, use the X0-preserving mask if applicable
- Mask = ARI->getThisReturnPreservedMask(CallConv);
- if (!Mask) {
- IsThisReturn = false;
- Mask = ARI->getCallPreservedMask(CallConv);
- }
- } else
- Mask = ARI->getCallPreservedMask(CallConv);
-
- assert(Mask && "Missing call preserved mask for calling convention");
- Ops.push_back(DAG.getRegisterMask(Mask));
-
- if (InFlag.getNode())
- Ops.push_back(InFlag);
-
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
-
- // If we're doing a tall call, use a TC_RETURN here rather than an
- // actual call instruction.
- if (IsTailCall)
- return DAG.getNode(ARM64ISD::TC_RETURN, DL, NodeTys, &Ops[0], Ops.size());
-
- // Returns a chain and a flag for retval copy to use.
- Chain = DAG.getNode(ARM64ISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
- InFlag = Chain.getValue(1);
-
- Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
- DAG.getIntPtrConstant(0, true), InFlag, DL);
- if (!Ins.empty())
- InFlag = Chain.getValue(1);
-
- // Handle result values, copying them out of physregs into vregs that we
- // return.
- return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
- InVals, IsThisReturn,
- IsThisReturn ? OutVals[0] : SDValue());
-}
-
-bool ARM64TargetLowering::CanLowerReturn(
- CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
- const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
- CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS
- : RetCC_ARM64_AAPCS;
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
- return CCInfo.CheckReturn(Outs, RetCC);
-}
-
-SDValue
-ARM64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
- bool isVarArg,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- SDLoc DL, SelectionDAG &DAG) const {
- CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS
- : RetCC_ARM64_AAPCS;
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
- CCInfo.AnalyzeReturn(Outs, RetCC);
-
- // Copy the result values into the output registers.
- SDValue Flag;
- SmallVector<SDValue, 4> RetOps(1, Chain);
- for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
- ++i, ++realRVLocIdx) {
- CCValAssign &VA = RVLocs[i];
- assert(VA.isRegLoc() && "Can only return in registers!");
- SDValue Arg = OutVals[realRVLocIdx];
-
- switch (VA.getLocInfo()) {
- default:
- llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full:
- break;
- case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
- break;
- }
-
- Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
- Flag = Chain.getValue(1);
- RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
- }
-
- RetOps[0] = Chain; // Update chain.
-
- // Add the flag if we have it.
- if (Flag.getNode())
- RetOps.push_back(Flag);
-
- return DAG.getNode(ARM64ISD::RET_FLAG, DL, MVT::Other, &RetOps[0],
- RetOps.size());
-}
-
-//===----------------------------------------------------------------------===//
-// Other Lowering Code
-//===----------------------------------------------------------------------===//
-
-SDValue ARM64TargetLowering::LowerGlobalAddress(SDValue Op,
- SelectionDAG &DAG) const {
- EVT PtrVT = getPointerTy();
- SDLoc DL(Op);
- const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
- unsigned char OpFlags =
- Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
-
- assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
- "unexpected offset in global node");
-
- // This also catched the large code model case for Darwin.
- if ((OpFlags & ARM64II::MO_GOT) != 0) {
- SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
- // FIXME: Once remat is capable of dealing with instructions with register
- // operands, expand this into two nodes instead of using a wrapper node.
- return DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, GotAddr);
- }
-
- if (getTargetMachine().getCodeModel() == CodeModel::Large) {
- const unsigned char MO_NC = ARM64II::MO_NC;
- return DAG.getNode(
- ARM64ISD::WrapperLarge, DL, PtrVT,
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G3),
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G2 | MO_NC),
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G1 | MO_NC),
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_G0 | MO_NC));
- } else {
- // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
- // the only correct model on Darwin.
- SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
- OpFlags | ARM64II::MO_PAGE);
- unsigned char LoFlags = OpFlags | ARM64II::MO_PAGEOFF | ARM64II::MO_NC;
- SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
-
- SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi);
- return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
- }
-}
-
-/// \brief Convert a TLS address reference into the correct sequence of loads
-/// and calls to compute the variable's address (for Darwin, currently) and
-/// return an SDValue containing the final node.
-
-/// Darwin only has one TLS scheme which must be capable of dealing with the
-/// fully general situation, in the worst case. This means:
-/// + "extern __thread" declaration.
-/// + Defined in a possibly unknown dynamic library.
-///
-/// The general system is that each __thread variable has a [3 x i64] descriptor
-/// which contains information used by the runtime to calculate the address. The
-/// only part of this the compiler needs to know about is the first xword, which
-/// contains a function pointer that must be called with the address of the
-/// entire descriptor in "x0".
-///
-/// Since this descriptor may be in a different unit, in general even the
-/// descriptor must be accessed via an indirect load. The "ideal" code sequence
-/// is:
-/// adrp x0, _var@TLVPPAGE
-/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
-/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
-/// ; the function pointer
-/// blr x1 ; Uses descriptor address in x0
-/// ; Address of _var is now in x0.
-///
-/// If the address of _var's descriptor *is* known to the linker, then it can
-/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
-/// a slight efficiency gain.
-SDValue
-ARM64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
-
- SDLoc DL(Op);
- MVT PtrVT = getPointerTy();
- const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
-
- SDValue TLVPAddr =
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_TLS);
- SDValue DescAddr = DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, TLVPAddr);
-
- // The first entry in the descriptor is a function pointer that we must call
- // to obtain the address of the variable.
- SDValue Chain = DAG.getEntryNode();
- SDValue FuncTLVGet =
- DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
- false, true, true, 8);
- Chain = FuncTLVGet.getValue(1);
-
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- MFI->setAdjustsStack(true);
-
- // TLS calls preserve all registers except those that absolutely must be
- // trashed: X0 (it takes an argument), LR (it's a call) and CPSR (let's not be
- // silly).
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const ARM64RegisterInfo *ARI = static_cast<const ARM64RegisterInfo *>(TRI);
- const uint32_t *Mask = ARI->getTLSCallPreservedMask();
-
- // Finally, we can make the call. This is just a degenerate version of a
- // normal ARM64 call node: x0 takes the address of the descriptor, and returns
- // the address of the variable in this thread.
- Chain = DAG.getCopyToReg(Chain, DL, ARM64::X0, DescAddr, SDValue());
- Chain = DAG.getNode(ARM64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
- Chain, FuncTLVGet, DAG.getRegister(ARM64::X0, MVT::i64),
- DAG.getRegisterMask(Mask), Chain.getValue(1));
- return DAG.getCopyFromReg(Chain, DL, ARM64::X0, PtrVT, Chain.getValue(1));
-}
-
-/// When accessing thread-local variables under either the general-dynamic or
-/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
-/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
-/// is a function pointer to carry out the resolution. This function takes the
-/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
-/// other registers (except LR, CPSR) are preserved.
-///
-/// Thus, the ideal call sequence on AArch64 is:
-///
-/// adrp x0, :tlsdesc:thread_var
-/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
-/// add x0, x0, :tlsdesc_lo12:thread_var
-/// .tlsdesccall thread_var
-/// blr x8
-/// (TPIDR_EL0 offset now in x0).
-///
-/// The ".tlsdesccall" directive instructs the assembler to insert a particular
-/// relocation to help the linker relax this sequence if it turns out to be too
-/// conservative.
-///
-/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
-/// is harmless.
-SDValue ARM64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
- SDValue DescAddr, SDLoc DL,
- SelectionDAG &DAG) const {
- EVT PtrVT = getPointerTy();
-
- // The function we need to call is simply the first entry in the GOT for this
- // descriptor, load it in preparation.
- SDValue Func = DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, SymAddr);
-
- // TLS calls preserve all registers except those that absolutely must be
- // trashed: X0 (it takes an argument), LR (it's a call) and CPSR (let's not be
- // silly).
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const ARM64RegisterInfo *ARI = static_cast<const ARM64RegisterInfo *>(TRI);
- const uint32_t *Mask = ARI->getTLSCallPreservedMask();
-
- // The function takes only one argument: the address of the descriptor itself
- // in X0.
- SDValue Glue, Chain;
- Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM64::X0, DescAddr, Glue);
- Glue = Chain.getValue(1);
-
- // We're now ready to populate the argument list, as with a normal call:
- SmallVector<SDValue, 6> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Func);
- Ops.push_back(SymAddr);
- Ops.push_back(DAG.getRegister(ARM64::X0, PtrVT));
- Ops.push_back(DAG.getRegisterMask(Mask));
- Ops.push_back(Glue);
-
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- Chain = DAG.getNode(ARM64ISD::TLSDESC_CALL, DL, NodeTys, &Ops[0], Ops.size());
- Glue = Chain.getValue(1);
-
- return DAG.getCopyFromReg(Chain, DL, ARM64::X0, PtrVT, Glue);
-}
-
-SDValue ARM64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Subtarget->isTargetELF() && "This function expects an ELF target");
- assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
- "ELF TLS only supported in small memory model");
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
-
- TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
-
- SDValue TPOff;
- EVT PtrVT = getPointerTy();
- SDLoc DL(Op);
- const GlobalValue *GV = GA->getGlobal();
-
- SDValue ThreadBase = DAG.getNode(ARM64ISD::THREAD_POINTER, DL, PtrVT);
-
- if (Model == TLSModel::LocalExec) {
- SDValue HiVar = DAG.getTargetGlobalAddress(
- GV, DL, PtrVT, 0, ARM64II::MO_TLS | ARM64II::MO_G1);
- SDValue LoVar = DAG.getTargetGlobalAddress(
- GV, DL, PtrVT, 0, ARM64II::MO_TLS | ARM64II::MO_G0 | ARM64II::MO_NC);
-
- TPOff = SDValue(DAG.getMachineNode(ARM64::MOVZXi, DL, PtrVT, HiVar,
- DAG.getTargetConstant(16, MVT::i32)),
- 0);
- TPOff = SDValue(DAG.getMachineNode(ARM64::MOVKXi, DL, PtrVT, TPOff, LoVar,
- DAG.getTargetConstant(0, MVT::i32)),
- 0);
- } else if (Model == TLSModel::InitialExec) {
- TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_TLS);
- TPOff = DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, TPOff);
- } else if (Model == TLSModel::LocalDynamic) {
- // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
- // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
- // the beginning of the module's TLS region, followed by a DTPREL offset
- // calculation.
-
- // These accesses will need deduplicating if there's more than one.
- ARM64FunctionInfo *MFI =
- DAG.getMachineFunction().getInfo<ARM64FunctionInfo>();
- MFI->incNumLocalDynamicTLSAccesses();
-
- // Accesses used in this sequence go via the TLS descriptor which lives in
- // the GOT. Prepare an address we can use to handle this.
- SDValue HiDesc = DAG.getTargetExternalSymbol(
- "_TLS_MODULE_BASE_", PtrVT, ARM64II::MO_TLS | ARM64II::MO_PAGE);
- SDValue LoDesc = DAG.getTargetExternalSymbol(
- "_TLS_MODULE_BASE_", PtrVT,
- ARM64II::MO_TLS | ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
-
- // First argument to the descriptor call is the address of the descriptor
- // itself.
- SDValue DescAddr = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, HiDesc);
- DescAddr = DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
-
- // The call needs a relocation too for linker relaxation. It doesn't make
- // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
- // the address.
- SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
- ARM64II::MO_TLS);
-
- // Now we can calculate the offset from TPIDR_EL0 to this module's
- // thread-local area.
- TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
-
- // Now use :dtprel_whatever: operations to calculate this variable's offset
- // in its thread-storage area.
- SDValue HiVar = DAG.getTargetGlobalAddress(
- GV, DL, MVT::i64, 0, ARM64II::MO_TLS | ARM64II::MO_G1);
- SDValue LoVar = DAG.getTargetGlobalAddress(
- GV, DL, MVT::i64, 0, ARM64II::MO_TLS | ARM64II::MO_G0 | ARM64II::MO_NC);
-
- SDValue DTPOff =
- SDValue(DAG.getMachineNode(ARM64::MOVZXi, DL, PtrVT, HiVar,
- DAG.getTargetConstant(16, MVT::i32)),
- 0);
- DTPOff = SDValue(DAG.getMachineNode(ARM64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
- DAG.getTargetConstant(0, MVT::i32)),
- 0);
-
- TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
- } else if (Model == TLSModel::GeneralDynamic) {
- // Accesses used in this sequence go via the TLS descriptor which lives in
- // the GOT. Prepare an address we can use to handle this.
- SDValue HiDesc = DAG.getTargetGlobalAddress(
- GV, DL, PtrVT, 0, ARM64II::MO_TLS | ARM64II::MO_PAGE);
- SDValue LoDesc = DAG.getTargetGlobalAddress(
- GV, DL, PtrVT, 0,
- ARM64II::MO_TLS | ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
-
- // First argument to the descriptor call is the address of the descriptor
- // itself.
- SDValue DescAddr = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, HiDesc);
- DescAddr = DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
-
- // The call needs a relocation too for linker relaxation. It doesn't make
- // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
- // the address.
- SDValue SymAddr =
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ARM64II::MO_TLS);
-
- // Finally we can make a call to calculate the offset from tpidr_el0.
- TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
- } else
- llvm_unreachable("Unsupported ELF TLS access model");
-
- return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
-}
-
-SDValue ARM64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
- SelectionDAG &DAG) const {
- if (Subtarget->isTargetDarwin())
- return LowerDarwinGlobalTLSAddress(Op, DAG);
- else if (Subtarget->isTargetELF())
- return LowerELFGlobalTLSAddress(Op, DAG);
-
- llvm_unreachable("Unexpected platform trying to use TLS");
-}
-SDValue ARM64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
- SDValue Chain = Op.getOperand(0);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
- SDValue LHS = Op.getOperand(2);
- SDValue RHS = Op.getOperand(3);
- SDValue Dest = Op.getOperand(4);
- SDLoc dl(Op);
-
- // Handle f128 first, since lowering it will result in comparing the return
- // value of a libcall against zero, which is just what the rest of LowerBR_CC
- // is expecting to deal with.
- if (LHS.getValueType() == MVT::f128) {
- softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
-
- // If softenSetCCOperands returned a scalar, we need to compare the result
- // against zero to select between true and false values.
- if (RHS.getNode() == 0) {
- RHS = DAG.getConstant(0, LHS.getValueType());
- CC = ISD::SETNE;
- }
- }
-
- // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
- // instruction.
- unsigned Opc = LHS.getOpcode();
- if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
- cast<ConstantSDNode>(RHS)->isOne() &&
- (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
- Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
- assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
- "Unexpected condition code.");
- // Only lower legal XALUO ops.
- if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
- return SDValue();
-
- // The actual operation with overflow check.
- ARM64CC::CondCode OFCC;
- SDValue Value, Overflow;
- std::tie(Value, Overflow) = getARM64XALUOOp(OFCC, LHS.getValue(0), DAG);
-
- if (CC == ISD::SETNE)
- OFCC = getInvertedCondCode(OFCC);
- SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
-
- return DAG.getNode(ARM64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
- CCVal, Overflow);
- }
-
- if (LHS.getValueType().isInteger()) {
- assert((LHS.getValueType() == RHS.getValueType()) &&
- (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
-
- // If the RHS of the comparison is zero, we can potentially fold this
- // to a specialized branch.
- const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
- if (RHSC && RHSC->getZExtValue() == 0) {
- if (CC == ISD::SETEQ) {
- // See if we can use a TBZ to fold in an AND as well.
- // TBZ has a smaller branch displacement than CBZ. If the offset is
- // out of bounds, a late MI-layer pass rewrites branches.
- // 403.gcc is an example that hits this case.
- if (LHS.getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(LHS.getOperand(1)) &&
- isPowerOf2_64(LHS.getConstantOperandVal(1))) {
- SDValue Test = LHS.getOperand(0);
- uint64_t Mask = LHS.getConstantOperandVal(1);
-
- // TBZ only operates on i64's, but the ext should be free.
- if (Test.getValueType() == MVT::i32)
- Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
-
- return DAG.getNode(ARM64ISD::TBZ, dl, MVT::Other, Chain, Test,
- DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
- }
-
- return DAG.getNode(ARM64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
- } else if (CC == ISD::SETNE) {
- // See if we can use a TBZ to fold in an AND as well.
- // TBZ has a smaller branch displacement than CBZ. If the offset is
- // out of bounds, a late MI-layer pass rewrites branches.
- // 403.gcc is an example that hits this case.
- if (LHS.getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(LHS.getOperand(1)) &&
- isPowerOf2_64(LHS.getConstantOperandVal(1))) {
- SDValue Test = LHS.getOperand(0);
- uint64_t Mask = LHS.getConstantOperandVal(1);
-
- // TBNZ only operates on i64's, but the ext should be free.
- if (Test.getValueType() == MVT::i32)
- Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
-
- return DAG.getNode(ARM64ISD::TBNZ, dl, MVT::Other, Chain, Test,
- DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
- }
-
- return DAG.getNode(ARM64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
- }
- }
-
- SDValue CCVal;
- SDValue Cmp = getARM64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
- return DAG.getNode(ARM64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
- Cmp);
- }
-
- assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
-
- // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally
- // clean. Some of them require two branches to implement.
- SDValue Cmp = emitComparison(LHS, RHS, dl, DAG);
- ARM64CC::CondCode CC1, CC2;
- changeFPCCToARM64CC(CC, CC1, CC2);
- SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
- SDValue BR1 =
- DAG.getNode(ARM64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
- if (CC2 != ARM64CC::AL) {
- SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
- return DAG.getNode(ARM64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
- Cmp);
- }
-
- return BR1;
-}
-
-SDValue ARM64TargetLowering::LowerFCOPYSIGN(SDValue Op,
- SelectionDAG &DAG) const {
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
-
- SDValue In1 = Op.getOperand(0);
- SDValue In2 = Op.getOperand(1);
- EVT SrcVT = In2.getValueType();
- if (SrcVT != VT) {
- if (SrcVT == MVT::f32 && VT == MVT::f64)
- In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
- else if (SrcVT == MVT::f64 && VT == MVT::f32)
- In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
- else
- // FIXME: Src type is different, bail out for now. Can VT really be a
- // vector type?
- return SDValue();
- }
-
- EVT VecVT;
- EVT EltVT;
- SDValue EltMask, VecVal1, VecVal2;
- if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
- EltVT = MVT::i32;
- VecVT = MVT::v4i32;
- EltMask = DAG.getConstant(0x80000000ULL, EltVT);
-
- if (!VT.isVector()) {
- VecVal1 = DAG.getTargetInsertSubreg(ARM64::ssub, DL, VecVT,
- DAG.getUNDEF(VecVT), In1);
- VecVal2 = DAG.getTargetInsertSubreg(ARM64::ssub, DL, VecVT,
- DAG.getUNDEF(VecVT), In2);
- } else {
- VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
- VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
- }
- } else if (VT == MVT::f64 || VT == MVT::v2f64) {
- EltVT = MVT::i64;
- VecVT = MVT::v2i64;
-
- // We want to materialize a mask with the the high bit set, but the AdvSIMD
- // immediate moves cannot materialize that in a single instruction for
- // 64-bit elements. Instead, materialize zero and then negate it.
- EltMask = DAG.getConstant(0, EltVT);
-
- if (!VT.isVector()) {
- VecVal1 = DAG.getTargetInsertSubreg(ARM64::dsub, DL, VecVT,
- DAG.getUNDEF(VecVT), In1);
- VecVal2 = DAG.getTargetInsertSubreg(ARM64::dsub, DL, VecVT,
- DAG.getUNDEF(VecVT), In2);
- } else {
- VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
- VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
- }
- } else {
- llvm_unreachable("Invalid type for copysign!");
- }
-
- std::vector<SDValue> BuildVectorOps;
- for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
- BuildVectorOps.push_back(EltMask);
-
- SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT,
- &BuildVectorOps[0], BuildVectorOps.size());
-
- // If we couldn't materialize the mask above, then the mask vector will be
- // the zero vector, and we need to negate it here.
- if (VT == MVT::f64 || VT == MVT::v2f64) {
- BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
- BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
- BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
- }
-
- SDValue Sel =
- DAG.getNode(ARM64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
-
- if (VT == MVT::f32)
- return DAG.getTargetExtractSubreg(ARM64::ssub, DL, VT, Sel);
- else if (VT == MVT::f64)
- return DAG.getTargetExtractSubreg(ARM64::dsub, DL, VT, Sel);
- else
- return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
-}
-
-SDValue ARM64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
- if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
- AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
- return SDValue();
-
- // While there is no integer popcount instruction, it can
- // be more efficiently lowered to the following sequence that uses
- // AdvSIMD registers/instructions as long as the copies to/from
- // the AdvSIMD registers are cheap.
- // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
- // CNT V0.8B, V0.8B // 8xbyte pop-counts
- // ADDV B0, V0.8B // sum 8xbyte pop-counts
- // UMOV X0, V0.B[0] // copy byte result back to integer reg
- SDValue Val = Op.getOperand(0);
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
-
- SDValue VecVal;
- if (VT == MVT::i32) {
- VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
- VecVal =
- DAG.getTargetInsertSubreg(ARM64::ssub, DL, MVT::v8i8, ZeroVec, VecVal);
- } else {
- VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
- }
-
- SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
- SDValue UaddLV = DAG.getNode(
- ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
- DAG.getConstant(Intrinsic::arm64_neon_uaddlv, MVT::i32), CtPop);
-
- if (VT == MVT::i64)
- UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
- return UaddLV;
-}
-
-SDValue ARM64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
-
- if (Op.getValueType().isVector())
- return LowerVSETCC(Op, DAG);
-
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SDLoc dl(Op);
-
- // We chose ZeroOrOneBooleanContents, so use zero and one.
- EVT VT = Op.getValueType();
- SDValue TVal = DAG.getConstant(1, VT);
- SDValue FVal = DAG.getConstant(0, VT);
-
- // Handle f128 first, since one possible outcome is a normal integer
- // comparison which gets picked up by the next if statement.
- if (LHS.getValueType() == MVT::f128) {
- softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
-
- // If softenSetCCOperands returned a scalar, use it.
- if (RHS.getNode() == 0) {
- assert(LHS.getValueType() == Op.getValueType() &&
- "Unexpected setcc expansion!");
- return LHS;
- }
- }
-
- if (LHS.getValueType().isInteger()) {
- SDValue CCVal;
- SDValue Cmp =
- getARM64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
-
- // Note that we inverted the condition above, so we reverse the order of
- // the true and false operands here. This will allow the setcc to be
- // matched to a single CSINC instruction.
- return DAG.getNode(ARM64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
- }
-
- // Now we know we're dealing with FP values.
- assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
-
- // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
- // and do the comparison.
- SDValue Cmp = emitComparison(LHS, RHS, dl, DAG);
-
- ARM64CC::CondCode CC1, CC2;
- changeFPCCToARM64CC(CC, CC1, CC2);
- if (CC2 == ARM64CC::AL) {
- changeFPCCToARM64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
- SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
-
- // Note that we inverted the condition above, so we reverse the order of
- // the true and false operands here. This will allow the setcc to be
- // matched to a single CSINC instruction.
- return DAG.getNode(ARM64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
- } else {
- // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally
- // clean. Some of them require two CSELs to implement. As is in this case,
- // we emit the first CSEL and then emit a second using the output of the
- // first as the RHS. We're effectively OR'ing the two CC's together.
-
- // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
- SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
- SDValue CS1 = DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
-
- SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
- return DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
- }
-}
-
-/// A SELECT_CC operation is really some kind of max or min if both values being
-/// compared are, in some sense, equal to the results in either case. However,
-/// it is permissible to compare f32 values and produce directly extended f64
-/// values.
-///
-/// Extending the comparison operands would also be allowed, but is less likely
-/// to happen in practice since their use is right here. Note that truncate
-/// operations would *not* be semantically equivalent.
-static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
- if (Cmp == Result)
- return true;
-
- ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
- ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
- if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
- Result.getValueType() == MVT::f64) {
- bool Lossy;
- APFloat CmpVal = CCmp->getValueAPF();
- CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
- return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
- }
-
- return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
-}
-
-SDValue ARM64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
- SDValue CC = Op->getOperand(0);
- SDValue TVal = Op->getOperand(1);
- SDValue FVal = Op->getOperand(2);
- SDLoc DL(Op);
-
- unsigned Opc = CC.getOpcode();
- // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
- // instruction.
- if (CC.getResNo() == 1 &&
- (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
- Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
- // Only lower legal XALUO ops.
- if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
- return SDValue();
-
- ARM64CC::CondCode OFCC;
- SDValue Value, Overflow;
- std::tie(Value, Overflow) = getARM64XALUOOp(OFCC, CC.getValue(0), DAG);
- SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
-
- return DAG.getNode(ARM64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, CCVal,
- Overflow);
- }
-
- if (CC.getOpcode() == ISD::SETCC)
- return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
- cast<CondCodeSDNode>(CC.getOperand(2))->get());
- else
- return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
- FVal, ISD::SETNE);
-}
-
-SDValue ARM64TargetLowering::LowerSELECT_CC(SDValue Op,
- SelectionDAG &DAG) const {
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- SDValue TVal = Op.getOperand(2);
- SDValue FVal = Op.getOperand(3);
- SDLoc dl(Op);
-
- // Handle f128 first, because it will result in a comparison of some RTLIB
- // call result against zero.
- if (LHS.getValueType() == MVT::f128) {
- softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
-
- // If softenSetCCOperands returned a scalar, we need to compare the result
- // against zero to select between true and false values.
- if (RHS.getNode() == 0) {
- RHS = DAG.getConstant(0, LHS.getValueType());
- CC = ISD::SETNE;
- }
- }
-
- // Handle integers first.
- if (LHS.getValueType().isInteger()) {
- assert((LHS.getValueType() == RHS.getValueType()) &&
- (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
-
- unsigned Opcode = ARM64ISD::CSEL;
-
- // If both the TVal and the FVal are constants, see if we can swap them in
- // order to for a CSINV or CSINC out of them.
- ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
- ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
-
- if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
- std::swap(TVal, FVal);
- std::swap(CTVal, CFVal);
- CC = ISD::getSetCCInverse(CC, true);
- } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
- std::swap(TVal, FVal);
- std::swap(CTVal, CFVal);
- CC = ISD::getSetCCInverse(CC, true);
- } else if (TVal.getOpcode() == ISD::XOR) {
- // If TVal is a NOT we want to swap TVal and FVal so that we can match
- // with a CSINV rather than a CSEL.
- ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
-
- if (CVal && CVal->isAllOnesValue()) {
- std::swap(TVal, FVal);
- std::swap(CTVal, CFVal);
- CC = ISD::getSetCCInverse(CC, true);
- }
- } else if (TVal.getOpcode() == ISD::SUB) {
- // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
- // that we can match with a CSNEG rather than a CSEL.
- ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
-
- if (CVal && CVal->isNullValue()) {
- std::swap(TVal, FVal);
- std::swap(CTVal, CFVal);
- CC = ISD::getSetCCInverse(CC, true);
- }
- } else if (CTVal && CFVal) {
- const int64_t TrueVal = CTVal->getSExtValue();
- const int64_t FalseVal = CFVal->getSExtValue();
- bool Swap = false;
-
- // If both TVal and FVal are constants, see if FVal is the
- // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
- // instead of a CSEL in that case.
- if (TrueVal == ~FalseVal) {
- Opcode = ARM64ISD::CSINV;
- } else if (TrueVal == -FalseVal) {
- Opcode = ARM64ISD::CSNEG;
- } else if (TVal.getValueType() == MVT::i32) {
- // If our operands are only 32-bit wide, make sure we use 32-bit
- // arithmetic for the check whether we can use CSINC. This ensures that
- // the addition in the check will wrap around properly in case there is
- // an overflow (which would not be the case if we do the check with
- // 64-bit arithmetic).
- const uint32_t TrueVal32 = CTVal->getZExtValue();
- const uint32_t FalseVal32 = CFVal->getZExtValue();
-
- if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
- Opcode = ARM64ISD::CSINC;
-
- if (TrueVal32 > FalseVal32) {
- Swap = true;
- }
- }
- // 64-bit check whether we can use CSINC.
- } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
- Opcode = ARM64ISD::CSINC;
-
- if (TrueVal > FalseVal) {
- Swap = true;
- }
- }
-
- // Swap TVal and FVal if necessary.
- if (Swap) {
- std::swap(TVal, FVal);
- std::swap(CTVal, CFVal);
- CC = ISD::getSetCCInverse(CC, true);
- }
-
- if (Opcode != ARM64ISD::CSEL) {
- // Drop FVal since we can get its value by simply inverting/negating
- // TVal.
- FVal = TVal;
- }
- }
-
- SDValue CCVal;
- SDValue Cmp = getARM64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
-
- EVT VT = Op.getValueType();
- return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
- }
-
- // Now we know we're dealing with FP values.
- assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
- assert(LHS.getValueType() == RHS.getValueType());
- EVT VT = Op.getValueType();
-
- // Try to match this select into a max/min operation, which have dedicated
- // opcode in the instruction set.
- // NOTE: This is not correct in the presence of NaNs, so we only enable this
- // in no-NaNs mode.
- if (getTargetMachine().Options.NoNaNsFPMath) {
- if (selectCCOpsAreFMaxCompatible(LHS, FVal) &&
- selectCCOpsAreFMaxCompatible(RHS, TVal)) {
- CC = ISD::getSetCCSwappedOperands(CC);
- std::swap(TVal, FVal);
- }
-
- if (selectCCOpsAreFMaxCompatible(LHS, TVal) &&
- selectCCOpsAreFMaxCompatible(RHS, FVal)) {
- switch (CC) {
- default:
- break;
- case ISD::SETGT:
- case ISD::SETGE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETOGT:
- case ISD::SETOGE:
- return DAG.getNode(ARM64ISD::FMAX, dl, VT, TVal, FVal);
- break;
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- return DAG.getNode(ARM64ISD::FMIN, dl, VT, TVal, FVal);
- break;
- }
- }
- }
-
- // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
- // and do the comparison.
- SDValue Cmp = emitComparison(LHS, RHS, dl, DAG);
-
- // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally
- // clean. Some of them require two CSELs to implement.
- ARM64CC::CondCode CC1, CC2;
- changeFPCCToARM64CC(CC, CC1, CC2);
- SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
- SDValue CS1 = DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
-
- // If we need a second CSEL, emit it, using the output of the first as the
- // RHS. We're effectively OR'ing the two CC's together.
- if (CC2 != ARM64CC::AL) {
- SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
- return DAG.getNode(ARM64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
- }
-
- // Otherwise, return the output of the first CSEL.
- return CS1;
-}
-
-SDValue ARM64TargetLowering::LowerJumpTable(SDValue Op,
- SelectionDAG &DAG) const {
- // Jump table entries as PC relative offsets. No additional tweaking
- // is necessary here. Just get the address of the jump table.
- JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
- EVT PtrVT = getPointerTy();
- SDLoc DL(Op);
-
- SDValue Hi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, ARM64II::MO_PAGE);
- SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
- ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
- SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi);
- return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
-}
-
-SDValue ARM64TargetLowering::LowerConstantPool(SDValue Op,
- SelectionDAG &DAG) const {
- ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
- EVT PtrVT = getPointerTy();
- SDLoc DL(Op);
-
- if (getTargetMachine().getCodeModel() == CodeModel::Large) {
- // Use the GOT for the large code model on iOS.
- if (Subtarget->isTargetMachO()) {
- SDValue GotAddr = DAG.getTargetConstantPool(
- CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
- ARM64II::MO_GOT);
- return DAG.getNode(ARM64ISD::LOADgot, DL, PtrVT, GotAddr);
- }
-
- const unsigned char MO_NC = ARM64II::MO_NC;
- return DAG.getNode(
- ARM64ISD::WrapperLarge, DL, PtrVT,
- DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
- CP->getOffset(), ARM64II::MO_G3),
- DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
- CP->getOffset(), ARM64II::MO_G2 | MO_NC),
- DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
- CP->getOffset(), ARM64II::MO_G1 | MO_NC),
- DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
- CP->getOffset(), ARM64II::MO_G0 | MO_NC));
- } else {
- // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
- // ELF, the only valid one on Darwin.
- SDValue Hi =
- DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
- CP->getOffset(), ARM64II::MO_PAGE);
- SDValue Lo = DAG.getTargetConstantPool(
- CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
- ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
-
- SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi);
- return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
- }
-}
-
-SDValue ARM64TargetLowering::LowerBlockAddress(SDValue Op,
- SelectionDAG &DAG) const {
- const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
- EVT PtrVT = getPointerTy();
- SDLoc DL(Op);
- if (getTargetMachine().getCodeModel() == CodeModel::Large &&
- !Subtarget->isTargetMachO()) {
- const unsigned char MO_NC = ARM64II::MO_NC;
- return DAG.getNode(
- ARM64ISD::WrapperLarge, DL, PtrVT,
- DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G3),
- DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G2 | MO_NC),
- DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G1 | MO_NC),
- DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_G0 | MO_NC));
- } else {
- SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_PAGE);
- SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, ARM64II::MO_PAGEOFF |
- ARM64II::MO_NC);
- SDValue ADRP = DAG.getNode(ARM64ISD::ADRP, DL, PtrVT, Hi);
- return DAG.getNode(ARM64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
- }
-}
-
-SDValue ARM64TargetLowering::LowerDarwin_VASTART(SDValue Op,
- SelectionDAG &DAG) const {
- ARM64FunctionInfo *FuncInfo =
- DAG.getMachineFunction().getInfo<ARM64FunctionInfo>();
-
- SDLoc DL(Op);
- SDValue FR =
- DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
- const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
- MachinePointerInfo(SV), false, false, 0);
-}
-
-SDValue ARM64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
- SelectionDAG &DAG) const {
- // The layout of the va_list struct is specified in the AArch64 Procedure Call
- // Standard, section B.3.
- MachineFunction &MF = DAG.getMachineFunction();
- ARM64FunctionInfo *FuncInfo = MF.getInfo<ARM64FunctionInfo>();
- SDLoc DL(Op);
-
- SDValue Chain = Op.getOperand(0);
- SDValue VAList = Op.getOperand(1);
- const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- SmallVector<SDValue, 4> MemOps;
-
- // void *__stack at offset 0
- SDValue Stack =
- DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
- MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
- MachinePointerInfo(SV), false, false, 8));
-
- // void *__gr_top at offset 8
- int GPRSize = FuncInfo->getVarArgsGPRSize();
- if (GPRSize > 0) {
- SDValue GRTop, GRTopAddr;
-
- GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(8, getPointerTy()));
-
- GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
- GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
- DAG.getConstant(GPRSize, getPointerTy()));
-
- MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
- MachinePointerInfo(SV, 8), false, false, 8));
- }
-
- // void *__vr_top at offset 16
- int FPRSize = FuncInfo->getVarArgsFPRSize();
- if (FPRSize > 0) {
- SDValue VRTop, VRTopAddr;
- VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(16, getPointerTy()));
-
- VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
- VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
- DAG.getConstant(FPRSize, getPointerTy()));
-
- MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
- MachinePointerInfo(SV, 16), false, false, 8));
- }
-
- // int __gr_offs at offset 24
- SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(24, getPointerTy()));
- MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
- GROffsAddr, MachinePointerInfo(SV, 24), false,
- false, 4));
-
- // int __vr_offs at offset 28
- SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(28, getPointerTy()));
- MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
- VROffsAddr, MachinePointerInfo(SV, 28), false,
- false, 4));
-
- return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
- MemOps.size());
-}
-
-SDValue ARM64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
- return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
- : LowerAAPCS_VASTART(Op, DAG);
-}
-
-SDValue ARM64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
- // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
- // pointer.
- unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
- const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
- const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
-
- return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
- Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
- 8, false, false, MachinePointerInfo(DestSV),
- MachinePointerInfo(SrcSV));
-}
-
-SDValue ARM64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
- assert(Subtarget->isTargetDarwin() &&
- "automatic va_arg instruction only works on Darwin");
-
- const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- SDValue Chain = Op.getOperand(0);
- SDValue Addr = Op.getOperand(1);
- unsigned Align = Op.getConstantOperandVal(3);
-
- SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
- MachinePointerInfo(V), false, false, false, 0);
- Chain = VAList.getValue(1);
-
- if (Align > 8) {
- assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
- VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(Align - 1, getPointerTy()));
- VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
- DAG.getConstant(-(int64_t)Align, getPointerTy()));
- }
-
- Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
- uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
-
- // Scalar integer and FP values smaller than 64 bits are implicitly extended
- // up to 64 bits. At the very least, we have to increase the striding of the
- // vaargs list to match this, and for FP values we need to introduce
- // FP_ROUND nodes as well.
- if (VT.isInteger() && !VT.isVector())
- ArgSize = 8;
- bool NeedFPTrunc = false;
- if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
- ArgSize = 8;
- NeedFPTrunc = true;
- }
-
- // Increment the pointer, VAList, to the next vaarg
- SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
- DAG.getConstant(ArgSize, getPointerTy()));
- // Store the incremented VAList to the legalized pointer
- SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
- false, false, 0);
-
- // Load the actual argument out of the pointer VAList
- if (NeedFPTrunc) {
- // Load the value as an f64.
- SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
- MachinePointerInfo(), false, false, false, 0);
- // Round the value down to an f32.
- SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
- DAG.getIntPtrConstant(1));
- SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
- // Merge the rounded value with the chain output of the load.
- return DAG.getMergeValues(Ops, 2, DL);
- }
-
- return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
- false, false, 0);
-}
-
-SDValue ARM64TargetLowering::LowerFRAMEADDR(SDValue Op,
- SelectionDAG &DAG) const {
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- MFI->setFrameAddressIsTaken(true);
-
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, ARM64::FP, VT);
- while (Depth--)
- FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
- MachinePointerInfo(), false, false, false, 0);
- return FrameAddr;
-}
-
-SDValue ARM64TargetLowering::LowerRETURNADDR(SDValue Op,
- SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- MFI->setReturnAddressIsTaken(true);
-
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- if (Depth) {
- SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
- SDValue Offset = DAG.getConstant(8, getPointerTy());
- return DAG.getLoad(VT, DL, DAG.getEntryNode(),
- DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
- MachinePointerInfo(), false, false, false, 0);
- }
-
- // Return LR, which contains the return address. Mark it an implicit live-in.
- unsigned Reg = MF.addLiveIn(ARM64::LR, &ARM64::GPR64RegClass);
- return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
-}
-
-/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
-/// i64 values and take a 2 x i64 value to shift plus a shift amount.
-SDValue ARM64TargetLowering::LowerShiftRightParts(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getNumOperands() == 3 && "Not a double-shift!");
- EVT VT = Op.getValueType();
- unsigned VTBits = VT.getSizeInBits();
- SDLoc dl(Op);
- SDValue ShOpLo = Op.getOperand(0);
- SDValue ShOpHi = Op.getOperand(1);
- SDValue ShAmt = Op.getOperand(2);
- SDValue ARMcc;
- unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
-
- assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
-
- SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
- DAG.getConstant(VTBits, MVT::i64), ShAmt);
- SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
- SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
- DAG.getConstant(VTBits, MVT::i64));
- SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
-
- SDValue Cmp =
- emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), dl, DAG);
- SDValue CCVal = DAG.getConstant(ARM64CC::GE, MVT::i32);
-
- SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
- SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
- SDValue Lo =
- DAG.getNode(ARM64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
-
- // ARM64 shifts larger than the register width are wrapped rather than
- // clamped, so we can't just emit "hi >> x".
- SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
- SDValue TrueValHi = Opc == ISD::SRA
- ? DAG.getNode(Opc, dl, VT, ShOpHi,
- DAG.getConstant(VTBits - 1, MVT::i64))
- : DAG.getConstant(0, VT);
- SDValue Hi =
- DAG.getNode(ARM64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
-
- SDValue Ops[2] = { Lo, Hi };
- return DAG.getMergeValues(Ops, 2, dl);
-}
-
-/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
-/// i64 values and take a 2 x i64 value to shift plus a shift amount.
-SDValue ARM64TargetLowering::LowerShiftLeftParts(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getNumOperands() == 3 && "Not a double-shift!");
- EVT VT = Op.getValueType();
- unsigned VTBits = VT.getSizeInBits();
- SDLoc dl(Op);
- SDValue ShOpLo = Op.getOperand(0);
- SDValue ShOpHi = Op.getOperand(1);
- SDValue ShAmt = Op.getOperand(2);
- SDValue ARMcc;
-
- assert(Op.getOpcode() == ISD::SHL_PARTS);
- SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
- DAG.getConstant(VTBits, MVT::i64), ShAmt);
- SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
- SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
- DAG.getConstant(VTBits, MVT::i64));
- SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
- SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
-
- SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
-
- SDValue Cmp =
- emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), dl, DAG);
- SDValue CCVal = DAG.getConstant(ARM64CC::GE, MVT::i32);
- SDValue Hi = DAG.getNode(ARM64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
-
- // ARM64 shifts of larger than register sizes are wrapped rather than clamped,
- // so we can't just emit "lo << a" if a is too big.
- SDValue TrueValLo = DAG.getConstant(0, VT);
- SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
- SDValue Lo =
- DAG.getNode(ARM64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
-
- SDValue Ops[2] = { Lo, Hi };
- return DAG.getMergeValues(Ops, 2, dl);
-}
-
-bool
-ARM64TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- // The ARM64 target doesn't support folding offsets into global addresses.
- return false;
-}
-
-bool ARM64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
- // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
- // FIXME: We should be able to handle f128 as well with a clever lowering.
- if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
- return true;
-
- if (VT == MVT::f64)
- return ARM64_AM::getFP64Imm(Imm) != -1;
- else if (VT == MVT::f32)
- return ARM64_AM::getFP32Imm(Imm) != -1;
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// ARM64 Optimization Hooks
-//===----------------------------------------------------------------------===//
-
-//===----------------------------------------------------------------------===//
-// ARM64 Inline Assembly Support
-//===----------------------------------------------------------------------===//
-
-// Table of Constraints
-// TODO: This is the current set of constraints supported by ARM for the
-// compiler, not all of them may make sense, e.g. S may be difficult to support.
-//
-// r - A general register
-// w - An FP/SIMD register of some size in the range v0-v31
-// x - An FP/SIMD register of some size in the range v0-v15
-// I - Constant that can be used with an ADD instruction
-// J - Constant that can be used with a SUB instruction
-// K - Constant that can be used with a 32-bit logical instruction
-// L - Constant that can be used with a 64-bit logical instruction
-// M - Constant that can be used as a 32-bit MOV immediate
-// N - Constant that can be used as a 64-bit MOV immediate
-// Q - A memory reference with base register and no offset
-// S - A symbolic address
-// Y - Floating point constant zero
-// Z - Integer constant zero
-//
-// Note that general register operands will be output using their 64-bit x
-// register name, whatever the size of the variable, unless the asm operand
-// is prefixed by the %w modifier. Floating-point and SIMD register operands
-// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
-// %q modifier.
-
-/// getConstraintType - Given a constraint letter, return the type of
-/// constraint it is for this target.
-ARM64TargetLowering::ConstraintType
-ARM64TargetLowering::getConstraintType(const std::string &Constraint) const {
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- default:
- break;
- case 'z':
- return C_Other;
- case 'x':
- case 'w':
- return C_RegisterClass;
- // An address with a single base register. Due to the way we
- // currently handle addresses it is the same as 'r'.
- case 'Q':
- return C_Memory;
- }
- }
- return TargetLowering::getConstraintType(Constraint);
-}
-
-/// Examine constraint type and operand type and determine a weight value.
-/// This object must already have been set up with the operand type
-/// and the current alternative constraint selected.
-TargetLowering::ConstraintWeight
-ARM64TargetLowering::getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const {
- ConstraintWeight weight = CW_Invalid;
- Value *CallOperandVal = info.CallOperandVal;
- // If we don't have a value, we can't do a match,
- // but allow it at the lowest weight.
- if (CallOperandVal == NULL)
- return CW_Default;
- Type *type = CallOperandVal->getType();
- // Look at the constraint type.
- switch (*constraint) {
- default:
- weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
- break;
- case 'x':
- case 'w':
- if (type->isFloatingPointTy() || type->isVectorTy())
- weight = CW_Register;
- break;
- case 'z':
- weight = CW_Constant;
- break;
- }
- return weight;
-}
-
-std::pair<unsigned, const TargetRegisterClass *>
-ARM64TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- case 'r':
- if (VT.getSizeInBits() == 64)
- return std::make_pair(0U, &ARM64::GPR64commonRegClass);
- return std::make_pair(0U, &ARM64::GPR32commonRegClass);
- case 'w':
- if (VT == MVT::f32)
- return std::make_pair(0U, &ARM64::FPR32RegClass);
- if (VT.getSizeInBits() == 64)
- return std::make_pair(0U, &ARM64::FPR64RegClass);
- if (VT.getSizeInBits() == 128)
- return std::make_pair(0U, &ARM64::FPR128RegClass);
- break;
- // The instructions that this constraint is designed for can
- // only take 128-bit registers so just use that regclass.
- case 'x':
- if (VT.getSizeInBits() == 128)
- return std::make_pair(0U, &ARM64::FPR128_loRegClass);
- break;
- }
- }
- if (StringRef("{cc}").equals_lower(Constraint))
- return std::make_pair(unsigned(ARM64::CPSR), &ARM64::CCRRegClass);
-
- // Use the default implementation in TargetLowering to convert the register
- // constraint into a member of a register class.
- std::pair<unsigned, const TargetRegisterClass *> Res;
- Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
-
- // Not found as a standard register?
- if (Res.second == 0) {
- unsigned Size = Constraint.size();
- if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
- tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
- const std::string Reg =
- std::string(&Constraint[2], &Constraint[Size - 1]);
- int RegNo = atoi(Reg.c_str());
- if (RegNo >= 0 && RegNo <= 31) {
- // v0 - v31 are aliases of q0 - q31.
- // By default we'll emit v0-v31 for this unless there's a modifier where
- // we'll emit the correct register as well.
- Res.first = ARM64::FPR128RegClass.getRegister(RegNo);
- Res.second = &ARM64::FPR128RegClass;
- }
- }
- }
-
- return Res;
-}
-
-/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
-/// vector. If it is invalid, don't add anything to Ops.
-void ARM64TargetLowering::LowerAsmOperandForConstraint(
- SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
- SDValue Result(0, 0);
-
- // Currently only support length 1 constraints.
- if (Constraint.length() != 1)
- return;
-
- char ConstraintLetter = Constraint[0];
- switch (ConstraintLetter) {
- default:
- break;
-
- // This set of constraints deal with valid constants for various instructions.
- // Validate and return a target constant for them if we can.
- case 'z': {
- // 'z' maps to xzr or wzr so it needs an input of 0.
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- if (!C || C->getZExtValue() != 0)
- return;
-
- if (Op.getValueType() == MVT::i64)
- Result = DAG.getRegister(ARM64::XZR, MVT::i64);
- else
- Result = DAG.getRegister(ARM64::WZR, MVT::i32);
- break;
- }
-
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- if (!C)
- return;
-
- // Grab the value and do some validation.
- uint64_t CVal = C->getZExtValue();
- switch (ConstraintLetter) {
- // The I constraint applies only to simple ADD or SUB immediate operands:
- // i.e. 0 to 4095 with optional shift by 12
- // The J constraint applies only to ADD or SUB immediates that would be
- // valid when negated, i.e. if [an add pattern] were to be output as a SUB
- // instruction [or vice versa], in other words -1 to -4095 with optional
- // left shift by 12.
- case 'I':
- if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
- break;
- return;
- case 'J': {
- uint64_t NVal = -C->getSExtValue();
- if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
- break;
- return;
- }
- // The K and L constraints apply *only* to logical immediates, including
- // what used to be the MOVI alias for ORR (though the MOVI alias has now
- // been removed and MOV should be used). So these constraints have to
- // distinguish between bit patterns that are valid 32-bit or 64-bit
- // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
- // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
- // versa.
- case 'K':
- if (ARM64_AM::isLogicalImmediate(CVal, 32))
- break;
- return;
- case 'L':
- if (ARM64_AM::isLogicalImmediate(CVal, 64))
- break;
- return;
- // The M and N constraints are a superset of K and L respectively, for use
- // with the MOV (immediate) alias. As well as the logical immediates they
- // also match 32 or 64-bit immediates that can be loaded either using a
- // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
- // (M) or 64-bit 0x1234000000000000 (N) etc.
- // As a note some of this code is liberally stolen from the asm parser.
- case 'M': {
- if (!isUInt<32>(CVal))
- return;
- if (ARM64_AM::isLogicalImmediate(CVal, 32))
- break;
- if ((CVal & 0xFFFF) == CVal)
- break;
- if ((CVal & 0xFFFF0000ULL) == CVal)
- break;
- uint64_t NCVal = ~(uint32_t)CVal;
- if ((NCVal & 0xFFFFULL) == NCVal)
- break;
- if ((NCVal & 0xFFFF0000ULL) == NCVal)
- break;
- return;
- }
- case 'N': {
- if (ARM64_AM::isLogicalImmediate(CVal, 64))
- break;
- if ((CVal & 0xFFFFULL) == CVal)
- break;
- if ((CVal & 0xFFFF0000ULL) == CVal)
- break;
- if ((CVal & 0xFFFF00000000ULL) == CVal)
- break;
- if ((CVal & 0xFFFF000000000000ULL) == CVal)
- break;
- uint64_t NCVal = ~CVal;
- if ((NCVal & 0xFFFFULL) == NCVal)
- break;
- if ((NCVal & 0xFFFF0000ULL) == NCVal)
- break;
- if ((NCVal & 0xFFFF00000000ULL) == NCVal)
- break;
- if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
- break;
- return;
- }
- default:
- return;
- }
-
- // All assembler immediates are 64-bit integers.
- Result = DAG.getTargetConstant(CVal, MVT::i64);
- break;
- }
-
- if (Result.getNode()) {
- Ops.push_back(Result);
- return;
- }
-
- return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
-}
-
-//===----------------------------------------------------------------------===//
-// ARM64 Advanced SIMD Support
-//===----------------------------------------------------------------------===//
-
-/// WidenVector - Given a value in the V64 register class, produce the
-/// equivalent value in the V128 register class.
-static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
- EVT VT = V64Reg.getValueType();
- unsigned NarrowSize = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType().getSimpleVT();
- MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
- SDLoc DL(V64Reg);
-
- return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
- V64Reg, DAG.getConstant(0, MVT::i32));
-}
-
-/// getExtFactor - Determine the adjustment factor for the position when
-/// generating an "extract from vector registers" instruction.
-static unsigned getExtFactor(SDValue &V) {
- EVT EltType = V.getValueType().getVectorElementType();
- return EltType.getSizeInBits() / 8;
-}
-
-/// NarrowVector - Given a value in the V128 register class, produce the
-/// equivalent value in the V64 register class.
-static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
- EVT VT = V128Reg.getValueType();
- unsigned WideSize = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType().getSimpleVT();
- MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
- SDLoc DL(V128Reg);
-
- return DAG.getTargetExtractSubreg(ARM64::dsub, DL, NarrowTy, V128Reg);
-}
-
-// Gather data to see if the operation can be modelled as a
-// shuffle in combination with VEXTs.
-SDValue ARM64TargetLowering::ReconstructShuffle(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
- unsigned NumElts = VT.getVectorNumElements();
-
- SmallVector<SDValue, 2> SourceVecs;
- SmallVector<unsigned, 2> MinElts;
- SmallVector<unsigned, 2> MaxElts;
-
- for (unsigned i = 0; i < NumElts; ++i) {
- SDValue V = Op.getOperand(i);
- if (V.getOpcode() == ISD::UNDEF)
- continue;
- else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
- // A shuffle can only come from building a vector from various
- // elements of other vectors.
- return SDValue();
- }
-
- // Record this extraction against the appropriate vector if possible...
- SDValue SourceVec = V.getOperand(0);
- unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
- bool FoundSource = false;
- for (unsigned j = 0; j < SourceVecs.size(); ++j) {
- if (SourceVecs[j] == SourceVec) {
- if (MinElts[j] > EltNo)
- MinElts[j] = EltNo;
- if (MaxElts[j] < EltNo)
- MaxElts[j] = EltNo;
- FoundSource = true;
- break;
- }
- }
-
- // Or record a new source if not...
- if (!FoundSource) {
- SourceVecs.push_back(SourceVec);
- MinElts.push_back(EltNo);
- MaxElts.push_back(EltNo);
- }
- }
-
- // Currently only do something sane when at most two source vectors
- // involved.
- if (SourceVecs.size() > 2)
- return SDValue();
-
- SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
- int VEXTOffsets[2] = { 0, 0 };
-
- // This loop extracts the usage patterns of the source vectors
- // and prepares appropriate SDValues for a shuffle if possible.
- for (unsigned i = 0; i < SourceVecs.size(); ++i) {
- if (SourceVecs[i].getValueType() == VT) {
- // No VEXT necessary
- ShuffleSrcs[i] = SourceVecs[i];
- VEXTOffsets[i] = 0;
- continue;
- } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
- // It probably isn't worth padding out a smaller vector just to
- // break it down again in a shuffle.
- return SDValue();
- }
-
- // Don't attempt to extract subvectors from BUILD_VECTOR sources
- // that expand or trunc the original value.
- // TODO: We can try to bitcast and ANY_EXTEND the result but
- // we need to consider the cost of vector ANY_EXTEND, and the
- // legality of all the types.
- if (SourceVecs[i].getValueType().getVectorElementType() !=
- VT.getVectorElementType())
- return SDValue();
-
- // Since only 64-bit and 128-bit vectors are legal on ARM and
- // we've eliminated the other cases...
- assert(SourceVecs[i].getValueType().getVectorNumElements() == 2 * NumElts &&
- "unexpected vector sizes in ReconstructShuffle");
-
- if (MaxElts[i] - MinElts[i] >= NumElts) {
- // Span too large for a VEXT to cope
- return SDValue();
- }
-
- if (MinElts[i] >= NumElts) {
- // The extraction can just take the second half
- VEXTOffsets[i] = NumElts;
- ShuffleSrcs[i] =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
- DAG.getIntPtrConstant(NumElts));
- } else if (MaxElts[i] < NumElts) {
- // The extraction can just take the first half
- VEXTOffsets[i] = 0;
- ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
- SourceVecs[i], DAG.getIntPtrConstant(0));
- } else {
- // An actual VEXT is needed
- VEXTOffsets[i] = MinElts[i];
- SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
- SourceVecs[i], DAG.getIntPtrConstant(0));
- SDValue VEXTSrc2 =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
- DAG.getIntPtrConstant(NumElts));
- unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
- ShuffleSrcs[i] = DAG.getNode(ARM64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
- DAG.getConstant(Imm, MVT::i32));
- }
- }
-
- SmallVector<int, 8> Mask;
-
- for (unsigned i = 0; i < NumElts; ++i) {
- SDValue Entry = Op.getOperand(i);
- if (Entry.getOpcode() == ISD::UNDEF) {
- Mask.push_back(-1);
- continue;
- }
-
- SDValue ExtractVec = Entry.getOperand(0);
- int ExtractElt =
- cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
- if (ExtractVec == SourceVecs[0]) {
- Mask.push_back(ExtractElt - VEXTOffsets[0]);
- } else {
- Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
- }
- }
-
- // Final check before we try to produce nonsense...
- if (isShuffleMaskLegal(Mask, VT))
- return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
- &Mask[0]);
-
- return SDValue();
-}
-
-// check if an EXT instruction can handle the shuffle mask when the
-// vector sources of the shuffle are the same.
-static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
- unsigned NumElts = VT.getVectorNumElements();
-
- // Assume that the first shuffle index is not UNDEF. Fail if it is.
- if (M[0] < 0)
- return false;
-
- Imm = M[0];
-
- // If this is a VEXT shuffle, the immediate value is the index of the first
- // element. The other shuffle indices must be the successive elements after
- // the first one.
- unsigned ExpectedElt = Imm;
- for (unsigned i = 1; i < NumElts; ++i) {
- // Increment the expected index. If it wraps around, just follow it
- // back to index zero and keep going.
- ++ExpectedElt;
- if (ExpectedElt == NumElts)
- ExpectedElt = 0;
-
- if (M[i] < 0)
- continue; // ignore UNDEF indices
- if (ExpectedElt != static_cast<unsigned>(M[i]))
- return false;
- }
-
- return true;
-}
-
-// check if an EXT instruction can handle the shuffle mask when the
-// vector sources of the shuffle are different.
-static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
- unsigned &Imm) {
- unsigned NumElts = VT.getVectorNumElements();
- ReverseEXT = false;
-
- // Assume that the first shuffle index is not UNDEF. Fail if it is.
- if (M[0] < 0)
- return false;
-
- Imm = M[0];
-
- // If this is a VEXT shuffle, the immediate value is the index of the first
- // element. The other shuffle indices must be the successive elements after
- // the first one.
- unsigned ExpectedElt = Imm;
- for (unsigned i = 1; i < NumElts; ++i) {
- // Increment the expected index. If it wraps around, it may still be
- // a VEXT but the source vectors must be swapped.
- ExpectedElt += 1;
- if (ExpectedElt == NumElts * 2) {
- ExpectedElt = 0;
- ReverseEXT = true;
- }
-
- if (M[i] < 0)
- continue; // ignore UNDEF indices
- if (ExpectedElt != static_cast<unsigned>(M[i]))
- return false;
- }
-
- // Adjust the index value if the source operands will be swapped.
- if (ReverseEXT)
- Imm -= NumElts;
-
- return true;
-}
-
-/// isREVMask - Check if a vector shuffle corresponds to a REV
-/// instruction with the specified blocksize. (The order of the elements
-/// within each block of the vector is reversed.)
-static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
- assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
- "Only possible block sizes for REV are: 16, 32, 64");
-
- unsigned EltSz = VT.getVectorElementType().getSizeInBits();
- if (EltSz == 64)
- return false;
-
- unsigned NumElts = VT.getVectorNumElements();
- unsigned BlockElts = M[0] + 1;
- // If the first shuffle index is UNDEF, be optimistic.
- if (M[0] < 0)
- BlockElts = BlockSize / EltSz;
-
- if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
- return false;
-
- for (unsigned i = 0; i < NumElts; ++i) {
- if (M[i] < 0)
- continue; // ignore UNDEF indices
- if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
- return false;
- }
-
- return true;
-}
-
-static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
- unsigned NumElts = VT.getVectorNumElements();
- WhichResult = (M[0] == 0 ? 0 : 1);
- unsigned Idx = WhichResult * NumElts / 2;
- for (unsigned i = 0; i != NumElts; i += 2) {
- if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
- (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
- return false;
- Idx += 1;
- }
-
- return true;
-}
-
-static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
- unsigned NumElts = VT.getVectorNumElements();
- WhichResult = (M[0] == 0 ? 0 : 1);
- for (unsigned i = 0; i != NumElts; ++i) {
- if (M[i] < 0)
- continue; // ignore UNDEF indices
- if ((unsigned)M[i] != 2 * i + WhichResult)
- return false;
- }
-
- return true;
-}
-
-static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
- unsigned NumElts = VT.getVectorNumElements();
- WhichResult = (M[0] == 0 ? 0 : 1);
- for (unsigned i = 0; i < NumElts; i += 2) {
- if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
- (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
- return false;
- }
- return true;
-}
-
-/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
-/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
-/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
-static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
- unsigned NumElts = VT.getVectorNumElements();
- WhichResult = (M[0] == 0 ? 0 : 1);
- unsigned Idx = WhichResult * NumElts / 2;
- for (unsigned i = 0; i != NumElts; i += 2) {
- if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
- (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
- return false;
- Idx += 1;
- }
-
- return true;
-}
-
-/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
-/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
-/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
-static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
- unsigned Half = VT.getVectorNumElements() / 2;
- WhichResult = (M[0] == 0 ? 0 : 1);
- for (unsigned j = 0; j != 2; ++j) {
- unsigned Idx = WhichResult;
- for (unsigned i = 0; i != Half; ++i) {
- int MIdx = M[i + j * Half];
- if (MIdx >= 0 && (unsigned)MIdx != Idx)
- return false;
- Idx += 2;
- }
- }
-
- return true;
-}
-
-/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
-/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
-/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
-static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
- unsigned NumElts = VT.getVectorNumElements();
- WhichResult = (M[0] == 0 ? 0 : 1);
- for (unsigned i = 0; i < NumElts; i += 2) {
- if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
- (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
- return false;
- }
- return true;
-}
-
-/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
-/// the specified operations to build the shuffle.
-static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
- SDValue RHS, SelectionDAG &DAG,
- SDLoc dl) {
- unsigned OpNum = (PFEntry >> 26) & 0x0F;
- unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
- unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
-
- enum {
- OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
- OP_VREV,
- OP_VDUP0,
- OP_VDUP1,
- OP_VDUP2,
- OP_VDUP3,
- OP_VEXT1,
- OP_VEXT2,
- OP_VEXT3,
- OP_VUZPL, // VUZP, left result
- OP_VUZPR, // VUZP, right result
- OP_VZIPL, // VZIP, left result
- OP_VZIPR, // VZIP, right result
- OP_VTRNL, // VTRN, left result
- OP_VTRNR // VTRN, right result
- };
-
- if (OpNum == OP_COPY) {
- if (LHSID == (1 * 9 + 2) * 9 + 3)
- return LHS;
- assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
- return RHS;
- }
-
- SDValue OpLHS, OpRHS;
- OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
- OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
- EVT VT = OpLHS.getValueType();
-
- switch (OpNum) {
- default:
- llvm_unreachable("Unknown shuffle opcode!");
- case OP_VREV:
- // VREV divides the vector in half and swaps within the half.
- if (VT.getVectorElementType() == MVT::i32 ||
- VT.getVectorElementType() == MVT::f32)
- return DAG.getNode(ARM64ISD::REV64, dl, VT, OpLHS);
- // vrev <4 x i16> -> REV32
- if (VT.getVectorElementType() == MVT::i16)
- return DAG.getNode(ARM64ISD::REV32, dl, VT, OpLHS);
- // vrev <4 x i8> -> REV16
- assert(VT.getVectorElementType() == MVT::i8);
- return DAG.getNode(ARM64ISD::REV16, dl, VT, OpLHS);
- case OP_VDUP0:
- case OP_VDUP1:
- case OP_VDUP2:
- case OP_VDUP3: {
- EVT EltTy = VT.getVectorElementType();
- unsigned Opcode;
- if (EltTy == MVT::i8)
- Opcode = ARM64ISD::DUPLANE8;
- else if (EltTy == MVT::i16)
- Opcode = ARM64ISD::DUPLANE16;
- else if (EltTy == MVT::i32 || EltTy == MVT::f32)
- Opcode = ARM64ISD::DUPLANE32;
- else if (EltTy == MVT::i64 || EltTy == MVT::f64)
- Opcode = ARM64ISD::DUPLANE64;
- else
- llvm_unreachable("Invalid vector element type?");
-
- if (VT.getSizeInBits() == 64)
- OpLHS = WidenVector(OpLHS, DAG);
- SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
- return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
- }
- case OP_VEXT1:
- case OP_VEXT2:
- case OP_VEXT3: {
- unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
- return DAG.getNode(ARM64ISD::EXT, dl, VT, OpLHS, OpRHS,
- DAG.getConstant(Imm, MVT::i32));
- }
- case OP_VUZPL:
- return DAG.getNode(ARM64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS);
- case OP_VUZPR:
- return DAG.getNode(ARM64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS);
- case OP_VZIPL:
- return DAG.getNode(ARM64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS);
- case OP_VZIPR:
- return DAG.getNode(ARM64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS);
- case OP_VTRNL:
- return DAG.getNode(ARM64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS);
- case OP_VTRNR:
- return DAG.getNode(ARM64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS);
- }
-}
-
-static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
- SelectionDAG &DAG) {
- // Check to see if we can use the TBL instruction.
- SDValue V1 = Op.getOperand(0);
- SDValue V2 = Op.getOperand(1);
- SDLoc DL(Op);
-
- EVT EltVT = Op.getValueType().getVectorElementType();
- unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
-
- SmallVector<SDValue, 8> TBLMask;
- for (int Val : ShuffleMask) {
- for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
- unsigned Offset = Byte + Val * BytesPerElt;
- TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
- }
- }
-
- MVT IndexVT = MVT::v8i8;
- unsigned IndexLen = 8;
- if (Op.getValueType().getSizeInBits() == 128) {
- IndexVT = MVT::v16i8;
- IndexLen = 16;
- }
-
- SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
- SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
-
- SDValue Shuffle;
- if (V2.getNode()->getOpcode() == ISD::UNDEF) {
- if (IndexLen == 8)
- V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
- Shuffle = DAG.getNode(
- ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
- DAG.getConstant(Intrinsic::arm64_neon_tbl1, MVT::i32), V1Cst,
- DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, &TBLMask[0], IndexLen));
- } else {
- if (IndexLen == 8) {
- V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
- Shuffle = DAG.getNode(
- ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
- DAG.getConstant(Intrinsic::arm64_neon_tbl1, MVT::i32), V1Cst,
- DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, &TBLMask[0], IndexLen));
- } else {
- // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
- // cannot currently represent the register constraints on the input
- // table registers.
- // Shuffle = DAG.getNode(ARM64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
- // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
- // &TBLMask[0], IndexLen));
- Shuffle = DAG.getNode(
- ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
- DAG.getConstant(Intrinsic::arm64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
- DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, &TBLMask[0], IndexLen));
- }
- }
- return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
-}
-
-static unsigned getDUPLANEOp(EVT EltType) {
- if (EltType == MVT::i8)
- return ARM64ISD::DUPLANE8;
- if (EltType == MVT::i16)
- return ARM64ISD::DUPLANE16;
- if (EltType == MVT::i32 || EltType == MVT::f32)
- return ARM64ISD::DUPLANE32;
- if (EltType == MVT::i64 || EltType == MVT::f64)
- return ARM64ISD::DUPLANE64;
-
- llvm_unreachable("Invalid vector element type?");
-}
-
-SDValue ARM64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
-
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
-
- // Convert shuffles that are directly supported on NEON to target-specific
- // DAG nodes, instead of keeping them as shuffles and matching them again
- // during code selection. This is more efficient and avoids the possibility
- // of inconsistencies between legalization and selection.
- ArrayRef<int> ShuffleMask = SVN->getMask();
-
- SDValue V1 = Op.getOperand(0);
- SDValue V2 = Op.getOperand(1);
-
- if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
- V1.getValueType().getSimpleVT())) {
- int Lane = SVN->getSplatIndex();
- // If this is undef splat, generate it via "just" vdup, if possible.
- if (Lane == -1)
- Lane = 0;
-
- if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
- return DAG.getNode(ARM64ISD::DUP, dl, V1.getValueType(),
- V1.getOperand(0));
- // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
- // constant. If so, we can just reference the lane's definition directly.
- if (V1.getOpcode() == ISD::BUILD_VECTOR &&
- !isa<ConstantSDNode>(V1.getOperand(Lane)))
- return DAG.getNode(ARM64ISD::DUP, dl, VT, V1.getOperand(Lane));
-
- // Otherwise, duplicate from the lane of the input vector.
- unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
-
- // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
- // to make a vector of the same size as this SHUFFLE. We can ignore the
- // extract entirely, and canonicalise the concat using WidenVector.
- if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
- Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
- V1 = V1.getOperand(0);
- } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
- unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
- Lane -= Idx * VT.getVectorNumElements() / 2;
- V1 = WidenVector(V1.getOperand(Idx), DAG);
- } else if (VT.getSizeInBits() == 64)
- V1 = WidenVector(V1, DAG);
-
- return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
- }
-
- if (isREVMask(ShuffleMask, VT, 64))
- return DAG.getNode(ARM64ISD::REV64, dl, V1.getValueType(), V1, V2);
- if (isREVMask(ShuffleMask, VT, 32))
- return DAG.getNode(ARM64ISD::REV32, dl, V1.getValueType(), V1, V2);
- if (isREVMask(ShuffleMask, VT, 16))
- return DAG.getNode(ARM64ISD::REV16, dl, V1.getValueType(), V1, V2);
-
- bool ReverseEXT = false;
- unsigned Imm;
- if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
- if (ReverseEXT)
- std::swap(V1, V2);
- Imm *= getExtFactor(V1);
- return DAG.getNode(ARM64ISD::EXT, dl, V1.getValueType(), V1, V2,
- DAG.getConstant(Imm, MVT::i32));
- } else if (V2->getOpcode() == ISD::UNDEF &&
- isSingletonEXTMask(ShuffleMask, VT, Imm)) {
- Imm *= getExtFactor(V1);
- return DAG.getNode(ARM64ISD::EXT, dl, V1.getValueType(), V1, V1,
- DAG.getConstant(Imm, MVT::i32));
- }
-
- unsigned WhichResult;
- if (isZIPMask(ShuffleMask, VT, WhichResult)) {
- unsigned Opc = (WhichResult == 0) ? ARM64ISD::ZIP1 : ARM64ISD::ZIP2;
- return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
- }
- if (isUZPMask(ShuffleMask, VT, WhichResult)) {
- unsigned Opc = (WhichResult == 0) ? ARM64ISD::UZP1 : ARM64ISD::UZP2;
- return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
- }
- if (isTRNMask(ShuffleMask, VT, WhichResult)) {
- unsigned Opc = (WhichResult == 0) ? ARM64ISD::TRN1 : ARM64ISD::TRN2;
- return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
- }
-
- if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
- unsigned Opc = (WhichResult == 0) ? ARM64ISD::ZIP1 : ARM64ISD::ZIP2;
- return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
- }
- if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
- unsigned Opc = (WhichResult == 0) ? ARM64ISD::UZP1 : ARM64ISD::UZP2;
- return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
- }
- if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
- unsigned Opc = (WhichResult == 0) ? ARM64ISD::TRN1 : ARM64ISD::TRN2;
- return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
- }
-
- // If the shuffle is not directly supported and it has 4 elements, use
- // the PerfectShuffle-generated table to synthesize it from other shuffles.
- unsigned NumElts = VT.getVectorNumElements();
- if (NumElts == 4) {
- unsigned PFIndexes[4];
- for (unsigned i = 0; i != 4; ++i) {
- if (ShuffleMask[i] < 0)
- PFIndexes[i] = 8;
- else
- PFIndexes[i] = ShuffleMask[i];
- }
-
- // Compute the index in the perfect shuffle table.
- unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
- PFIndexes[2] * 9 + PFIndexes[3];
- unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
- unsigned Cost = (PFEntry >> 30);
-
- if (Cost <= 4)
- return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
- }
-
- return GenerateTBL(Op, ShuffleMask, DAG);
-}
-
-static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
- APInt &UndefBits) {
- EVT VT = BVN->getValueType(0);
- APInt SplatBits, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
- unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
-
- for (unsigned i = 0; i < NumSplats; ++i) {
- CnstBits <<= SplatBitSize;
- UndefBits <<= SplatBitSize;
- CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
- UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
- }
-
- return true;
- }
-
- return false;
-}
-
-SDValue ARM64TargetLowering::LowerVectorAND(SDValue Op,
- SelectionDAG &DAG) const {
- BuildVectorSDNode *BVN =
- dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
- SDValue LHS = Op.getOperand(0);
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
-
- if (!BVN)
- return Op;
-
- APInt CnstBits(VT.getSizeInBits(), 0);
- APInt UndefBits(VT.getSizeInBits(), 0);
- if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
- // We only have BIC vector immediate instruction, which is and-not.
- CnstBits = ~CnstBits;
-
- // We make use of a little bit of goto ickiness in order to avoid having to
- // duplicate the immediate matching logic for the undef toggled case.
- bool SecondTry = false;
- AttemptModImm:
-
- if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
- CnstBits = CnstBits.zextOrTrunc(64);
- uint64_t CnstVal = CnstBits.getZExtValue();
-
- if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::BICi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
- }
-
- if (SecondTry)
- goto FailedModImm;
- SecondTry = true;
- CnstBits = ~UndefBits;
- goto AttemptModImm;
- }
-
-// We can always fall back to a non-immediate AND.
-FailedModImm:
- return Op;
-}
-
-// Specialized code to quickly find if PotentialBVec is a BuildVector that
-// consists of only the same constant int value, returned in reference arg
-// ConstVal
-static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
- uint64_t &ConstVal) {
- BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
- if (!Bvec)
- return false;
- ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
- if (!FirstElt)
- return false;
- EVT VT = Bvec->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- for (unsigned i = 1; i < NumElts; ++i)
- if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
- return false;
- ConstVal = FirstElt->getZExtValue();
- return true;
-}
-
-static unsigned getIntrinsicID(const SDNode *N) {
- unsigned Opcode = N->getOpcode();
- switch (Opcode) {
- default:
- return Intrinsic::not_intrinsic;
- case ISD::INTRINSIC_WO_CHAIN: {
- unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
- if (IID < Intrinsic::num_intrinsics)
- return IID;
- return Intrinsic::not_intrinsic;
- }
- }
-}
-
-// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
-// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
-// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
-// Also, logical shift right -> sri, with the same structure.
-static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
-
- if (!VT.isVector())
- return SDValue();
-
- SDLoc DL(N);
-
- // Is the first op an AND?
- const SDValue And = N->getOperand(0);
- if (And.getOpcode() != ISD::AND)
- return SDValue();
-
- // Is the second op an shl or lshr?
- SDValue Shift = N->getOperand(1);
- // This will have been turned into: ARM64ISD::VSHL vector, #shift
- // or ARM64ISD::VLSHR vector, #shift
- unsigned ShiftOpc = Shift.getOpcode();
- if ((ShiftOpc != ARM64ISD::VSHL && ShiftOpc != ARM64ISD::VLSHR))
- return SDValue();
- bool IsShiftRight = ShiftOpc == ARM64ISD::VLSHR;
-
- // Is the shift amount constant?
- ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
- if (!C2node)
- return SDValue();
-
- // Is the and mask vector all constant?
- uint64_t C1;
- if (!isAllConstantBuildVector(And.getOperand(1), C1))
- return SDValue();
-
- // Is C1 == ~C2, taking into account how much one can shift elements of a
- // particular size?
- uint64_t C2 = C2node->getZExtValue();
- unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
- if (C2 > ElemSizeInBits)
- return SDValue();
- unsigned ElemMask = (1 << ElemSizeInBits) - 1;
- if ((C1 & ElemMask) != (~C2 & ElemMask))
- return SDValue();
-
- SDValue X = And.getOperand(0);
- SDValue Y = Shift.getOperand(0);
-
- unsigned Intrin =
- IsShiftRight ? Intrinsic::arm64_neon_vsri : Intrinsic::arm64_neon_vsli;
- SDValue ResultSLI =
- DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
- DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
-
- DEBUG(dbgs() << "arm64-lower: transformed: \n");
- DEBUG(N->dump(&DAG));
- DEBUG(dbgs() << "into: \n");
- DEBUG(ResultSLI->dump(&DAG));
-
- ++NumShiftInserts;
- return ResultSLI;
-}
-
-SDValue ARM64TargetLowering::LowerVectorOR(SDValue Op,
- SelectionDAG &DAG) const {
- // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
- if (EnableARM64SlrGeneration) {
- SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
- if (Res.getNode())
- return Res;
- }
-
- BuildVectorSDNode *BVN =
- dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
- SDValue LHS = Op.getOperand(1);
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
-
- // OR commutes, so try swapping the operands.
- if (!BVN) {
- LHS = Op.getOperand(0);
- BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
- }
- if (!BVN)
- return Op;
-
- APInt CnstBits(VT.getSizeInBits(), 0);
- APInt UndefBits(VT.getSizeInBits(), 0);
- if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
- // We make use of a little bit of goto ickiness in order to avoid having to
- // duplicate the immediate matching logic for the undef toggled case.
- bool SecondTry = false;
- AttemptModImm:
-
- if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
- CnstBits = CnstBits.zextOrTrunc(64);
- uint64_t CnstVal = CnstBits.getZExtValue();
-
- if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::ORRi, dl, MovTy, LHS,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
- }
-
- if (SecondTry)
- goto FailedModImm;
- SecondTry = true;
- CnstBits = UndefBits;
- goto AttemptModImm;
- }
-
-// We can always fall back to a non-immediate OR.
-FailedModImm:
- return Op;
-}
-
-SDValue ARM64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
- SelectionDAG &DAG) const {
- BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
-
- APInt CnstBits(VT.getSizeInBits(), 0);
- APInt UndefBits(VT.getSizeInBits(), 0);
- if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
- // We make use of a little bit of goto ickiness in order to avoid having to
- // duplicate the immediate matching logic for the undef toggled case.
- bool SecondTry = false;
- AttemptModImm:
-
- if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
- CnstBits = CnstBits.zextOrTrunc(64);
- uint64_t CnstVal = CnstBits.getZExtValue();
-
- // Certain magic vector constants (used to express things like NOT
- // and NEG) are passed through unmodified. This allows codegen patterns
- // for these operations to match. Special-purpose patterns will lower
- // these immediates to MOVIs if it proves necessary.
- if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
- return Op;
-
- // The many faces of MOVI...
- if (ARM64_AM::isAdvSIMDModImmType10(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType10(CnstVal);
- if (VT.getSizeInBits() == 128) {
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIedit, dl, MVT::v2i64,
- DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- // Support the V64 version via subregister insertion.
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIedit, dl, MVT::f64,
- DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType7(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType7(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVImsl, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(264, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType8(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType8(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVImsl, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(272, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType9(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType9(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
- SDValue Mov = DAG.getNode(ARM64ISD::MOVI, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- // The few faces of FMOV...
- if (ARM64_AM::isAdvSIMDModImmType11(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType11(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
- SDValue Mov = DAG.getNode(ARM64ISD::FMOV, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType12(CnstVal) &&
- VT.getSizeInBits() == 128) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType12(CnstVal);
- SDValue Mov = DAG.getNode(ARM64ISD::FMOV, dl, MVT::v2f64,
- DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- // The many faces of MVNI...
- CnstVal = ~CnstVal;
- if (ARM64_AM::isAdvSIMDModImmType1(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType1(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType2(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType2(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType3(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType3(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType4(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType4(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType5(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType5(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType6(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType6(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNIshift, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType7(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType7(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNImsl, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(264, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
-
- if (ARM64_AM::isAdvSIMDModImmType8(CnstVal)) {
- CnstVal = ARM64_AM::encodeAdvSIMDModImmType8(CnstVal);
- MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
- SDValue Mov = DAG.getNode(ARM64ISD::MVNImsl, dl, MovTy,
- DAG.getConstant(CnstVal, MVT::i32),
- DAG.getConstant(272, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
- }
- }
-
- if (SecondTry)
- goto FailedModImm;
- SecondTry = true;
- CnstBits = UndefBits;
- goto AttemptModImm;
- }
-FailedModImm:
-
- // Scan through the operands to find some interesting properties we can
- // exploit:
- // 1) If only one value is used, we can use a DUP, or
- // 2) if only the low element is not undef, we can just insert that, or
- // 3) if only one constant value is used (w/ some non-constant lanes),
- // we can splat the constant value into the whole vector then fill
- // in the non-constant lanes.
- // 4) FIXME: If different constant values are used, but we can intelligently
- // select the values we'll be overwriting for the non-constant
- // lanes such that we can directly materialize the vector
- // some other way (MOVI, e.g.), we can be sneaky.
- unsigned NumElts = VT.getVectorNumElements();
- bool isOnlyLowElement = true;
- bool usesOnlyOneValue = true;
- bool usesOnlyOneConstantValue = true;
- bool isConstant = true;
- unsigned NumConstantLanes = 0;
- SDValue Value;
- SDValue ConstantValue;
- for (unsigned i = 0; i < NumElts; ++i) {
- SDValue V = Op.getOperand(i);
- if (V.getOpcode() == ISD::UNDEF)
- continue;
- if (i > 0)
- isOnlyLowElement = false;
- if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
- isConstant = false;
-
- if (isa<ConstantSDNode>(V)) {
- ++NumConstantLanes;
- if (!ConstantValue.getNode())
- ConstantValue = V;
- else if (ConstantValue != V)
- usesOnlyOneConstantValue = false;
- }
-
- if (!Value.getNode())
- Value = V;
- else if (V != Value)
- usesOnlyOneValue = false;
- }
-
- if (!Value.getNode())
- return DAG.getUNDEF(VT);
-
- if (isOnlyLowElement)
- return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
-
- // Use DUP for non-constant splats. For f32 constant splats, reduce to
- // i32 and try again.
- if (usesOnlyOneValue) {
- if (!isConstant) {
- if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- Value.getValueType() != VT)
- return DAG.getNode(ARM64ISD::DUP, dl, VT, Value);
-
- // This is actually a DUPLANExx operation, which keeps everything vectory.
-
- // DUPLANE works on 128-bit vectors, widen it if necessary.
- SDValue Lane = Value.getOperand(1);
- Value = Value.getOperand(0);
- if (Value.getValueType().getSizeInBits() == 64)
- Value = WidenVector(Value, DAG);
-
- unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
- return DAG.getNode(Opcode, dl, VT, Value, Lane);
- }
-
- if (VT.getVectorElementType().isFloatingPoint()) {
- SmallVector<SDValue, 8> Ops;
- MVT NewType =
- (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
- for (unsigned i = 0; i < NumElts; ++i)
- Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
- EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
- SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
- Val = LowerBUILD_VECTOR(Val, DAG);
- if (Val.getNode())
- return DAG.getNode(ISD::BITCAST, dl, VT, Val);
- }
- }
-
- // If there was only one constant value used and for more than one lane,
- // start by splatting that value, then replace the non-constant lanes. This
- // is better than the default, which will perform a separate initialization
- // for each lane.
- if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
- SDValue Val = DAG.getNode(ARM64ISD::DUP, dl, VT, ConstantValue);
- // Now insert the non-constant lanes.
- for (unsigned i = 0; i < NumElts; ++i) {
- SDValue V = Op.getOperand(i);
- SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
- if (!isa<ConstantSDNode>(V)) {
- // Note that type legalization likely mucked about with the VT of the
- // source operand, so we may have to convert it here before inserting.
- Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
- }
- }
- return Val;
- }
-
- // If all elements are constants and the case above didn't get hit, fall back
- // to the default expansion, which will generate a load from the constant
- // pool.
- if (isConstant)
- return SDValue();
-
- // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
- if (NumElts >= 4) {
- SDValue shuffle = ReconstructShuffle(Op, DAG);
- if (shuffle != SDValue())
- return shuffle;
- }
-
- // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
- // know the default expansion would otherwise fall back on something even
- // worse. For a vector with one or two non-undef values, that's
- // scalar_to_vector for the elements followed by a shuffle (provided the
- // shuffle is valid for the target) and materialization element by element
- // on the stack followed by a load for everything else.
- if (!isConstant && !usesOnlyOneValue) {
- SDValue Vec = DAG.getUNDEF(VT);
- SDValue Op0 = Op.getOperand(0);
- unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
- unsigned i = 0;
- // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
- // a) Avoid a RMW dependency on the full vector register, and
- // b) Allow the register coalescer to fold away the copy if the
- // value is already in an S or D register.
- if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
- unsigned SubIdx = ElemSize == 32 ? ARM64::ssub : ARM64::dsub;
- MachineSDNode *N =
- DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
- DAG.getTargetConstant(SubIdx, MVT::i32));
- Vec = SDValue(N, 0);
- ++i;
- }
- for (; i < NumElts; ++i) {
- SDValue V = Op.getOperand(i);
- if (V.getOpcode() == ISD::UNDEF)
- continue;
- SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
- Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
- }
- return Vec;
- }
-
- // Just use the default expansion. We failed to find a better alternative.
- return SDValue();
-}
-
-SDValue ARM64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
-
- // Check for non-constant lane.
- if (!isa<ConstantSDNode>(Op.getOperand(2)))
- return SDValue();
-
- EVT VT = Op.getOperand(0).getValueType();
-
- // Insertion/extraction are legal for V128 types.
- if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
- VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
- return Op;
-
- if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
- VT != MVT::v1i64 && VT != MVT::v2f32)
- return SDValue();
-
- // For V64 types, we perform insertion by expanding the value
- // to a V128 type and perform the insertion on that.
- SDLoc DL(Op);
- SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
- EVT WideTy = WideVec.getValueType();
-
- SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
- Op.getOperand(1), Op.getOperand(2));
- // Re-narrow the resultant vector.
- return NarrowVector(Node, DAG);
-}
-
-SDValue ARM64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
-
- // Check for non-constant lane.
- if (!isa<ConstantSDNode>(Op.getOperand(1)))
- return SDValue();
-
- EVT VT = Op.getOperand(0).getValueType();
-
- // Insertion/extraction are legal for V128 types.
- if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
- VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
- return Op;
-
- if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
- VT != MVT::v1i64 && VT != MVT::v2f32)
- return SDValue();
-
- // For V64 types, we perform extraction by expanding the value
- // to a V128 type and perform the extraction on that.
- SDLoc DL(Op);
- SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
- EVT WideTy = WideVec.getValueType();
-
- EVT ExtrTy = WideTy.getVectorElementType();
- if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
- ExtrTy = MVT::i32;
-
- // For extractions, we just return the result directly.
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
- Op.getOperand(1));
-}
-
-SDValue ARM64TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getOpcode() == ISD::SCALAR_TO_VECTOR && "Unknown opcode!");
- // Some AdvSIMD intrinsics leave their results in the scalar B/H/S/D
- // registers. The default lowering will copy those to a GPR then back
- // to a vector register. Instead, just recognize those cases and reference
- // the vector register they're already a subreg of.
- SDValue Op0 = Op->getOperand(0);
- if (Op0->getOpcode() != ISD::INTRINSIC_WO_CHAIN)
- return Op;
- unsigned IID = getIntrinsicID(Op0.getNode());
- // The below list of intrinsics isn't exhaustive. Add cases as-needed.
- // FIXME: Even better would be if there were an attribute on the node
- // that we could query and set in the intrinsics definition or something.
- unsigned SubIdx;
- switch (IID) {
- default:
- // Early exit if this isn't one of the intrinsics we handle.
- return Op;
- case Intrinsic::arm64_neon_uaddv:
- case Intrinsic::arm64_neon_saddv:
- case Intrinsic::arm64_neon_uaddlv:
- case Intrinsic::arm64_neon_saddlv:
- switch (Op0.getValueType().getSizeInBits()) {
- default:
- llvm_unreachable("Illegal result size from ARM64 vector intrinsic!");
- case 8:
- SubIdx = ARM64::bsub;
- break;
- case 16:
- SubIdx = ARM64::hsub;
- break;
- case 32:
- SubIdx = ARM64::ssub;
- break;
- case 64:
- SubIdx = ARM64::dsub;
- break;
- }
- }
- MachineSDNode *N =
- DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(Op),
- Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
- Op0, DAG.getTargetConstant(SubIdx, MVT::i32));
- return SDValue(N, 0);
-}
-
-SDValue ARM64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
- SelectionDAG &DAG) const {
- EVT VT = Op.getOperand(0).getValueType();
- SDLoc dl(Op);
- // Just in case...
- if (!VT.isVector())
- return SDValue();
-
- ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- if (!Cst)
- return SDValue();
- unsigned Val = Cst->getZExtValue();
-
- unsigned Size = Op.getValueType().getSizeInBits();
- if (Val == 0) {
- switch (Size) {
- case 8:
- return DAG.getTargetExtractSubreg(ARM64::bsub, dl, Op.getValueType(),
- Op.getOperand(0));
- case 16:
- return DAG.getTargetExtractSubreg(ARM64::hsub, dl, Op.getValueType(),
- Op.getOperand(0));
- case 32:
- return DAG.getTargetExtractSubreg(ARM64::ssub, dl, Op.getValueType(),
- Op.getOperand(0));
- case 64:
- return DAG.getTargetExtractSubreg(ARM64::dsub, dl, Op.getValueType(),
- Op.getOperand(0));
- default:
- llvm_unreachable("Unexpected vector type in extract_subvector!");
- }
- }
- // If this is extracting the upper 64-bits of a 128-bit vector, we match
- // that directly.
- if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
- return Op;
-
- return SDValue();
-}
-
-bool ARM64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
- EVT VT) const {
- if (VT.getVectorNumElements() == 4 &&
- (VT.is128BitVector() || VT.is64BitVector())) {
- unsigned PFIndexes[4];
- for (unsigned i = 0; i != 4; ++i) {
- if (M[i] < 0)
- PFIndexes[i] = 8;
- else
- PFIndexes[i] = M[i];
- }
-
- // Compute the index in the perfect shuffle table.
- unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
- PFIndexes[2] * 9 + PFIndexes[3];
- unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
- unsigned Cost = (PFEntry >> 30);
-
- if (Cost <= 4)
- return true;
- }
-
- bool ReverseVEXT;
- unsigned Imm, WhichResult;
-
- return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
- isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
- isEXTMask(M, VT, ReverseVEXT, Imm) ||
- // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
- isTRNMask(M, VT, WhichResult) || isUZPMask(M, VT, WhichResult) ||
- isZIPMask(M, VT, WhichResult) ||
- isTRN_v_undef_Mask(M, VT, WhichResult) ||
- isUZP_v_undef_Mask(M, VT, WhichResult) ||
- isZIP_v_undef_Mask(M, VT, WhichResult));
-}
-
-/// getVShiftImm - Check if this is a valid build_vector for the immediate
-/// operand of a vector shift operation, where all the elements of the
-/// build_vector must have the same constant integer value.
-static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
- // Ignore bit_converts.
- while (Op.getOpcode() == ISD::BITCAST)
- Op = Op.getOperand(0);
- BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
- APInt SplatBits, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
- HasAnyUndefs, ElementBits) ||
- SplatBitSize > ElementBits)
- return false;
- Cnt = SplatBits.getSExtValue();
- return true;
-}
-
-/// isVShiftLImm - Check if this is a valid build_vector for the immediate
-/// operand of a vector shift left operation. That value must be in the range:
-/// 0 <= Value < ElementBits for a left shift; or
-/// 0 <= Value <= ElementBits for a long left shift.
-static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
- assert(VT.isVector() && "vector shift count is not a vector type");
- unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
- if (!getVShiftImm(Op, ElementBits, Cnt))
- return false;
- return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
-}
-
-/// isVShiftRImm - Check if this is a valid build_vector for the immediate
-/// operand of a vector shift right operation. For a shift opcode, the value
-/// is positive, but for an intrinsic the value count must be negative. The
-/// absolute value must be in the range:
-/// 1 <= |Value| <= ElementBits for a right shift; or
-/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
-static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
- int64_t &Cnt) {
- assert(VT.isVector() && "vector shift count is not a vector type");
- unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
- if (!getVShiftImm(Op, ElementBits, Cnt))
- return false;
- if (isIntrinsic)
- Cnt = -Cnt;
- return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
-}
-
-SDValue ARM64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
- SelectionDAG &DAG) const {
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- int64_t Cnt;
-
- if (!Op.getOperand(1).getValueType().isVector())
- return Op;
- unsigned EltSize = VT.getVectorElementType().getSizeInBits();
-
- switch (Op.getOpcode()) {
- default:
- llvm_unreachable("unexpected shift opcode");
-
- case ISD::SHL:
- if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
- return DAG.getNode(ARM64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
- DAG.getConstant(Cnt, MVT::i32));
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
- DAG.getConstant(Intrinsic::arm64_neon_ushl, MVT::i32),
- Op.getOperand(0), Op.getOperand(1));
- case ISD::SRA:
- case ISD::SRL:
- // Right shift immediate
- if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
- Cnt < EltSize) {
- unsigned Opc =
- (Op.getOpcode() == ISD::SRA) ? ARM64ISD::VASHR : ARM64ISD::VLSHR;
- return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
- DAG.getConstant(Cnt, MVT::i32));
- }
-
- // Right shift register. Note, there is not a shift right register
- // instruction, but the shift left register instruction takes a signed
- // value, where negative numbers specify a right shift.
- unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::arm64_neon_sshl
- : Intrinsic::arm64_neon_ushl;
- // negate the shift amount
- SDValue NegShift = DAG.getNode(ARM64ISD::NEG, DL, VT, Op.getOperand(1));
- SDValue NegShiftLeft =
- DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
- DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
- return NegShiftLeft;
- }
-
- return SDValue();
-}
-
-static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
- ARM64CC::CondCode CC, bool NoNans, EVT VT,
- SDLoc dl, SelectionDAG &DAG) {
- EVT SrcVT = LHS.getValueType();
-
- BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
- APInt CnstBits(VT.getSizeInBits(), 0);
- APInt UndefBits(VT.getSizeInBits(), 0);
- bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
- bool IsZero = IsCnst && (CnstBits == 0);
-
- if (SrcVT.getVectorElementType().isFloatingPoint()) {
- switch (CC) {
- default:
- return SDValue();
- case ARM64CC::NE: {
- SDValue Fcmeq;
- if (IsZero)
- Fcmeq = DAG.getNode(ARM64ISD::FCMEQz, dl, VT, LHS);
- else
- Fcmeq = DAG.getNode(ARM64ISD::FCMEQ, dl, VT, LHS, RHS);
- return DAG.getNode(ARM64ISD::NOT, dl, VT, Fcmeq);
- }
- case ARM64CC::EQ:
- if (IsZero)
- return DAG.getNode(ARM64ISD::FCMEQz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::FCMEQ, dl, VT, LHS, RHS);
- case ARM64CC::GE:
- if (IsZero)
- return DAG.getNode(ARM64ISD::FCMGEz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::FCMGE, dl, VT, LHS, RHS);
- case ARM64CC::GT:
- if (IsZero)
- return DAG.getNode(ARM64ISD::FCMGTz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::FCMGT, dl, VT, LHS, RHS);
- case ARM64CC::LS:
- if (IsZero)
- return DAG.getNode(ARM64ISD::FCMLEz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::FCMGE, dl, VT, RHS, LHS);
- case ARM64CC::LT:
- if (!NoNans)
- return SDValue();
- // If we ignore NaNs then we can use to the MI implementation.
- // Fallthrough.
- case ARM64CC::MI:
- if (IsZero)
- return DAG.getNode(ARM64ISD::FCMLTz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::FCMGT, dl, VT, RHS, LHS);
- }
- }
-
- switch (CC) {
- default:
- return SDValue();
- case ARM64CC::NE: {
- SDValue Cmeq;
- if (IsZero)
- Cmeq = DAG.getNode(ARM64ISD::CMEQz, dl, VT, LHS);
- else
- Cmeq = DAG.getNode(ARM64ISD::CMEQ, dl, VT, LHS, RHS);
- return DAG.getNode(ARM64ISD::NOT, dl, VT, Cmeq);
- }
- case ARM64CC::EQ:
- if (IsZero)
- return DAG.getNode(ARM64ISD::CMEQz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::CMEQ, dl, VT, LHS, RHS);
- case ARM64CC::GE:
- if (IsZero)
- return DAG.getNode(ARM64ISD::CMGEz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::CMGE, dl, VT, LHS, RHS);
- case ARM64CC::GT:
- if (IsZero)
- return DAG.getNode(ARM64ISD::CMGTz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::CMGT, dl, VT, LHS, RHS);
- case ARM64CC::LE:
- if (IsZero)
- return DAG.getNode(ARM64ISD::CMLEz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::CMGE, dl, VT, RHS, LHS);
- case ARM64CC::LS:
- return DAG.getNode(ARM64ISD::CMHS, dl, VT, RHS, LHS);
- case ARM64CC::CC:
- return DAG.getNode(ARM64ISD::CMHI, dl, VT, RHS, LHS);
- case ARM64CC::LT:
- if (IsZero)
- return DAG.getNode(ARM64ISD::CMLTz, dl, VT, LHS);
- return DAG.getNode(ARM64ISD::CMGT, dl, VT, RHS, LHS);
- case ARM64CC::HI:
- return DAG.getNode(ARM64ISD::CMHI, dl, VT, LHS, RHS);
- case ARM64CC::CS:
- return DAG.getNode(ARM64ISD::CMHS, dl, VT, LHS, RHS);
- }
-}
-
-SDValue ARM64TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- SDLoc dl(Op);
-
- if (LHS.getValueType().getVectorElementType().isInteger()) {
- assert(LHS.getValueType() == RHS.getValueType());
- ARM64CC::CondCode ARM64CC = changeIntCCToARM64CC(CC);
- return EmitVectorComparison(LHS, RHS, ARM64CC, false, Op.getValueType(), dl,
- DAG);
- }
-
- assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
- LHS.getValueType().getVectorElementType() == MVT::f64);
-
- // Unfortunately, the mapping of LLVM FP CC's onto ARM64 CC's isn't totally
- // clean. Some of them require two branches to implement.
- ARM64CC::CondCode CC1, CC2;
- changeFPCCToARM64CC(CC, CC1, CC2);
-
- bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
- SDValue Cmp1 =
- EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
- if (!Cmp1.getNode())
- return SDValue();
-
- if (CC2 != ARM64CC::AL) {
- SDValue Cmp2 =
- EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
- if (!Cmp2.getNode())
- return SDValue();
-
- return DAG.getNode(ISD::OR, dl, Cmp1.getValueType(), Cmp1, Cmp2);
- }
-
- return Cmp1;
-}
-
-/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
-/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
-/// specified in the intrinsic calls.
-bool ARM64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
- const CallInst &I,
- unsigned Intrinsic) const {
- switch (Intrinsic) {
- case Intrinsic::arm64_neon_ld2:
- case Intrinsic::arm64_neon_ld3:
- case Intrinsic::arm64_neon_ld4:
- case Intrinsic::arm64_neon_ld2lane:
- case Intrinsic::arm64_neon_ld3lane:
- case Intrinsic::arm64_neon_ld4lane:
- case Intrinsic::arm64_neon_ld2r:
- case Intrinsic::arm64_neon_ld3r:
- case Intrinsic::arm64_neon_ld4r: {
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- // Conservatively set memVT to the entire set of vectors loaded.
- uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
- Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
- Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
- Info.offset = 0;
- Info.align = 0;
- Info.vol = false; // volatile loads with NEON intrinsics not supported
- Info.readMem = true;
- Info.writeMem = false;
- return true;
- }
- case Intrinsic::arm64_neon_st2:
- case Intrinsic::arm64_neon_st3:
- case Intrinsic::arm64_neon_st4:
- case Intrinsic::arm64_neon_st2lane:
- case Intrinsic::arm64_neon_st3lane:
- case Intrinsic::arm64_neon_st4lane: {
- Info.opc = ISD::INTRINSIC_VOID;
- // Conservatively set memVT to the entire set of vectors stored.
- unsigned NumElts = 0;
- for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
- Type *ArgTy = I.getArgOperand(ArgI)->getType();
- if (!ArgTy->isVectorTy())
- break;
- NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
- }
- Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
- Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
- Info.offset = 0;
- Info.align = 0;
- Info.vol = false; // volatile stores with NEON intrinsics not supported
- Info.readMem = false;
- Info.writeMem = true;
- return true;
- }
- case Intrinsic::arm64_ldxr: {
- PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- Info.memVT = MVT::getVT(PtrTy->getElementType());
- Info.ptrVal = I.getArgOperand(0);
- Info.offset = 0;
- Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
- Info.vol = true;
- Info.readMem = true;
- Info.writeMem = false;
- return true;
- }
- case Intrinsic::arm64_stxr: {
- PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- Info.memVT = MVT::getVT(PtrTy->getElementType());
- Info.ptrVal = I.getArgOperand(1);
- Info.offset = 0;
- Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
- Info.vol = true;
- Info.readMem = false;
- Info.writeMem = true;
- return true;
- }
- case Intrinsic::arm64_ldxp: {
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- Info.memVT = MVT::i128;
- Info.ptrVal = I.getArgOperand(0);
- Info.offset = 0;
- Info.align = 16;
- Info.vol = true;
- Info.readMem = true;
- Info.writeMem = false;
- return true;
- }
- case Intrinsic::arm64_stxp: {
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- Info.memVT = MVT::i128;
- Info.ptrVal = I.getArgOperand(2);
- Info.offset = 0;
- Info.align = 16;
- Info.vol = true;
- Info.readMem = false;
- Info.writeMem = true;
- return true;
- }
- default:
- break;
- }
-
- return false;
-}
-
-// Truncations from 64-bit GPR to 32-bit GPR is free.
-bool ARM64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
- if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
- return false;
- unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
- unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
- if (NumBits1 <= NumBits2)
- return false;
- return true;
-}
-bool ARM64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
- if (!VT1.isInteger() || !VT2.isInteger())
- return false;
- unsigned NumBits1 = VT1.getSizeInBits();
- unsigned NumBits2 = VT2.getSizeInBits();
- if (NumBits1 <= NumBits2)
- return false;
- return true;
-}
-
-// All 32-bit GPR operations implicitly zero the high-half of the corresponding
-// 64-bit GPR.
-bool ARM64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
- if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
- return false;
- unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
- unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
- if (NumBits1 == 32 && NumBits2 == 64)
- return true;
- return false;
-}
-bool ARM64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
- if (!VT1.isInteger() || !VT2.isInteger())
- return false;
- unsigned NumBits1 = VT1.getSizeInBits();
- unsigned NumBits2 = VT2.getSizeInBits();
- if (NumBits1 == 32 && NumBits2 == 64)
- return true;
- return false;
-}
-
-bool ARM64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
- EVT VT1 = Val.getValueType();
- if (isZExtFree(VT1, VT2)) {
- return true;
- }
-
- if (Val.getOpcode() != ISD::LOAD)
- return false;
-
- // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
- return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() &&
- VT2.isInteger() && VT1.getSizeInBits() <= 32);
-}
-
-bool ARM64TargetLowering::hasPairedLoad(Type *LoadedType,
- unsigned &RequiredAligment) const {
- if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
- return false;
- // Cyclone supports unaligned accesses.
- RequiredAligment = 0;
- unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
- return NumBits == 32 || NumBits == 64;
-}
-
-bool ARM64TargetLowering::hasPairedLoad(EVT LoadedType,
- unsigned &RequiredAligment) const {
- if (!LoadedType.isSimple() ||
- (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
- return false;
- // Cyclone supports unaligned accesses.
- RequiredAligment = 0;
- unsigned NumBits = LoadedType.getSizeInBits();
- return NumBits == 32 || NumBits == 64;
-}
-
-static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
- unsigned AlignCheck) {
- return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
- (DstAlign == 0 || DstAlign % AlignCheck == 0));
-}
-
-EVT ARM64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
- unsigned SrcAlign, bool IsMemset,
- bool ZeroMemset, bool MemcpyStrSrc,
- MachineFunction &MF) const {
- // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
- // instruction to materialize the v2i64 zero and one store (with restrictive
- // addressing mode). Just do two i64 store of zero-registers.
- bool Fast;
- const Function *F = MF.getFunction();
- if (!IsMemset && Size >= 16 &&
- !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::NoImplicitFloat) &&
- (memOpAlign(SrcAlign, DstAlign, 16) ||
- (allowsUnalignedMemoryAccesses(MVT::v2i64, 0, &Fast) && Fast)))
- return MVT::v2i64;
-
- return Size >= 8 ? MVT::i64 : MVT::i32;
-}
-
-// 12-bit optionally shifted immediates are legal for adds.
-bool ARM64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
- if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
- return true;
- return false;
-}
-
-// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
-// immediates is the same as for an add or a sub.
-bool ARM64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
- if (Immed < 0)
- Immed *= -1;
- return isLegalAddImmediate(Immed);
-}
-
-/// isLegalAddressingMode - Return true if the addressing mode represented
-/// by AM is legal for this target, for a load/store of the specified type.
-bool ARM64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
- Type *Ty) const {
- // ARM64 has five basic addressing modes:
- // reg
- // reg + 9-bit signed offset
- // reg + SIZE_IN_BYTES * 12-bit unsigned offset
- // reg1 + reg2
- // reg + SIZE_IN_BYTES * reg
-
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
-
- // No reg+reg+imm addressing.
- if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
- return false;
-
- // check reg + imm case:
- // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
- uint64_t NumBytes = 0;
- if (Ty->isSized()) {
- uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
- NumBytes = NumBits / 8;
- if (!isPowerOf2_64(NumBits))
- NumBytes = 0;
- }
-
- if (!AM.Scale) {
- int64_t Offset = AM.BaseOffs;
-
- // 9-bit signed offset
- if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
- return true;
-
- // 12-bit unsigned offset
- unsigned shift = Log2_64(NumBytes);
- if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
- // Must be a multiple of NumBytes (NumBytes is a power of 2)
- (Offset >> shift) << shift == Offset)
- return true;
- return false;
- }
-
- // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
-
- if (!AM.Scale || AM.Scale == 1 ||
- (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
- return true;
- return false;
-}
-
-int ARM64TargetLowering::getScalingFactorCost(const AddrMode &AM,
- Type *Ty) const {
- // Scaling factors are not free at all.
- // Operands | Rt Latency
- // -------------------------------------------
- // Rt, [Xn, Xm] | 4
- // -------------------------------------------
- // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
- // Rt, [Xn, Wm, <extend> #imm] |
- if (isLegalAddressingMode(AM, Ty))
- // Scale represents reg2 * scale, thus account for 1 if
- // it is not equal to 0 or 1.
- return AM.Scale != 0 && AM.Scale != 1;
- return -1;
-}
-
-bool ARM64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
- VT = VT.getScalarType();
-
- if (!VT.isSimple())
- return false;
-
- switch (VT.getSimpleVT().SimpleTy) {
- case MVT::f32:
- case MVT::f64:
- return true;
- default:
- break;
- }
-
- return false;
-}
-
-const uint16_t *
-ARM64TargetLowering::getScratchRegisters(CallingConv::ID) const {
- // LR is a callee-save register, but we must treat it as clobbered by any call
- // site. Hence we include LR in the scratch registers, which are in turn added
- // as implicit-defs for stackmaps and patchpoints.
- static const uint16_t ScratchRegs[] = {
- ARM64::X16, ARM64::X17, ARM64::LR, 0
- };
- return ScratchRegs;
-}
-
-bool ARM64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
- Type *Ty) const {
- assert(Ty->isIntegerTy());
-
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- if (BitSize == 0)
- return false;
-
- int64_t Val = Imm.getSExtValue();
- if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, BitSize))
- return true;
-
- if ((int64_t)Val < 0)
- Val = ~Val;
- if (BitSize == 32)
- Val &= (1LL << 32) - 1;
-
- unsigned LZ = countLeadingZeros((uint64_t)Val);
- unsigned Shift = (63 - LZ) / 16;
- // MOVZ is free so return true for one or fewer MOVK.
- return (Shift < 3) ? true : false;
-}
-
-// Generate SUBS and CSEL for integer abs.
-static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDLoc DL(N);
-
- // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
- // and change it to SUB and CSEL.
- if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
- N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
- N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
- if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
- if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
- SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
- N0.getOperand(0));
- // Generate SUBS & CSEL.
- SDValue Cmp =
- DAG.getNode(ARM64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
- N0.getOperand(0), DAG.getConstant(0, VT));
- return DAG.getNode(ARM64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
- DAG.getConstant(ARM64CC::PL, MVT::i32),
- SDValue(Cmp.getNode(), 1));
- }
- return SDValue();
-}
-
-// performXorCombine - Attempts to handle integer ABS.
-static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
- TargetLowering::DAGCombinerInfo &DCI,
- const ARM64Subtarget *Subtarget) {
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
-
- return performIntegerAbsCombine(N, DAG);
-}
-
-static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
- TargetLowering::DAGCombinerInfo &DCI,
- const ARM64Subtarget *Subtarget) {
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
-
- // Multiplication of a power of two plus/minus one can be done more
- // cheaply as as shift+add/sub. For now, this is true unilaterally. If
- // future CPUs have a cheaper MADD instruction, this may need to be
- // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
- // 64-bit is 5 cycles, so this is always a win.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
- APInt Value = C->getAPIntValue();
- EVT VT = N->getValueType(0);
- APInt VP1 = Value + 1;
- if (VP1.isPowerOf2()) {
- // Multiplying by one less than a power of two, replace with a shift
- // and a subtract.
- SDValue ShiftedVal =
- DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
- DAG.getConstant(VP1.logBase2(), MVT::i64));
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
- }
- APInt VM1 = Value - 1;
- if (VM1.isPowerOf2()) {
- // Multiplying by one more than a power of two, replace with a shift
- // and an add.
- SDValue ShiftedVal =
- DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
- DAG.getConstant(VM1.logBase2(), MVT::i64));
- return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
- }
- }
- return SDValue();
-}
-
-static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
- if (VT != MVT::f32 && VT != MVT::f64)
- return SDValue();
- // Only optimize when the source and destination types have the same width.
- if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
- return SDValue();
-
- // If the result of an integer load is only used by an integer-to-float
- // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
- // This eliminates an "integer-to-vector-move UOP and improve throughput.
- SDValue N0 = N->getOperand(0);
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- // Do not change the width of a volatile load.
- !cast<LoadSDNode>(N0)->isVolatile()) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(), LN0->isVolatile(),
- LN0->isNonTemporal(), LN0->isInvariant(),
- LN0->getAlignment());
-
- // Make sure successors of the original load stay after it by updating them
- // to use the new Chain.
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
-
- unsigned Opcode =
- (N->getOpcode() == ISD::SINT_TO_FP) ? ARM64ISD::SITOF : ARM64ISD::UITOF;
- return DAG.getNode(Opcode, SDLoc(N), VT, Load);
- }
-
- return SDValue();
-}
-
-/// An EXTR instruction is made up of two shifts, ORed together. This helper
-/// searches for and classifies those shifts.
-static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
- bool &FromHi) {
- if (N.getOpcode() == ISD::SHL)
- FromHi = false;
- else if (N.getOpcode() == ISD::SRL)
- FromHi = true;
- else
- return false;
-
- if (!isa<ConstantSDNode>(N.getOperand(1)))
- return false;
-
- ShiftAmount = N->getConstantOperandVal(1);
- Src = N->getOperand(0);
- return true;
-}
-
-/// EXTR instruction extracts a contiguous chunk of bits from two existing
-/// registers viewed as a high/low pair. This function looks for the pattern:
-/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
-/// EXTR. Can't quite be done in TableGen because the two immediates aren't
-/// independent.
-static SDValue tryCombineToEXTR(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- assert(N->getOpcode() == ISD::OR && "Unexpected root");
-
- if (VT != MVT::i32 && VT != MVT::i64)
- return SDValue();
-
- SDValue LHS;
- uint32_t ShiftLHS = 0;
- bool LHSFromHi = 0;
- if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
- return SDValue();
-
- SDValue RHS;
- uint32_t ShiftRHS = 0;
- bool RHSFromHi = 0;
- if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
- return SDValue();
-
- // If they're both trying to come from the high part of the register, they're
- // not really an EXTR.
- if (LHSFromHi == RHSFromHi)
- return SDValue();
-
- if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
- return SDValue();
-
- if (LHSFromHi) {
- std::swap(LHS, RHS);
- std::swap(ShiftLHS, ShiftRHS);
- }
-
- return DAG.getNode(ARM64ISD::EXTR, DL, VT, LHS, RHS,
- DAG.getConstant(ShiftRHS, MVT::i64));
-}
-
-static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
- const ARM64Subtarget *Subtarget) {
- // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
- if (!EnableARM64ExtrGeneration)
- return SDValue();
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = N->getValueType(0);
-
- if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
- return SDValue();
-
- SDValue Res = tryCombineToEXTR(N, DCI);
- if (Res.getNode())
- return Res;
-
- return SDValue();
-}
-
-static SDValue performBitcastCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- // Wait 'til after everything is legalized to try this. That way we have
- // legal vector types and such.
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
-
- // Remove extraneous bitcasts around an extract_subvector.
- // For example,
- // (v4i16 (bitconvert
- // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
- // becomes
- // (extract_subvector ((v8i16 ...), (i64 4)))
-
- // Only interested in 64-bit vectors as the ultimate result.
- EVT VT = N->getValueType(0);
- if (!VT.isVector())
- return SDValue();
- if (VT.getSimpleVT().getSizeInBits() != 64)
- return SDValue();
- // Is the operand an extract_subvector starting at the beginning or halfway
- // point of the vector? A low half may also come through as an
- // EXTRACT_SUBREG, so look for that, too.
- SDValue Op0 = N->getOperand(0);
- if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
- !(Op0->isMachineOpcode() &&
- Op0->getMachineOpcode() == ARM64::EXTRACT_SUBREG))
- return SDValue();
- uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
- if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
- if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
- return SDValue();
- } else if (Op0->getMachineOpcode() == ARM64::EXTRACT_SUBREG) {
- if (idx != ARM64::dsub)
- return SDValue();
- // The dsub reference is equivalent to a lane zero subvector reference.
- idx = 0;
- }
- // Look through the bitcast of the input to the extract.
- if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
- return SDValue();
- SDValue Source = Op0->getOperand(0)->getOperand(0);
- // If the source type has twice the number of elements as our destination
- // type, we know this is an extract of the high or low half of the vector.
- EVT SVT = Source->getValueType(0);
- if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
- return SDValue();
-
- DEBUG(dbgs() << "arm64-lower: bitcast extract_subvector simplification\n");
-
- // Create the simplified form to just extract the low or high half of the
- // vector directly rather than bothering with the bitcasts.
- SDLoc dl(N);
- unsigned NumElements = VT.getVectorNumElements();
- if (idx) {
- SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
- } else {
- SDValue SubReg = DAG.getTargetConstant(ARM64::dsub, MVT::i32);
- return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
- Source, SubReg),
- 0);
- }
-}
-
-static SDValue performConcatVectorsCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- // Wait 'til after everything is legalized to try this. That way we have
- // legal vector types and such.
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
-
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
-
- // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
- // splat. The indexed instructions are going to be expecting a DUPLANE64, so
- // canonicalise to that.
- if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
- assert(VT.getVectorElementType().getSizeInBits() == 64);
- return DAG.getNode(ARM64ISD::DUPLANE64, dl, VT,
- WidenVector(N->getOperand(0), DAG),
- DAG.getConstant(0, MVT::i64));
- }
-
- // Canonicalise concat_vectors so that the right-hand vector has as few
- // bit-casts as possible before its real operation. The primary matching
- // destination for these operations will be the narrowing "2" instructions,
- // which depend on the operation being performed on this right-hand vector.
- // For example,
- // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
- // becomes
- // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
-
- SDValue Op1 = N->getOperand(1);
- if (Op1->getOpcode() != ISD::BITCAST)
- return SDValue();
- SDValue RHS = Op1->getOperand(0);
- MVT RHSTy = RHS.getValueType().getSimpleVT();
- // If the RHS is not a vector, this is not the pattern we're looking for.
- if (!RHSTy.isVector())
- return SDValue();
-
- DEBUG(dbgs() << "arm64-lower: concat_vectors bitcast simplification\n");
-
- MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
- RHSTy.getVectorNumElements() * 2);
- return DAG.getNode(
- ISD::BITCAST, dl, VT,
- DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
- DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
-}
-
-static SDValue tryCombineFixedPointConvert(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- // Wait 'til after everything is legalized to try this. That way we have
- // legal vector types and such.
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
- // Transform a scalar conversion of a value from a lane extract into a
- // lane extract of a vector conversion. E.g., from foo1 to foo2:
- // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
- // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
- //
- // The second form interacts better with instruction selection and the
- // register allocator to avoid cross-class register copies that aren't
- // coalescable due to a lane reference.
-
- // Check the operand and see if it originates from a lane extract.
- SDValue Op1 = N->getOperand(1);
- if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
- // Yep, no additional predication needed. Perform the transform.
- SDValue IID = N->getOperand(0);
- SDValue Shift = N->getOperand(2);
- SDValue Vec = Op1.getOperand(0);
- SDValue Lane = Op1.getOperand(1);
- EVT ResTy = N->getValueType(0);
- EVT VecResTy;
- SDLoc DL(N);
-
- // The vector width should be 128 bits by the time we get here, even
- // if it started as 64 bits (the extract_vector handling will have
- // done so).
- assert(Vec.getValueType().getSizeInBits() == 128 &&
- "unexpected vector size on extract_vector_elt!");
- if (Vec.getValueType() == MVT::v4i32)
- VecResTy = MVT::v4f32;
- else if (Vec.getValueType() == MVT::v2i64)
- VecResTy = MVT::v2f64;
- else
- assert(0 && "unexpected vector type!");
-
- SDValue Convert =
- DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
- }
- return SDValue();
-}
-
-// AArch64 high-vector "long" operations are formed by performing the non-high
-// version on an extract_subvector of each operand which gets the high half:
-//
-// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
-//
-// However, there are cases which don't have an extract_high explicitly, but
-// have another operation that can be made compatible with one for free. For
-// example:
-//
-// (dupv64 scalar) --> (extract_high (dup128 scalar))
-//
-// This routine does the actual conversion of such DUPs, once outer routines
-// have determined that everything else is in order.
-static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
- // We can handle most types of duplicate, but the lane ones have an extra
- // operand saying *which* lane, so we need to know.
- bool IsDUPLANE;
- switch (N.getOpcode()) {
- case ARM64ISD::DUP:
- IsDUPLANE = false;
- break;
- case ARM64ISD::DUPLANE8:
- case ARM64ISD::DUPLANE16:
- case ARM64ISD::DUPLANE32:
- case ARM64ISD::DUPLANE64:
- IsDUPLANE = true;
- break;
- default:
- return SDValue();
- }
-
- MVT NarrowTy = N.getSimpleValueType();
- if (!NarrowTy.is64BitVector())
- return SDValue();
-
- MVT ElementTy = NarrowTy.getVectorElementType();
- unsigned NumElems = NarrowTy.getVectorNumElements();
- MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
-
- SDValue NewDUP;
- if (IsDUPLANE)
- NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
- N.getOperand(1));
- else
- NewDUP = DAG.getNode(ARM64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
-
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
- NewDUP, DAG.getConstant(NumElems, MVT::i64));
-}
-
-static bool isEssentiallyExtractSubvector(SDValue N) {
- if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
- return true;
-
- return N.getOpcode() == ISD::BITCAST &&
- N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
-}
-
-/// \brief Helper structure to keep track of ISD::SET_CC operands.
-struct GenericSetCCInfo {
- const SDValue *Opnd0;
- const SDValue *Opnd1;
- ISD::CondCode CC;
-};
-
-/// \brief Helper structure to keep track of a SET_CC lowered into ARM64 code.
-struct ARM64SetCCInfo {
- const SDValue *Cmp;
- ARM64CC::CondCode CC;
-};
-
-/// \brief Helper structure to keep track of SetCC information.
-union SetCCInfo {
- GenericSetCCInfo Generic;
- ARM64SetCCInfo ARM64;
-};
-
-/// \brief Helper structure to be able to read SetCC information.
-/// If set to true, IsARM64 field, Info is a ARM64SetCCInfo, otherwise Info is
-/// a GenericSetCCInfo.
-struct SetCCInfoAndKind {
- SetCCInfo Info;
- bool IsARM64;
-};
-
-/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
-/// an
-/// ARM64 lowered one.
-/// \p SetCCInfo is filled accordingly.
-/// \post SetCCInfo is meanginfull only when this function returns true.
-/// \return True when Op is a kind of SET_CC operation.
-static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
- // If this is a setcc, this is straight forward.
- if (Op.getOpcode() == ISD::SETCC) {
- SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
- SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
- SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SetCCInfo.IsARM64 = false;
- return true;
- }
- // Otherwise, check if this is a matching csel instruction.
- // In other words:
- // - csel 1, 0, cc
- // - csel 0, 1, !cc
- if (Op.getOpcode() != ARM64ISD::CSEL)
- return false;
- // Set the information about the operands.
- // TODO: we want the operands of the Cmp not the csel
- SetCCInfo.Info.ARM64.Cmp = &Op.getOperand(3);
- SetCCInfo.IsARM64 = true;
- SetCCInfo.Info.ARM64.CC = static_cast<ARM64CC::CondCode>(
- cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
-
- // Check that the operands matches the constraints:
- // (1) Both operands must be constants.
- // (2) One must be 1 and the other must be 0.
- ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
- ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
-
- // Check (1).
- if (!TValue || !FValue)
- return false;
-
- // Check (2).
- if (!TValue->isOne()) {
- // Update the comparison when we are interested in !cc.
- std::swap(TValue, FValue);
- SetCCInfo.Info.ARM64.CC =
- ARM64CC::getInvertedCondCode(SetCCInfo.Info.ARM64.CC);
- }
- return TValue->isOne() && FValue->isNullValue();
-}
-
-// The folding we want to perform is:
-// (add x, (setcc cc ...) )
-// -->
-// (csel x, (add x, 1), !cc ...)
-//
-// The latter will get matched to a CSINC instruction.
-static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
- assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
- SDValue LHS = Op->getOperand(0);
- SDValue RHS = Op->getOperand(1);
- SetCCInfoAndKind InfoAndKind;
-
- // If neither operand is a SET_CC, give up.
- if (!isSetCC(LHS, InfoAndKind)) {
- std::swap(LHS, RHS);
- if (!isSetCC(LHS, InfoAndKind))
- return SDValue();
- }
-
- // FIXME: This could be generatized to work for FP comparisons.
- EVT CmpVT = InfoAndKind.IsARM64
- ? InfoAndKind.Info.ARM64.Cmp->getOperand(0).getValueType()
- : InfoAndKind.Info.Generic.Opnd0->getValueType();
- if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
- return SDValue();
-
- SDValue CCVal;
- SDValue Cmp;
- SDLoc dl(Op);
- if (InfoAndKind.IsARM64) {
- CCVal = DAG.getConstant(
- ARM64CC::getInvertedCondCode(InfoAndKind.Info.ARM64.CC), MVT::i32);
- Cmp = *InfoAndKind.Info.ARM64.Cmp;
- } else
- Cmp = getARM64Cmp(*InfoAndKind.Info.Generic.Opnd0,
- *InfoAndKind.Info.Generic.Opnd1,
- ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
- CCVal, DAG, dl);
-
- EVT VT = Op->getValueType(0);
- LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
- return DAG.getNode(ARM64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
-}
-
-// The basic add/sub long vector instructions have variants with "2" on the end
-// which act on the high-half of their inputs. They are normally matched by
-// patterns like:
-//
-// (add (zeroext (extract_high LHS)),
-// (zeroext (extract_high RHS)))
-// -> uaddl2 vD, vN, vM
-//
-// However, if one of the extracts is something like a duplicate, this
-// instruction can still be used profitably. This function puts the DAG into a
-// more appropriate form for those patterns to trigger.
-static SDValue performAddSubLongCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
-
- MVT VT = N->getSimpleValueType(0);
- if (!VT.is128BitVector()) {
- if (N->getOpcode() == ISD::ADD)
- return performSetccAddFolding(N, DAG);
- return SDValue();
- }
-
- // Make sure both branches are extended in the same way.
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
- LHS.getOpcode() != ISD::SIGN_EXTEND) ||
- LHS.getOpcode() != RHS.getOpcode())
- return SDValue();
-
- unsigned ExtType = LHS.getOpcode();
-
- // It's not worth doing if at least one of the inputs isn't already an
- // extract, but we don't know which it'll be so we have to try both.
- if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
- RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
- if (!RHS.getNode())
- return SDValue();
-
- RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
- } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
- LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
- if (!LHS.getNode())
- return SDValue();
-
- LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
- }
-
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
-}
-
-// Massage DAGs which we can use the high-half "long" operations on into
-// something isel will recognize better. E.g.
-//
-// (arm64_neon_umull (extract_high vec) (dupv64 scalar)) -->
-// (arm64_neon_umull (extract_high (v2i64 vec)))
-// (extract_high (v2i64 (dup128 scalar)))))
-//
-static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- if (DCI.isBeforeLegalizeOps())
- return SDValue();
-
- SDValue LHS = N->getOperand(1);
- SDValue RHS = N->getOperand(2);
- assert(LHS.getValueType().is64BitVector() &&
- RHS.getValueType().is64BitVector() &&
- "unexpected shape for long operation");
-
- // Either node could be a DUP, but it's not worth doing both of them (you'd
- // just as well use the non-high version) so look for a corresponding extract
- // operation on the other "wing".
- if (isEssentiallyExtractSubvector(LHS)) {
- RHS = tryExtendDUPToExtractHigh(RHS, DAG);
- if (!RHS.getNode())
- return SDValue();
- } else if (isEssentiallyExtractSubvector(RHS)) {
- LHS = tryExtendDUPToExtractHigh(LHS, DAG);
- if (!LHS.getNode())
- return SDValue();
- }
-
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
- N->getOperand(0), LHS, RHS);
-}
-
-static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
- MVT ElemTy = N->getSimpleValueType(0).getScalarType();
- unsigned ElemBits = ElemTy.getSizeInBits();
-
- int64_t ShiftAmount;
- if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
- APInt SplatValue, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
- HasAnyUndefs, ElemBits) ||
- SplatBitSize != ElemBits)
- return SDValue();
-
- ShiftAmount = SplatValue.getSExtValue();
- } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
- ShiftAmount = CVN->getSExtValue();
- } else
- return SDValue();
-
- unsigned Opcode;
- bool IsRightShift;
- switch (IID) {
- default:
- llvm_unreachable("Unknown shift intrinsic");
- case Intrinsic::arm64_neon_sqshl:
- Opcode = ARM64ISD::SQSHL_I;
- IsRightShift = false;
- break;
- case Intrinsic::arm64_neon_uqshl:
- Opcode = ARM64ISD::UQSHL_I;
- IsRightShift = false;
- break;
- case Intrinsic::arm64_neon_srshl:
- Opcode = ARM64ISD::SRSHR_I;
- IsRightShift = true;
- break;
- case Intrinsic::arm64_neon_urshl:
- Opcode = ARM64ISD::URSHR_I;
- IsRightShift = true;
- break;
- case Intrinsic::arm64_neon_sqshlu:
- Opcode = ARM64ISD::SQSHLU_I;
- IsRightShift = false;
- break;
- }
-
- if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
- return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
- DAG.getConstant(-ShiftAmount, MVT::i32));
- else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount <= ElemBits)
- return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
- DAG.getConstant(ShiftAmount, MVT::i32));
-
- return SDValue();
-}
-
-// The CRC32[BH] instructions ignore the high bits of their data operand. Since
-// the intrinsics must be legal and take an i32, this means there's almost
-// certainly going to be a zext in the DAG which we can eliminate.
-static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
- SDValue AndN = N->getOperand(2);
- if (AndN.getOpcode() != ISD::AND)
- return SDValue();
-
- ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
- if (!CMask || CMask->getZExtValue() != Mask)
- return SDValue();
-
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
- N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
-}
-
-static SDValue performIntrinsicCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- const ARM64Subtarget *Subtarget) {
- SelectionDAG &DAG = DCI.DAG;
- unsigned IID = getIntrinsicID(N);
- switch (IID) {
- default:
- break;
- case Intrinsic::arm64_neon_vcvtfxs2fp:
- case Intrinsic::arm64_neon_vcvtfxu2fp:
- return tryCombineFixedPointConvert(N, DCI, DAG);
- break;
- case Intrinsic::arm64_neon_fmax:
- return DAG.getNode(ARM64ISD::FMAX, SDLoc(N), N->getValueType(0),
- N->getOperand(1), N->getOperand(2));
- case Intrinsic::arm64_neon_fmin:
- return DAG.getNode(ARM64ISD::FMIN, SDLoc(N), N->getValueType(0),
- N->getOperand(1), N->getOperand(2));
- case Intrinsic::arm64_neon_smull:
- case Intrinsic::arm64_neon_umull:
- case Intrinsic::arm64_neon_pmull:
- case Intrinsic::arm64_neon_sqdmull:
- return tryCombineLongOpWithDup(IID, N, DCI, DAG);
- case Intrinsic::arm64_neon_sqshl:
- case Intrinsic::arm64_neon_uqshl:
- case Intrinsic::arm64_neon_sqshlu:
- case Intrinsic::arm64_neon_srshl:
- case Intrinsic::arm64_neon_urshl:
- return tryCombineShiftImm(IID, N, DAG);
- case Intrinsic::arm64_crc32b:
- case Intrinsic::arm64_crc32cb:
- return tryCombineCRC32(0xff, N, DAG);
- case Intrinsic::arm64_crc32h:
- case Intrinsic::arm64_crc32ch:
- return tryCombineCRC32(0xffff, N, DAG);
- }
- return SDValue();
-}
-
-static SDValue performExtendCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
- // we can convert that DUP into another extract_high (of a bigger DUP), which
- // helps the backend to decide that an sabdl2 would be useful, saving a real
- // extract_high operation.
- if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
- N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
- SDNode *ABDNode = N->getOperand(0).getNode();
- unsigned IID = getIntrinsicID(ABDNode);
- if (IID == Intrinsic::arm64_neon_sabd ||
- IID == Intrinsic::arm64_neon_uabd) {
- SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
- if (!NewABD.getNode())
- return SDValue();
-
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
- NewABD);
- }
- }
-
- // This is effectively a custom type legalization for ARM64.
- //
- // Type legalization will split an extend of a small, legal, type to a larger
- // illegal type by first splitting the destination type, often creating
- // illegal source types, which then get legalized in isel-confusing ways,
- // leading to really terrible codegen. E.g.,
- // %result = v8i32 sext v8i8 %value
- // becomes
- // %losrc = extract_subreg %value, ...
- // %hisrc = extract_subreg %value, ...
- // %lo = v4i32 sext v4i8 %losrc
- // %hi = v4i32 sext v4i8 %hisrc
- // Things go rapidly downhill from there.
- //
- // For ARM64, the [sz]ext vector instructions can only go up one element
- // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
- // take two instructions.
- //
- // This implies that the most efficient way to do the extend from v8i8
- // to two v4i32 values is to first extend the v8i8 to v8i16, then do
- // the normal splitting to happen for the v8i16->v8i32.
-
- // This is pre-legalization to catch some cases where the default
- // type legalization will create ill-tempered code.
- if (!DCI.isBeforeLegalizeOps())
- return SDValue();
-
- // We're only interested in cleaning things up for non-legal vector types
- // here. If both the source and destination are legal, things will just
- // work naturally without any fiddling.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT ResVT = N->getValueType(0);
- if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
- return SDValue();
- // If the vector type isn't a simple VT, it's beyond the scope of what
- // we're worried about here. Let legalization do its thing and hope for
- // the best.
- if (!ResVT.isSimple())
- return SDValue();
-
- SDValue Src = N->getOperand(0);
- MVT SrcVT = Src->getValueType(0).getSimpleVT();
- // If the source VT is a 64-bit vector, we can play games and get the
- // better results we want.
- if (SrcVT.getSizeInBits() != 64)
- return SDValue();
-
- unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
- unsigned ElementCount = SrcVT.getVectorNumElements();
- SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
- SDLoc DL(N);
- Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
-
- // Now split the rest of the operation into two halves, each with a 64
- // bit source.
- EVT LoVT, HiVT;
- SDValue Lo, Hi;
- unsigned NumElements = ResVT.getVectorNumElements();
- assert(!(NumElements & 1) && "Splitting vector, but not in half!");
- LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
- ResVT.getVectorElementType(), NumElements / 2);
-
- EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
- LoVT.getVectorNumElements());
- Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
- DAG.getIntPtrConstant(0));
- Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
- DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
- Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
- Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
-
- // Now combine the parts back together so we still have a single result
- // like the combiner expects.
- return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
-}
-
-/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
-/// value. The load store optimizer pass will merge them to store pair stores.
-/// This has better performance than a splat of the scalar followed by a split
-/// vector store. Even if the stores are not merged it is four stores vs a dup,
-/// followed by an ext.b and two stores.
-static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
- SDValue StVal = St->getValue();
- EVT VT = StVal.getValueType();
-
- // Don't replace floating point stores, they possibly won't be transformed to
- // stp because of the store pair suppress pass.
- if (VT.isFloatingPoint())
- return SDValue();
-
- // Check for insert vector elements.
- if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
- return SDValue();
-
- // We can express a splat as store pair(s) for 2 or 4 elements.
- unsigned NumVecElts = VT.getVectorNumElements();
- if (NumVecElts != 4 && NumVecElts != 2)
- return SDValue();
- SDValue SplatVal = StVal.getOperand(1);
- unsigned RemainInsertElts = NumVecElts - 1;
-
- // Check that this is a splat.
- while (--RemainInsertElts) {
- SDValue NextInsertElt = StVal.getOperand(0);
- if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
- return SDValue();
- if (NextInsertElt.getOperand(1) != SplatVal)
- return SDValue();
- StVal = NextInsertElt;
- }
- unsigned OrigAlignment = St->getAlignment();
- unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
- unsigned Alignment = std::min(OrigAlignment, EltOffset);
-
- // Create scalar stores. This is at least as good as the code sequence for a
- // split unaligned store wich is a dup.s, ext.b, and two stores.
- // Most of the time the three stores should be replaced by store pair
- // instructions (stp).
- SDLoc DL(St);
- SDValue BasePtr = St->getBasePtr();
- SDValue NewST1 =
- DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
- St->isVolatile(), St->isNonTemporal(), St->getAlignment());
-
- unsigned Offset = EltOffset;
- while (--NumVecElts) {
- SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
- DAG.getConstant(Offset, MVT::i64));
- NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
- St->getPointerInfo(), St->isVolatile(),
- St->isNonTemporal(), Alignment);
- Offset += EltOffset;
- }
- return NewST1;
-}
-
-static SDValue performSTORECombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG,
- const ARM64Subtarget *Subtarget) {
- if (!DCI.isBeforeLegalize())
- return SDValue();
-
- StoreSDNode *S = cast<StoreSDNode>(N);
- if (S->isVolatile())
- return SDValue();
-
- // Cyclone has bad performance on unaligned 16B stores when crossing line and
- // page boundries. We want to split such stores.
- if (!Subtarget->isCyclone())
- return SDValue();
-
- // Don't split at Oz.
- MachineFunction &MF = DAG.getMachineFunction();
- bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
- AttributeSet::FunctionIndex, Attribute::MinSize);
- if (IsMinSize)
- return SDValue();
-
- SDValue StVal = S->getValue();
- EVT VT = StVal.getValueType();
-
- // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
- // those up regresses performance on micro-benchmarks and olden/bh.
- if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
- return SDValue();
-
- // Split unaligned 16B stores. They are terrible for performance.
- // Don't split stores with alignment of 1 or 2. Code that uses clang vector
- // extensions can use this to mark that it does not want splitting to happen
- // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
- // eliminating alignment hazards is only 1 in 8 for alignment of 2.
- if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
- S->getAlignment() <= 2)
- return SDValue();
-
- // If we get a splat of a scalar convert this vector store to a store of
- // scalars. They will be merged into store pairs thereby removing two
- // instructions.
- SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
- if (ReplacedSplat != SDValue())
- return ReplacedSplat;
-
- SDLoc DL(S);
- unsigned NumElts = VT.getVectorNumElements() / 2;
- // Split VT into two.
- EVT HalfVT =
- EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
- SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
- DAG.getIntPtrConstant(0));
- SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
- DAG.getIntPtrConstant(NumElts));
- SDValue BasePtr = S->getBasePtr();
- SDValue NewST1 =
- DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
- S->isVolatile(), S->isNonTemporal(), S->getAlignment());
- SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
- DAG.getConstant(8, MVT::i64));
- return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
- S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
- S->getAlignment());
-}
-
-// Optimize compare with zero and branch.
-static SDValue performBRCONDCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI,
- SelectionDAG &DAG) {
- SDValue Chain = N->getOperand(0);
- SDValue Dest = N->getOperand(1);
- SDValue CCVal = N->getOperand(2);
- SDValue Cmp = N->getOperand(3);
-
- assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
- unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
- if (CC != ARM64CC::EQ && CC != ARM64CC::NE)
- return SDValue();
-
- unsigned CmpOpc = Cmp.getOpcode();
- if (CmpOpc != ARM64ISD::ADDS && CmpOpc != ARM64ISD::SUBS)
- return SDValue();
-
- // Only attempt folding if there is only one use of the flag and no use of the
- // value.
- if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
- return SDValue();
-
- SDValue LHS = Cmp.getOperand(0);
- SDValue RHS = Cmp.getOperand(1);
-
- assert(LHS.getValueType() == RHS.getValueType() &&
- "Expected the value type to be the same for both operands!");
- if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
- return SDValue();
-
- if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
- std::swap(LHS, RHS);
-
- if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
- return SDValue();
-
- if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
- LHS.getOpcode() == ISD::SRL)
- return SDValue();
-
- // Fold the compare into the branch instruction.
- SDValue BR;
- if (CC == ARM64CC::EQ)
- BR = DAG.getNode(ARM64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
- else
- BR = DAG.getNode(ARM64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
-
- // Do not add new nodes to DAG combiner worklist.
- DCI.CombineTo(N, BR, false);
-
- return SDValue();
-}
-
-SDValue ARM64TargetLowering::PerformDAGCombine(SDNode *N,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::ADD:
- case ISD::SUB:
- return performAddSubLongCombine(N, DCI, DAG);
- case ISD::XOR:
- return performXorCombine(N, DAG, DCI, Subtarget);
- case ISD::MUL:
- return performMulCombine(N, DAG, DCI, Subtarget);
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- return performIntToFpCombine(N, DAG);
- case ISD::OR:
- return performORCombine(N, DCI, Subtarget);
- case ISD::INTRINSIC_WO_CHAIN:
- return performIntrinsicCombine(N, DCI, Subtarget);
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::SIGN_EXTEND:
- return performExtendCombine(N, DCI, DAG);
- case ISD::BITCAST:
- return performBitcastCombine(N, DCI, DAG);
- case ISD::CONCAT_VECTORS:
- return performConcatVectorsCombine(N, DCI, DAG);
- case ISD::STORE:
- return performSTORECombine(N, DCI, DAG, Subtarget);
- case ARM64ISD::BRCOND:
- return performBRCONDCombine(N, DCI, DAG);
- }
- return SDValue();
-}
-
-// Check if the return value is used as only a return value, as otherwise
-// we can't perform a tail-call. In particular, we need to check for
-// target ISD nodes that are returns and any other "odd" constructs
-// that the generic analysis code won't necessarily catch.
-bool ARM64TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
- if (N->getNumValues() != 1)
- return false;
- if (!N->hasNUsesOfValue(1, 0))
- return false;
-
- SDValue TCChain = Chain;
- SDNode *Copy = *N->use_begin();
- if (Copy->getOpcode() == ISD::CopyToReg) {
- // If the copy has a glue operand, we conservatively assume it isn't safe to
- // perform a tail call.
- if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
- MVT::Glue)
- return false;
- TCChain = Copy->getOperand(0);
- } else if (Copy->getOpcode() != ISD::FP_EXTEND)
- return false;
-
- bool HasRet = false;
- for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
- UI != UE; ++UI) {
- if (UI->getOpcode() != ARM64ISD::RET_FLAG)
- return false;
- HasRet = true;
- }
-
- if (!HasRet)
- return false;
-
- Chain = TCChain;
- return true;
-}
-
-// Return whether the an instruction can potentially be optimized to a tail
-// call. This will cause the optimizers to attempt to move, or duplicate,
-// return instructions to help enable tail call optimizations for this
-// instruction.
-bool ARM64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
- if (!EnableARM64TailCalls)
- return false;
-
- if (!CI->isTailCall())
- return false;
-
- return true;
-}
-
-bool ARM64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
- SDValue &Offset,
- ISD::MemIndexedMode &AM,
- bool &IsInc,
- SelectionDAG &DAG) const {
- if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
- return false;
-
- Base = Op->getOperand(0);
- // All of the indexed addressing mode instructions take a signed
- // 9 bit immediate offset.
- if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
- int64_t RHSC = (int64_t)RHS->getZExtValue();
- if (RHSC >= 256 || RHSC <= -256)
- return false;
- IsInc = (Op->getOpcode() == ISD::ADD);
- Offset = Op->getOperand(1);
- return true;
- }
- return false;
-}
-
-bool ARM64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
- SDValue &Offset,
- ISD::MemIndexedMode &AM,
- SelectionDAG &DAG) const {
- EVT VT;
- SDValue Ptr;
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- VT = LD->getMemoryVT();
- Ptr = LD->getBasePtr();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- VT = ST->getMemoryVT();
- Ptr = ST->getBasePtr();
- } else
- return false;
-
- bool IsInc;
- if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
- return false;
- AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
- return true;
-}
-
-bool ARM64TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
- SDValue &Base,
- SDValue &Offset,
- ISD::MemIndexedMode &AM,
- SelectionDAG &DAG) const {
- EVT VT;
- SDValue Ptr;
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- VT = LD->getMemoryVT();
- Ptr = LD->getBasePtr();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- VT = ST->getMemoryVT();
- Ptr = ST->getBasePtr();
- } else
- return false;
-
- bool IsInc;
- if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
- return false;
- // Post-indexing updates the base, so it's not a valid transform
- // if that's not the same as the load's pointer.
- if (Ptr != Base)
- return false;
- AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
- return true;
-}
-
-/// The only 128-bit atomic operation is an stxp that succeeds. In particular
-/// neither ldp nor ldxp are atomic. So the canonical sequence for an atomic
-/// load is:
-/// loop:
-/// ldxp x0, x1, [x8]
-/// stxp w2, x0, x1, [x8]
-/// cbnz w2, loop
-/// If the stxp succeeds then the ldxp managed to get both halves without an
-/// intervening stxp from a different thread and the read was atomic.
-static void ReplaceATOMIC_LOAD_128(SDNode *N, SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) {
- SDLoc DL(N);
- AtomicSDNode *AN = cast<AtomicSDNode>(N);
- EVT VT = AN->getMemoryVT();
- SDValue Zero = DAG.getConstant(0, VT);
-
- // FIXME: Really want ATOMIC_LOAD_NOP but that doesn't fit into the existing
- // scheme very well. Given the complexity of what we're already generating, an
- // extra couple of ORRs probably won't make much difference.
- SDValue Result = DAG.getAtomic(ISD::ATOMIC_LOAD_OR, DL, AN->getMemoryVT(),
- N->getOperand(0), N->getOperand(1), Zero,
- AN->getMemOperand(), AN->getOrdering(),
- AN->getSynchScope());
-
- Results.push_back(Result.getValue(0)); // Value
- Results.push_back(Result.getValue(1)); // Chain
-}
-
-static void ReplaceATOMIC_OP_128(SDNode *N, SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG, unsigned NewOp) {
- SDLoc DL(N);
- AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- assert(N->getValueType(0) == MVT::i128 &&
- "Only know how to expand i128 atomics");
-
- SmallVector<SDValue, 6> Ops;
- Ops.push_back(N->getOperand(1)); // Ptr
- // Low part of Val1
- Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64,
- N->getOperand(2), DAG.getIntPtrConstant(0)));
- // High part of Val1
- Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64,
- N->getOperand(2), DAG.getIntPtrConstant(1)));
- if (NewOp == ARM64::ATOMIC_CMP_SWAP_I128) {
- // Low part of Val2
- Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64,
- N->getOperand(3), DAG.getIntPtrConstant(0)));
- // High part of Val2
- Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64,
- N->getOperand(3), DAG.getIntPtrConstant(1)));
- }
-
- Ops.push_back(DAG.getTargetConstant(Ordering, MVT::i32));
- Ops.push_back(N->getOperand(0)); // Chain
-
- SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
- SDNode *Result = DAG.getMachineNode(NewOp, DL, Tys, Ops);
- SDValue OpsF[] = { SDValue(Result, 0), SDValue(Result, 1) };
- Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, OpsF, 2));
- Results.push_back(SDValue(Result, 2));
-}
-
-void ARM64TargetLowering::ReplaceNodeResults(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const {
- switch (N->getOpcode()) {
- default:
- llvm_unreachable("Don't know how to custom expand this");
- case ISD::ATOMIC_LOAD:
- ReplaceATOMIC_LOAD_128(N, Results, DAG);
- return;
- case ISD::ATOMIC_LOAD_ADD:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_ADD_I128);
- return;
- case ISD::ATOMIC_LOAD_SUB:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_SUB_I128);
- return;
- case ISD::ATOMIC_LOAD_AND:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_AND_I128);
- return;
- case ISD::ATOMIC_LOAD_OR:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_OR_I128);
- return;
- case ISD::ATOMIC_LOAD_XOR:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_XOR_I128);
- return;
- case ISD::ATOMIC_LOAD_NAND:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_NAND_I128);
- return;
- case ISD::ATOMIC_SWAP:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_SWAP_I128);
- return;
- case ISD::ATOMIC_LOAD_MIN:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_MIN_I128);
- return;
- case ISD::ATOMIC_LOAD_MAX:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_MAX_I128);
- return;
- case ISD::ATOMIC_LOAD_UMIN:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_UMIN_I128);
- return;
- case ISD::ATOMIC_LOAD_UMAX:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_LOAD_UMAX_I128);
- return;
- case ISD::ATOMIC_CMP_SWAP:
- ReplaceATOMIC_OP_128(N, Results, DAG, ARM64::ATOMIC_CMP_SWAP_I128);
- return;
- case ISD::FP_TO_UINT:
- case ISD::FP_TO_SINT:
- assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
- // Let normal code take care of it by not adding anything to Results.
- return;
- }
-}