diff options
Diffstat (limited to 'lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h')
-rw-r--r-- | lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h | 758 |
1 files changed, 0 insertions, 758 deletions
diff --git a/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h b/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h deleted file mode 100644 index 7717743..0000000 --- a/lib/Target/ARM64/MCTargetDesc/ARM64AddressingModes.h +++ /dev/null @@ -1,758 +0,0 @@ -//===- ARM64AddressingModes.h - ARM64 Addressing Modes ----------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains the ARM64 addressing mode implementation stuff. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TARGET_ARM64_ARM64ADDRESSINGMODES_H -#define LLVM_TARGET_ARM64_ARM64ADDRESSINGMODES_H - -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include <cassert> - -namespace llvm { - -/// ARM64_AM - ARM64 Addressing Mode Stuff -namespace ARM64_AM { - -//===----------------------------------------------------------------------===// -// Shifts -// - -enum ShiftType { - InvalidShift = -1, - LSL = 0, - LSR = 1, - ASR = 2, - ROR = 3, - MSL = 4 -}; - -/// getShiftName - Get the string encoding for the shift type. -static inline const char *getShiftName(ARM64_AM::ShiftType ST) { - switch (ST) { - default: assert(false && "unhandled shift type!"); - case ARM64_AM::LSL: return "lsl"; - case ARM64_AM::LSR: return "lsr"; - case ARM64_AM::ASR: return "asr"; - case ARM64_AM::ROR: return "ror"; - case ARM64_AM::MSL: return "msl"; - } - return 0; -} - -/// getShiftType - Extract the shift type. -static inline ARM64_AM::ShiftType getShiftType(unsigned Imm) { - return ARM64_AM::ShiftType((Imm >> 6) & 0x7); -} - -/// getShiftValue - Extract the shift value. -static inline unsigned getShiftValue(unsigned Imm) { - return Imm & 0x3f; -} - -/// getShifterImm - Encode the shift type and amount: -/// imm: 6-bit shift amount -/// shifter: 000 ==> lsl -/// 001 ==> lsr -/// 010 ==> asr -/// 011 ==> ror -/// 100 ==> msl -/// {8-6} = shifter -/// {5-0} = imm -static inline unsigned getShifterImm(ARM64_AM::ShiftType ST, unsigned Imm) { - assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); - return (unsigned(ST) << 6) | (Imm & 0x3f); -} - -//===----------------------------------------------------------------------===// -// Extends -// - -enum ExtendType { - InvalidExtend = -1, - UXTB = 0, - UXTH = 1, - UXTW = 2, - UXTX = 3, - SXTB = 4, - SXTH = 5, - SXTW = 6, - SXTX = 7 -}; - -/// getExtendName - Get the string encoding for the extend type. -static inline const char *getExtendName(ARM64_AM::ExtendType ET) { - switch (ET) { - default: assert(false && "unhandled extend type!"); - case ARM64_AM::UXTB: return "uxtb"; - case ARM64_AM::UXTH: return "uxth"; - case ARM64_AM::UXTW: return "uxtw"; - case ARM64_AM::UXTX: return "uxtx"; - case ARM64_AM::SXTB: return "sxtb"; - case ARM64_AM::SXTH: return "sxth"; - case ARM64_AM::SXTW: return "sxtw"; - case ARM64_AM::SXTX: return "sxtx"; - } - return 0; -} - -/// getArithShiftValue - get the arithmetic shift value. -static inline unsigned getArithShiftValue(unsigned Imm) { - return Imm & 0x7; -} - -/// getExtendType - Extract the extend type for operands of arithmetic ops. -static inline ARM64_AM::ExtendType getArithExtendType(unsigned Imm) { - return ARM64_AM::ExtendType((Imm >> 3) & 0x7); -} - -/// getArithExtendImm - Encode the extend type and shift amount for an -/// arithmetic instruction: -/// imm: 3-bit extend amount -/// shifter: 000 ==> uxtb -/// 001 ==> uxth -/// 010 ==> uxtw -/// 011 ==> uxtx -/// 100 ==> sxtb -/// 101 ==> sxth -/// 110 ==> sxtw -/// 111 ==> sxtx -/// {5-3} = shifter -/// {2-0} = imm3 -static inline unsigned getArithExtendImm(ARM64_AM::ExtendType ET, - unsigned Imm) { - assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); - return (unsigned(ET) << 3) | (Imm & 0x7); -} - -/// getMemDoShift - Extract the "do shift" flag value for load/store -/// instructions. -static inline bool getMemDoShift(unsigned Imm) { - return (Imm & 0x1) != 0; -} - -/// getExtendType - Extract the extend type for the offset operand of -/// loads/stores. -static inline ARM64_AM::ExtendType getMemExtendType(unsigned Imm) { - return ARM64_AM::ExtendType((Imm >> 1) & 0x7); -} - -/// getExtendImm - Encode the extend type and amount for a load/store inst: -/// doshift: should the offset be scaled by the access size -/// shifter: 000 ==> uxtb -/// 001 ==> uxth -/// 010 ==> uxtw -/// 011 ==> uxtx -/// 100 ==> sxtb -/// 101 ==> sxth -/// 110 ==> sxtw -/// 111 ==> sxtx -/// {3-1} = shifter -/// {0} = doshift -static inline unsigned getMemExtendImm(ARM64_AM::ExtendType ET, bool DoShift) { - return (unsigned(ET) << 1) | unsigned(DoShift); -} - -//===----------------------------------------------------------------------===// -// Prefetch -// - -/// Pre-fetch operator names. -/// The enum values match the encoding values: -/// prfop<4:3> 00=preload data, 10=prepare for store -/// prfop<2:1> 00=target L1 cache, 01=target L2 cache, 10=target L3 cache, -/// prfop<0> 0=non-streaming (temporal), 1=streaming (non-temporal) -enum PrefetchOp { - InvalidPrefetchOp = -1, - PLDL1KEEP = 0x00, - PLDL1STRM = 0x01, - PLDL2KEEP = 0x02, - PLDL2STRM = 0x03, - PLDL3KEEP = 0x04, - PLDL3STRM = 0x05, - PSTL1KEEP = 0x10, - PSTL1STRM = 0x11, - PSTL2KEEP = 0x12, - PSTL2STRM = 0x13, - PSTL3KEEP = 0x14, - PSTL3STRM = 0x15 -}; - -/// isNamedPrefetchOp - Check if the prefetch-op 5-bit value has a name. -static inline bool isNamedPrefetchOp(unsigned prfop) { - switch (prfop) { - default: return false; - case ARM64_AM::PLDL1KEEP: case ARM64_AM::PLDL1STRM: case ARM64_AM::PLDL2KEEP: - case ARM64_AM::PLDL2STRM: case ARM64_AM::PLDL3KEEP: case ARM64_AM::PLDL3STRM: - case ARM64_AM::PSTL1KEEP: case ARM64_AM::PSTL1STRM: case ARM64_AM::PSTL2KEEP: - case ARM64_AM::PSTL2STRM: case ARM64_AM::PSTL3KEEP: case ARM64_AM::PSTL3STRM: - return true; - } -} - - -/// getPrefetchOpName - Get the string encoding for the prefetch operator. -static inline const char *getPrefetchOpName(ARM64_AM::PrefetchOp prfop) { - switch (prfop) { - default: assert(false && "unhandled prefetch-op type!"); - case ARM64_AM::PLDL1KEEP: return "pldl1keep"; - case ARM64_AM::PLDL1STRM: return "pldl1strm"; - case ARM64_AM::PLDL2KEEP: return "pldl2keep"; - case ARM64_AM::PLDL2STRM: return "pldl2strm"; - case ARM64_AM::PLDL3KEEP: return "pldl3keep"; - case ARM64_AM::PLDL3STRM: return "pldl3strm"; - case ARM64_AM::PSTL1KEEP: return "pstl1keep"; - case ARM64_AM::PSTL1STRM: return "pstl1strm"; - case ARM64_AM::PSTL2KEEP: return "pstl2keep"; - case ARM64_AM::PSTL2STRM: return "pstl2strm"; - case ARM64_AM::PSTL3KEEP: return "pstl3keep"; - case ARM64_AM::PSTL3STRM: return "pstl3strm"; - } - return 0; -} - -static inline uint64_t ror(uint64_t elt, unsigned size) { - return ((elt & 1) << (size-1)) | (elt >> 1); -} - -/// processLogicalImmediate - Determine if an immediate value can be encoded -/// as the immediate operand of a logical instruction for the given register -/// size. If so, return true with "encoding" set to the encoded value in -/// the form N:immr:imms. -static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize, - uint64_t &encoding) { - if (imm == 0ULL || imm == ~0ULL || - (regSize != 64 && (imm >> regSize != 0 || imm == ~0U))) - return false; - - unsigned size = 2; - uint64_t eltVal = imm; - - // First, determine the element size. - while (size < regSize) { - unsigned numElts = regSize / size; - unsigned mask = (1ULL << size) - 1; - uint64_t lowestEltVal = imm & mask; - - bool allMatched = true; - for (unsigned i = 1; i < numElts; ++i) { - uint64_t currEltVal = (imm >> (i*size)) & mask; - if (currEltVal != lowestEltVal) { - allMatched = false; - break; - } - } - - if (allMatched) { - eltVal = lowestEltVal; - break; - } - - size *= 2; - } - - // Second, determine the rotation to make the element be: 0^m 1^n. - for (unsigned i = 0; i < size; ++i) { - eltVal = ror(eltVal, size); - uint32_t clz = countLeadingZeros(eltVal) - (64 - size); - uint32_t cto = CountTrailingOnes_64(eltVal); - - if (clz + cto == size) { - // Encode in immr the number of RORs it would take to get *from* this - // element value to our target value, where i+1 is the number of RORs - // to go the opposite direction. - unsigned immr = size - (i + 1); - - // If size has a 1 in the n'th bit, create a value that has zeroes in - // bits [0, n] and ones above that. - uint64_t nimms = ~(size-1) << 1; - - // Or the CTO value into the low bits, which must be below the Nth bit - // bit mentioned above. - nimms |= (cto-1); - - // Extract the seventh bit and toggle it to create the N field. - unsigned N = ((nimms >> 6) & 1) ^ 1; - - encoding = (N << 12) | (immr << 6) | (nimms & 0x3f); - return true; - } - } - - return false; -} - -/// isLogicalImmediate - Return true if the immediate is valid for a logical -/// immediate instruction of the given register size. Return false otherwise. -static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { - uint64_t encoding; - return processLogicalImmediate(imm, regSize, encoding); -} - -/// encodeLogicalImmediate - Return the encoded immediate value for a logical -/// immediate instruction of the given register size. -static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) { - uint64_t encoding = 0; - bool res = processLogicalImmediate(imm, regSize, encoding); - assert(res && "invalid logical immediate"); - (void)res; - return encoding; -} - -/// decodeLogicalImmediate - Decode a logical immediate value in the form -/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the -/// integer value it represents with regSize bits. -static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) { - // Extract the N, imms, and immr fields. - unsigned N = (val >> 12) & 1; - unsigned immr = (val >> 6) & 0x3f; - unsigned imms = val & 0x3f; - - assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); - int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); - assert(len >= 0 && "undefined logical immediate encoding"); - unsigned size = (1 << len); - unsigned R = immr & (size - 1); - unsigned S = imms & (size - 1); - assert(S != size - 1 && "undefined logical immediate encoding"); - uint64_t pattern = (1ULL << (S + 1)) - 1; - for (unsigned i = 0; i < R; ++i) - pattern = ror(pattern, size); - - // Replicate the pattern to fill the regSize. - while (size != regSize) { - pattern |= (pattern << size); - size *= 2; - } - return pattern; -} - -/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value -/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) -/// is a valid encoding for an integer value with regSize bits. -static inline bool isValidDecodeLogicalImmediate(uint64_t val, - unsigned regSize) { - // Extract the N and imms fields needed for checking. - unsigned N = (val >> 12) & 1; - unsigned imms = val & 0x3f; - - if (regSize == 32 && N != 0) // undefined logical immediate encoding - return false; - int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); - if (len < 0) // undefined logical immediate encoding - return false; - unsigned size = (1 << len); - unsigned S = imms & (size - 1); - if (S == size - 1) // undefined logical immediate encoding - return false; - - return true; -} - -//===----------------------------------------------------------------------===// -// Floating-point Immediates -// -static inline float getFPImmFloat(unsigned Imm) { - // We expect an 8-bit binary encoding of a floating-point number here. - union { - uint32_t I; - float F; - } FPUnion; - - uint8_t Sign = (Imm >> 7) & 0x1; - uint8_t Exp = (Imm >> 4) & 0x7; - uint8_t Mantissa = Imm & 0xf; - - // 8-bit FP iEEEE Float Encoding - // abcd efgh aBbbbbbc defgh000 00000000 00000000 - // - // where B = NOT(b); - - FPUnion.I = 0; - FPUnion.I |= Sign << 31; - FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; - FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; - FPUnion.I |= (Exp & 0x3) << 23; - FPUnion.I |= Mantissa << 19; - return FPUnion.F; -} - -/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit -/// floating-point value. If the value cannot be represented as an 8-bit -/// floating-point value, then return -1. -static inline int getFP32Imm(const APInt &Imm) { - uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; - int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 - int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits - - // We can handle 4 bits of mantissa. - // mantissa = (16+UInt(e:f:g:h))/16. - if (Mantissa & 0x7ffff) - return -1; - Mantissa >>= 19; - if ((Mantissa & 0xf) != Mantissa) - return -1; - - // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 - if (Exp < -3 || Exp > 4) - return -1; - Exp = ((Exp+3) & 0x7) ^ 4; - - return ((int)Sign << 7) | (Exp << 4) | Mantissa; -} - -static inline int getFP32Imm(const APFloat &FPImm) { - return getFP32Imm(FPImm.bitcastToAPInt()); -} - -/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit -/// floating-point value. If the value cannot be represented as an 8-bit -/// floating-point value, then return -1. -static inline int getFP64Imm(const APInt &Imm) { - uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; - int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 - uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; - - // We can handle 4 bits of mantissa. - // mantissa = (16+UInt(e:f:g:h))/16. - if (Mantissa & 0xffffffffffffULL) - return -1; - Mantissa >>= 48; - if ((Mantissa & 0xf) != Mantissa) - return -1; - - // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 - if (Exp < -3 || Exp > 4) - return -1; - Exp = ((Exp+3) & 0x7) ^ 4; - - return ((int)Sign << 7) | (Exp << 4) | Mantissa; -} - -static inline int getFP64Imm(const APFloat &FPImm) { - return getFP64Imm(FPImm.bitcastToAPInt()); -} - -//===--------------------------------------------------------------------===// -// AdvSIMD Modified Immediates -//===--------------------------------------------------------------------===// - -// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh -static inline bool isAdvSIMDModImmType1(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm & 0xffffff00ffffff00ULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) { - return (Imm & 0xffULL); -} - -static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 32) | EncVal; -} - -// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 -static inline bool isAdvSIMDModImmType2(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm & 0xffff00ffffff00ffULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) { - return (Imm & 0xff00ULL) >> 8; -} - -static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 40) | (EncVal << 8); -} - -// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 -static inline bool isAdvSIMDModImmType3(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm & 0xff00ffffff00ffffULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) { - return (Imm & 0xff0000ULL) >> 16; -} - -static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 48) | (EncVal << 16); -} - -// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 -static inline bool isAdvSIMDModImmType4(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm & 0x00ffffff00ffffffULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) { - return (Imm & 0xff000000ULL) >> 24; -} - -static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 56) | (EncVal << 24); -} - -// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh -static inline bool isAdvSIMDModImmType5(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && - ((Imm & 0xff00ff00ff00ff00ULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) { - return (Imm & 0xffULL); -} - -static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; -} - -// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 -static inline bool isAdvSIMDModImmType6(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && - ((Imm & 0x00ff00ff00ff00ffULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) { - return (Imm & 0xff00ULL) >> 8; -} - -static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); -} - -// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF -static inline bool isAdvSIMDModImmType7(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); -} - -static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) { - return (Imm & 0xff00ULL) >> 8; -} - -static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; -} - -// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF -static inline bool isAdvSIMDModImmType8(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); -} - -static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) { - uint64_t EncVal = Imm; - return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; -} - -static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) { - return (Imm & 0x00ff0000ULL) >> 16; -} - -// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh -static inline bool isAdvSIMDModImmType9(uint64_t Imm) { - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - ((Imm >> 48) == (Imm & 0x0000ffffULL)) && - ((Imm >> 56) == (Imm & 0x000000ffULL)); -} - -static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) { - return (Imm & 0xffULL); -} - -static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) { - uint64_t EncVal = Imm; - EncVal |= (EncVal << 8); - EncVal |= (EncVal << 16); - EncVal |= (EncVal << 32); - return EncVal; -} - -// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh -// cmode: 1110, op: 1 -static inline bool isAdvSIMDModImmType10(uint64_t Imm) { - uint64_t ByteA = Imm & 0xff00000000000000ULL; - uint64_t ByteB = Imm & 0x00ff000000000000ULL; - uint64_t ByteC = Imm & 0x0000ff0000000000ULL; - uint64_t ByteD = Imm & 0x000000ff00000000ULL; - uint64_t ByteE = Imm & 0x00000000ff000000ULL; - uint64_t ByteF = Imm & 0x0000000000ff0000ULL; - uint64_t ByteG = Imm & 0x000000000000ff00ULL; - uint64_t ByteH = Imm & 0x00000000000000ffULL; - - return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && - (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && - (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && - (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && - (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && - (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && - (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && - (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); -} - -static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) { - uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; - uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; - uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; - uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; - uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; - uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; - uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; - uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; - - uint8_t EncVal = BitA; - EncVal <<= 1; - EncVal |= BitB; - EncVal <<= 1; - EncVal |= BitC; - EncVal <<= 1; - EncVal |= BitD; - EncVal <<= 1; - EncVal |= BitE; - EncVal <<= 1; - EncVal |= BitF; - EncVal <<= 1; - EncVal |= BitG; - EncVal <<= 1; - EncVal |= BitH; - return EncVal; -} - -static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) { - uint64_t EncVal = 0; - if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; - if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; - if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; - if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; - if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; - if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; - if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; - if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; - return EncVal; -} - -// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 -static inline bool isAdvSIMDModImmType11(uint64_t Imm) { - uint64_t BString = (Imm & 0x7E000000ULL) >> 25; - return ((Imm >> 32) == (Imm & 0xffffffffULL)) && - (BString == 0x1f || BString == 0x20) && - ((Imm & 0x0007ffff0007ffffULL) == 0); -} - -static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) { - uint8_t BitA = (Imm & 0x80000000ULL) != 0; - uint8_t BitB = (Imm & 0x20000000ULL) != 0; - uint8_t BitC = (Imm & 0x01000000ULL) != 0; - uint8_t BitD = (Imm & 0x00800000ULL) != 0; - uint8_t BitE = (Imm & 0x00400000ULL) != 0; - uint8_t BitF = (Imm & 0x00200000ULL) != 0; - uint8_t BitG = (Imm & 0x00100000ULL) != 0; - uint8_t BitH = (Imm & 0x00080000ULL) != 0; - - uint8_t EncVal = BitA; - EncVal <<= 1; - EncVal |= BitB; - EncVal <<= 1; - EncVal |= BitC; - EncVal <<= 1; - EncVal |= BitD; - EncVal <<= 1; - EncVal |= BitE; - EncVal <<= 1; - EncVal |= BitF; - EncVal <<= 1; - EncVal |= BitG; - EncVal <<= 1; - EncVal |= BitH; - return EncVal; -} - -static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) { - uint64_t EncVal = 0; - if (Imm & 0x80) EncVal |= 0x80000000ULL; - if (Imm & 0x40) EncVal |= 0x3e000000ULL; - else EncVal |= 0x40000000ULL; - if (Imm & 0x20) EncVal |= 0x01000000ULL; - if (Imm & 0x10) EncVal |= 0x00800000ULL; - if (Imm & 0x08) EncVal |= 0x00400000ULL; - if (Imm & 0x04) EncVal |= 0x00200000ULL; - if (Imm & 0x02) EncVal |= 0x00100000ULL; - if (Imm & 0x01) EncVal |= 0x00080000ULL; - return (EncVal << 32) | EncVal; -} - -// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 -static inline bool isAdvSIMDModImmType12(uint64_t Imm) { - uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; - return ((BString == 0xff || BString == 0x100) && - ((Imm & 0x0000ffffffffffffULL) == 0)); -} - -static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) { - uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; - uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; - uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; - uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; - uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; - uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; - uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; - uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; - - uint8_t EncVal = BitA; - EncVal <<= 1; - EncVal |= BitB; - EncVal <<= 1; - EncVal |= BitC; - EncVal <<= 1; - EncVal |= BitD; - EncVal <<= 1; - EncVal |= BitE; - EncVal <<= 1; - EncVal |= BitF; - EncVal <<= 1; - EncVal |= BitG; - EncVal <<= 1; - EncVal |= BitH; - return EncVal; -} - -static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) { - uint64_t EncVal = 0; - if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; - if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; - else EncVal |= 0x4000000000000000ULL; - if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; - if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; - if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; - if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; - if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; - if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; - return (EncVal << 32) | EncVal; -} - -} // end namespace ARM64_AM - -} // end namespace llvm - -#endif |