aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Hexagon/HexagonExpandCondsets.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/Hexagon/HexagonExpandCondsets.cpp')
-rw-r--r--lib/Target/Hexagon/HexagonExpandCondsets.cpp1348
1 files changed, 1348 insertions, 0 deletions
diff --git a/lib/Target/Hexagon/HexagonExpandCondsets.cpp b/lib/Target/Hexagon/HexagonExpandCondsets.cpp
new file mode 100644
index 0000000..37ed173
--- /dev/null
+++ b/lib/Target/Hexagon/HexagonExpandCondsets.cpp
@@ -0,0 +1,1348 @@
+// Replace mux instructions with the corresponding legal instructions.
+// It is meant to work post-SSA, but still on virtual registers. It was
+// originally placed between register coalescing and machine instruction
+// scheduler.
+// In this place in the optimization sequence, live interval analysis had
+// been performed, and the live intervals should be preserved. A large part
+// of the code deals with preserving the liveness information.
+//
+// Liveness tracking aside, the main functionality of this pass is divided
+// into two steps. The first step is to replace an instruction
+// vreg0 = C2_mux vreg0, vreg1, vreg2
+// with a pair of conditional transfers
+// vreg0 = A2_tfrt vreg0, vreg1
+// vreg0 = A2_tfrf vreg0, vreg2
+// It is the intention that the execution of this pass could be terminated
+// after this step, and the code generated would be functionally correct.
+//
+// If the uses of the source values vreg1 and vreg2 are kills, and their
+// definitions are predicable, then in the second step, the conditional
+// transfers will then be rewritten as predicated instructions. E.g.
+// vreg0 = A2_or vreg1, vreg2
+// vreg3 = A2_tfrt vreg99, vreg0<kill>
+// will be rewritten as
+// vreg3 = A2_port vreg99, vreg1, vreg2
+//
+// This replacement has two variants: "up" and "down". Consider this case:
+// vreg0 = A2_or vreg1, vreg2
+// ... [intervening instructions] ...
+// vreg3 = A2_tfrt vreg99, vreg0<kill>
+// variant "up":
+// vreg3 = A2_port vreg99, vreg1, vreg2
+// ... [intervening instructions, vreg0->vreg3] ...
+// [deleted]
+// variant "down":
+// [deleted]
+// ... [intervening instructions] ...
+// vreg3 = A2_port vreg99, vreg1, vreg2
+//
+// Both, one or none of these variants may be valid, and checks are made
+// to rule out inapplicable variants.
+//
+// As an additional optimization, before either of the two steps above is
+// executed, the pass attempts to coalesce the target register with one of
+// the source registers, e.g. given an instruction
+// vreg3 = C2_mux vreg0, vreg1, vreg2
+// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
+// the instruction would then be (for example)
+// vreg3 = C2_mux vreg0, vreg3, vreg2
+// and, under certain circumstances, this could result in only one predicated
+// instruction:
+// vreg3 = A2_tfrf vreg0, vreg2
+//
+
+#define DEBUG_TYPE "expand-condsets"
+#include "HexagonTargetMachine.h"
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
+ cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
+static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
+ cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
+
+namespace llvm {
+ void initializeHexagonExpandCondsetsPass(PassRegistry&);
+ FunctionPass *createHexagonExpandCondsets();
+}
+
+namespace {
+ class HexagonExpandCondsets : public MachineFunctionPass {
+ public:
+ static char ID;
+ HexagonExpandCondsets() :
+ MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
+ LIS(0), CoaLimitActive(false),
+ TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
+ if (OptCoaLimit.getPosition())
+ CoaLimitActive = true, CoaLimit = OptCoaLimit;
+ if (OptTfrLimit.getPosition())
+ TfrLimitActive = true, TfrLimit = OptTfrLimit;
+ initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual const char *getPassName() const {
+ return "Hexagon Expand Condsets";
+ }
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ private:
+ const HexagonInstrInfo *HII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+ LiveIntervals *LIS;
+
+ bool CoaLimitActive, TfrLimitActive;
+ unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
+
+ struct RegisterRef {
+ RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
+ Sub(Op.getSubReg()) {}
+ RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
+ bool operator== (RegisterRef RR) const {
+ return Reg == RR.Reg && Sub == RR.Sub;
+ }
+ bool operator!= (RegisterRef RR) const { return !operator==(RR); }
+ unsigned Reg, Sub;
+ };
+
+ typedef DenseMap<unsigned,unsigned> ReferenceMap;
+ enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
+ enum { Exec_Then = 0x10, Exec_Else = 0x20 };
+ unsigned getMaskForSub(unsigned Sub);
+ bool isCondset(const MachineInstr *MI);
+
+ void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
+ bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
+
+ LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
+ LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
+ void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
+ void makeUndead(unsigned Reg, SlotIndex S);
+ void shrinkToUses(unsigned Reg, LiveInterval &LI);
+ void updateKillFlags(unsigned Reg, LiveInterval &LI);
+ void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
+ LiveInterval &LI);
+ void addInstrToLiveness(MachineInstr *MI);
+ void removeInstrFromLiveness(MachineInstr *MI);
+
+ unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
+ MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
+ unsigned DstSR, const MachineOperand &PredOp, bool Cond);
+ bool split(MachineInstr *MI);
+ bool splitInBlock(MachineBasicBlock &B);
+
+ bool isPredicable(MachineInstr *MI);
+ MachineInstr *getReachingDefForPred(RegisterRef RD,
+ MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
+ bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
+ bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
+ void predicateAt(RegisterRef RD, MachineInstr *MI,
+ MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
+ void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
+ bool Cond, MachineBasicBlock::iterator First,
+ MachineBasicBlock::iterator Last);
+ bool predicate(MachineInstr *TfrI, bool Cond);
+ bool predicateInBlock(MachineBasicBlock &B);
+
+ void postprocessUndefImplicitUses(MachineBasicBlock &B);
+ void removeImplicitUses(MachineInstr *MI);
+ void removeImplicitUses(MachineBasicBlock &B);
+
+ bool isIntReg(RegisterRef RR, unsigned &BW);
+ bool isIntraBlocks(LiveInterval &LI);
+ bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
+ bool coalesceSegments(MachineFunction &MF);
+ };
+}
+
+char HexagonExpandCondsets::ID = 0;
+
+
+unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
+ switch (Sub) {
+ case Hexagon::subreg_loreg:
+ return Sub_Low;
+ case Hexagon::subreg_hireg:
+ return Sub_High;
+ case Hexagon::NoSubRegister:
+ return Sub_None;
+ }
+ llvm_unreachable("Invalid subregister");
+}
+
+
+bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::C2_mux:
+ case Hexagon::C2_muxii:
+ case Hexagon::C2_muxir:
+ case Hexagon::C2_muxri:
+ case Hexagon::MUX64_rr:
+ return true;
+ break;
+ }
+ return false;
+}
+
+
+void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
+ unsigned Exec) {
+ unsigned Mask = getMaskForSub(RR.Sub) | Exec;
+ ReferenceMap::iterator F = Map.find(RR.Reg);
+ if (F == Map.end())
+ Map.insert(std::make_pair(RR.Reg, Mask));
+ else
+ F->second |= Mask;
+}
+
+
+bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
+ unsigned Exec) {
+ ReferenceMap::iterator F = Map.find(RR.Reg);
+ if (F == Map.end())
+ return false;
+ unsigned Mask = getMaskForSub(RR.Sub) | Exec;
+ if (Mask & F->second)
+ return true;
+ return false;
+}
+
+
+LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
+ SlotIndex S) {
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ if (I->start >= S)
+ return I;
+ }
+ return LI.end();
+}
+
+
+LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
+ SlotIndex S) {
+ LiveInterval::iterator P = LI.end();
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ if (I->end > S)
+ return P;
+ P = I;
+ }
+ return P;
+}
+
+
+/// Find the implicit use of register Reg in slot index S, and make sure
+/// that the "defined" flag is set to SetDef. While the mux expansion is
+/// going on, predicated instructions will have implicit uses of the
+/// registers that are being defined. This is to keep any preceding
+/// definitions live. If there is no preceding definition, the implicit
+/// use will be marked as "undef", otherwise it will be "defined". This
+/// function is used to update the flag.
+void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
+ bool SetDef) {
+ if (!S.isRegister())
+ return;
+ MachineInstr *MI = LIS->getInstructionFromIndex(S);
+ assert(MI && "Expecting instruction");
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
+ continue;
+ bool IsDef = !Op.isUndef();
+ if (Op.isImplicit() && IsDef != SetDef)
+ Op.setIsUndef(!SetDef);
+ }
+}
+
+
+void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
+ // If S is a block boundary, then there can still be a dead def reaching
+ // this point. Instead of traversing the CFG, queue start points of all
+ // live segments that begin with a register, and end at a block boundary.
+ // This may "resurrect" some truly dead definitions, but doing so is
+ // harmless.
+ SmallVector<MachineInstr*,8> Defs;
+ if (S.isBlock()) {
+ LiveInterval &LI = LIS->getInterval(Reg);
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ if (!I->start.isRegister() || !I->end.isBlock())
+ continue;
+ MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
+ Defs.push_back(MI);
+ }
+ } else if (S.isRegister()) {
+ MachineInstr *MI = LIS->getInstructionFromIndex(S);
+ Defs.push_back(MI);
+ }
+
+ for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
+ MachineInstr *MI = Defs[i];
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
+ continue;
+ Op.setIsDead(false);
+ }
+ }
+}
+
+
+/// Shrink the segments in the live interval for a given register to the last
+/// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
+/// function will not mark any definitions of Reg as dead. The reason for this
+/// is that this function is used while a MUX instruction is being expanded,
+/// or while a conditional copy is undergoing predication. During these
+/// processes, there may be defs present in the instruction sequence that have
+/// not yet been removed, or there may be missing uses that have not yet been
+/// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
+/// but since it does not extend any intervals that are too short, we need to
+/// pre-emptively extend them here in anticipation of further changes.
+void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
+ SmallVector<MachineInstr*,4> Deads;
+ LIS->shrinkToUses(&LI, &Deads);
+ // Need to undo the deadification made by "shrinkToUses". It's easier to
+ // do it here, since we have a list of all instructions that were just
+ // marked as dead.
+ for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
+ MachineInstr *MI = Deads[i];
+ // Clear the "dead" flag.
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
+ continue;
+ Op.setIsDead(false);
+ }
+ // Extend the live segment to the beginning of the next one.
+ LiveInterval::iterator End = LI.end();
+ SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
+ LiveInterval::iterator T = LI.FindSegmentContaining(S);
+ assert(T != End);
+ LiveInterval::iterator N = std::next(T);
+ if (N != End)
+ T->end = N->start;
+ else
+ T->end = LIS->getMBBEndIdx(MI->getParent());
+ }
+ updateKillFlags(Reg, LI);
+}
+
+
+/// Given an updated live interval LI for register Reg, update the kill flags
+/// in instructions using Reg to reflect the liveness changes.
+void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
+ MRI->clearKillFlags(Reg);
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ SlotIndex EX = I->end;
+ if (!EX.isRegister())
+ continue;
+ MachineInstr *MI = LIS->getInstructionFromIndex(EX);
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
+ continue;
+ // Only set the kill flag on the first encountered use of Reg in this
+ // instruction.
+ Op.setIsKill(true);
+ break;
+ }
+ }
+}
+
+
+/// When adding a new instruction to liveness, the newly added definition
+/// will start a new live segment. This may happen at a position that falls
+/// within an existing live segment. In such case that live segment needs to
+/// be truncated to make room for the new segment. Ultimately, the truncation
+/// will occur at the last use, but for now the segment can be terminated
+/// right at the place where the new segment will start. The segments will be
+/// shrunk-to-uses later.
+void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
+ SlotIndex S, LiveInterval &LI) {
+ // Terminate the live segment pointed to by LT within a live interval LI.
+ if (LT == LI.end())
+ return;
+
+ VNInfo *OldVN = LT->valno;
+ SlotIndex EX = LT->end;
+ LT->end = S;
+ // If LT does not end at a block boundary, the termination is done.
+ if (!EX.isBlock())
+ return;
+
+ // If LT ended at a block boundary, it's possible that its value number
+ // is picked up at the beginning other blocks. Create a new value number
+ // and change such blocks to use it instead.
+ VNInfo *NewVN = 0;
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ if (!I->start.isBlock() || I->valno != OldVN)
+ continue;
+ // Generate on-demand a new value number that is defined by the
+ // block beginning (i.e. -phi).
+ if (!NewVN)
+ NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
+ I->valno = NewVN;
+ }
+}
+
+
+/// Add the specified instruction to live intervals. This function is used
+/// to update the live intervals while the program code is being changed.
+/// Neither the expansion of a MUX, nor the predication are atomic, and this
+/// function is used to update the live intervals while these transformations
+/// are being done.
+void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
+ SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
+ : LIS->getInstructionIndex(MI);
+ DEBUG(dbgs() << "adding liveness info for instr\n " << MX << " " << *MI);
+
+ MX = MX.getRegSlot();
+ bool Predicated = HII->isPredicated(MI);
+ MachineBasicBlock *MB = MI->getParent();
+
+ // Strip all implicit uses from predicated instructions. They will be
+ // added again, according to the updated information.
+ if (Predicated)
+ removeImplicitUses(MI);
+
+ // For each def in MI we need to insert a new live segment starting at MX
+ // into the interval. If there already exists a live segment in the interval
+ // that contains MX, we need to terminate it at MX.
+ SmallVector<RegisterRef,2> Defs;
+ for (auto &Op : MI->operands())
+ if (Op.isReg() && Op.isDef())
+ Defs.push_back(RegisterRef(Op));
+
+ for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
+ unsigned DefR = Defs[i].Reg;
+ LiveInterval &LID = LIS->getInterval(DefR);
+ DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
+ << " with interval\n " << LID << "\n");
+ // If MX falls inside of an existing live segment, terminate it.
+ LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
+ if (LT != LID.end())
+ terminateSegment(LT, MX, LID);
+ DEBUG(dbgs() << "after terminating segment\n " << LID << "\n");
+
+ // Create a new segment starting from MX.
+ LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
+ SlotIndex EX;
+ VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
+ if (N == LID.end()) {
+ // There is no live segment after MX. End this segment at the end of
+ // the block.
+ EX = LIS->getMBBEndIdx(MB);
+ } else {
+ // If the next segment starts at the block boundary, end the new segment
+ // at the boundary of the preceding block (i.e. the previous index).
+ // Otherwise, end the segment at the beginning of the next segment. In
+ // either case it will be "shrunk-to-uses" later.
+ EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
+ }
+ if (Predicated) {
+ // Predicated instruction will have an implicit use of the defined
+ // register. This is necessary so that this definition will not make
+ // any previous definitions dead. If there are no previous live
+ // segments, still add the implicit use, but make it "undef".
+ // Because of the implicit use, the preceding definition is not
+ // dead. Mark is as such (if necessary).
+ MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
+ ImpUse.setSubReg(Defs[i].Sub);
+ bool Undef = false;
+ if (P == LID.end())
+ Undef = true;
+ else {
+ // If the previous segment extends to the end of the previous block,
+ // the end index may actually be the beginning of this block. If
+ // the previous segment ends at a block boundary, move it back by one,
+ // to get the proper block for it.
+ SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
+ MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
+ if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
+ Undef = true;
+ }
+ if (!Undef) {
+ makeUndead(DefR, P->valno->def);
+ // We are adding a live use, so extend the previous segment to
+ // include it.
+ P->end = MX;
+ } else {
+ ImpUse.setIsUndef(true);
+ }
+
+ if (!MI->readsRegister(DefR))
+ MI->addOperand(ImpUse);
+ if (N != LID.end())
+ makeDefined(DefR, N->start, true);
+ }
+ LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
+ LID.addSegment(NR);
+ DEBUG(dbgs() << "added a new segment " << NR << "\n " << LID << "\n");
+ shrinkToUses(DefR, LID);
+ DEBUG(dbgs() << "updated imp-uses: " << *MI);
+ LID.verify();
+ }
+
+ // For each use in MI:
+ // - If there is no live segment that contains MX for the used register,
+ // extend the previous one. Ignore implicit uses.
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
+ continue;
+ unsigned UseR = Op.getReg();
+ LiveInterval &LIU = LIS->getInterval(UseR);
+ // Find the last segment P that starts before MX.
+ LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
+ if (P == LIU.end())
+ P = prevSegment(LIU, MX);
+
+ assert(P != LIU.end() && "MI uses undefined register?");
+ SlotIndex EX = P->end;
+ // If P contains MX, there is not much to do.
+ if (EX > MX) {
+ Op.setIsKill(false);
+ continue;
+ }
+ // Otherwise, extend P to "next(MX)".
+ P->end = MX.getNextIndex();
+ Op.setIsKill(true);
+ // Get the old "kill" instruction, and remove the kill flag.
+ if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
+ KI->clearRegisterKills(UseR, nullptr);
+ shrinkToUses(UseR, LIU);
+ LIU.verify();
+ }
+}
+
+
+/// Update the live interval information to reflect the removal of the given
+/// instruction from the program. As with "addInstrToLiveness", this function
+/// is called while the program code is being changed.
+void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
+ SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
+ DEBUG(dbgs() << "removing instr\n " << MX << " " << *MI);
+
+ // For each def in MI:
+ // If MI starts a live segment, merge this segment with the previous segment.
+ //
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ unsigned DefR = Op.getReg();
+ LiveInterval &LID = LIS->getInterval(DefR);
+ LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
+ assert(LT != LID.end() && "Expecting live segments");
+ DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
+ << " with interval\n " << LID << "\n");
+ if (LT->start != MX)
+ continue;
+
+ VNInfo *MVN = LT->valno;
+ if (LT != LID.begin()) {
+ // If the current live segment is not the first, the task is easy. If
+ // the previous segment continues into the current block, extend it to
+ // the end of the current one, and merge the value numbers.
+ // Otherwise, remove the current segment, and make the end of it "undef".
+ LiveInterval::iterator P = std::prev(LT);
+ SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
+ MachineBasicBlock *MB = MI->getParent();
+ MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
+ if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
+ makeDefined(DefR, LT->end, false);
+ LID.removeSegment(*LT);
+ } else {
+ // Make the segments adjacent, so that merge-vn can also merge the
+ // segments.
+ P->end = LT->start;
+ makeUndead(DefR, P->valno->def);
+ LID.MergeValueNumberInto(MVN, P->valno);
+ }
+ } else {
+ LiveInterval::iterator N = std::next(LT);
+ LiveInterval::iterator RmB = LT, RmE = N;
+ while (N != LID.end()) {
+ // Iterate until the first register-based definition is found
+ // (i.e. skip all block-boundary entries).
+ LiveInterval::iterator Next = std::next(N);
+ if (N->start.isRegister()) {
+ makeDefined(DefR, N->start, false);
+ break;
+ }
+ if (N->end.isRegister()) {
+ makeDefined(DefR, N->end, false);
+ RmE = Next;
+ break;
+ }
+ RmE = Next;
+ N = Next;
+ }
+ // Erase the segments in one shot to avoid invalidating iterators.
+ LID.segments.erase(RmB, RmE);
+ }
+
+ bool VNUsed = false;
+ for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
+ if (I->valno != MVN)
+ continue;
+ VNUsed = true;
+ break;
+ }
+ if (!VNUsed)
+ MVN->markUnused();
+
+ DEBUG(dbgs() << "new interval: ");
+ if (!LID.empty()) {
+ DEBUG(dbgs() << LID << "\n");
+ LID.verify();
+ } else {
+ DEBUG(dbgs() << "<empty>\n");
+ LIS->removeInterval(DefR);
+ }
+ }
+
+ // For uses there is nothing to do. The intervals will be updated via
+ // shrinkToUses.
+ SmallVector<unsigned,4> Uses;
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse())
+ continue;
+ unsigned R = Op.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ continue;
+ Uses.push_back(R);
+ }
+ LIS->RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
+ LiveInterval &LI = LIS->getInterval(Uses[i]);
+ shrinkToUses(Uses[i], LI);
+ }
+}
+
+
+/// Get the opcode for a conditional transfer of the value in SO (source
+/// operand). The condition (true/false) is given in Cond.
+unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
+ bool Cond) {
+ using namespace Hexagon;
+ if (SO.isReg()) {
+ unsigned PhysR;
+ RegisterRef RS = SO;
+ if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
+ const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
+ assert(VC->begin() != VC->end() && "Empty register class");
+ PhysR = *VC->begin();
+ } else {
+ assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
+ PhysR = RS.Reg;
+ }
+ unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
+ switch (RC->getSize()) {
+ case 4:
+ return Cond ? A2_tfrt : A2_tfrf;
+ case 8:
+ return Cond ? A2_tfrpt : A2_tfrpf;
+ }
+ llvm_unreachable("Invalid register operand");
+ }
+ if (SO.isImm() || SO.isFPImm())
+ return Cond ? C2_cmoveit : C2_cmoveif;
+ llvm_unreachable("Unexpected source operand");
+}
+
+
+/// Generate a conditional transfer, copying the value SrcOp to the
+/// destination register DstR:DstSR, and using the predicate register from
+/// PredOp. The Cond argument specifies whether the predicate is to be
+/// if(PredOp), or if(!PredOp).
+MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
+ unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
+ MachineInstr *MI = SrcOp.getParent();
+ MachineBasicBlock &B = *MI->getParent();
+ MachineBasicBlock::iterator At = MI;
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Don't avoid identity copies here (i.e. if the source and the destination
+ // are the same registers). It is actually better to generate them here,
+ // since this would cause the copy to potentially be predicated in the next
+ // step. The predication will remove such a copy if it is unable to
+ /// predicate.
+
+ unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
+ MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
+ .addReg(DstR, RegState::Define, DstSR)
+ .addOperand(PredOp)
+ .addOperand(SrcOp);
+ // We don't want any kills yet.
+ TfrI->clearKillInfo();
+ DEBUG(dbgs() << "created an initial copy: " << *TfrI);
+ return TfrI;
+}
+
+
+/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
+/// performs all necessary changes to complete the replacement.
+bool HexagonExpandCondsets::split(MachineInstr *MI) {
+ if (TfrLimitActive) {
+ if (TfrCounter >= TfrLimit)
+ return false;
+ TfrCounter++;
+ }
+ DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
+ << ": " << *MI);
+ MachineOperand &MD = MI->getOperand(0); // Definition
+ MachineOperand &MP = MI->getOperand(1); // Predicate register
+ assert(MD.isDef());
+ unsigned DR = MD.getReg(), DSR = MD.getSubReg();
+
+ // First, create the two invididual conditional transfers, and add each
+ // of them to the live intervals information. Do that first and then remove
+ // the old instruction from live intervals.
+ if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
+ addInstrToLiveness(TfrT);
+ if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
+ addInstrToLiveness(TfrF);
+ removeInstrFromLiveness(MI);
+
+ return true;
+}
+
+
+/// Split all MUX instructions in the given block into pairs of contitional
+/// transfers.
+bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
+ bool Changed = false;
+ MachineBasicBlock::iterator I, E, NextI;
+ for (I = B.begin(), E = B.end(); I != E; I = NextI) {
+ NextI = std::next(I);
+ if (isCondset(I))
+ Changed |= split(I);
+ }
+ return Changed;
+}
+
+
+bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
+ if (HII->isPredicated(MI) || !HII->isPredicable(MI))
+ return false;
+ if (MI->hasUnmodeledSideEffects() || MI->mayStore())
+ return false;
+ // Reject instructions with multiple defs (e.g. post-increment loads).
+ bool HasDef = false;
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ if (HasDef)
+ return false;
+ HasDef = true;
+ }
+ for (auto &Mo : MI->memoperands())
+ if (Mo->isVolatile())
+ return false;
+ return true;
+}
+
+
+/// Find the reaching definition for a predicated use of RD. The RD is used
+/// under the conditions given by PredR and Cond, and this function will ignore
+/// definitions that set RD under the opposite conditions.
+MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
+ MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
+ MachineBasicBlock &B = *UseIt->getParent();
+ MachineBasicBlock::iterator I = UseIt, S = B.begin();
+ if (I == S)
+ return 0;
+
+ bool PredValid = true;
+ do {
+ --I;
+ MachineInstr *MI = &*I;
+ // Check if this instruction can be ignored, i.e. if it is predicated
+ // on the complementary condition.
+ if (PredValid && HII->isPredicated(MI)) {
+ if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
+ continue;
+ }
+
+ // Check the defs. If the PredR is defined, invalidate it. If RD is
+ // defined, return the instruction or 0, depending on the circumstances.
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ RegisterRef RR = Op;
+ if (RR.Reg == PredR) {
+ PredValid = false;
+ continue;
+ }
+ if (RR.Reg != RD.Reg)
+ continue;
+ // If the "Reg" part agrees, there is still the subregister to check.
+ // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
+ // not vreg1 (w/o subregisters).
+ if (RR.Sub == RD.Sub)
+ return MI;
+ if (RR.Sub == 0 || RD.Sub == 0)
+ return 0;
+ // We have different subregisters, so we can continue looking.
+ }
+ } while (I != S);
+
+ return 0;
+}
+
+
+/// Check if the instruction MI can be safely moved over a set of instructions
+/// whose side-effects (in terms of register defs and uses) are expressed in
+/// the maps Defs and Uses. These maps reflect the conditional defs and uses
+/// that depend on the same predicate register to allow moving instructions
+/// over instructions predicated on the opposite condition.
+bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
+ ReferenceMap &Uses) {
+ // In order to be able to safely move MI over instructions that define
+ // "Defs" and use "Uses", no def operand from MI can be defined or used
+ // and no use operand can be defined.
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg())
+ continue;
+ RegisterRef RR = Op;
+ // For physical register we would need to check register aliases, etc.
+ // and we don't want to bother with that. It would be of little value
+ // before the actual register rewriting (from virtual to physical).
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return false;
+ // No redefs for any operand.
+ if (isRefInMap(RR, Defs, Exec_Then))
+ return false;
+ // For defs, there cannot be uses.
+ if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
+ return false;
+ }
+ return true;
+}
+
+
+/// Check if the instruction accessing memory (TheI) can be moved to the
+/// location ToI.
+bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
+ bool IsDown) {
+ bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
+ if (!IsLoad && !IsStore)
+ return true;
+ if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
+ return true;
+ if (TheI->hasUnmodeledSideEffects())
+ return false;
+
+ MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
+ MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
+ bool Ordered = TheI->hasOrderedMemoryRef();
+
+ // Search for aliased memory reference in (StartI, EndI).
+ for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
+ MachineInstr *MI = &*I;
+ if (MI->hasUnmodeledSideEffects())
+ return false;
+ bool L = MI->mayLoad(), S = MI->mayStore();
+ if (!L && !S)
+ continue;
+ if (Ordered && MI->hasOrderedMemoryRef())
+ return false;
+
+ bool Conflict = (L && IsStore) || S;
+ if (Conflict)
+ return false;
+ }
+ return true;
+}
+
+
+/// Generate a predicated version of MI (where the condition is given via
+/// PredR and Cond) at the point indicated by Where.
+void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
+ MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
+ // The problem with updating live intervals is that we can move one def
+ // past another def. In particular, this can happen when moving an A2_tfrt
+ // over an A2_tfrf defining the same register. From the point of view of
+ // live intervals, these two instructions are two separate definitions,
+ // and each one starts another live segment. LiveIntervals's "handleMove"
+ // does not allow such moves, so we need to handle it ourselves. To avoid
+ // invalidating liveness data while we are using it, the move will be
+ // implemented in 4 steps: (1) add a clone of the instruction MI at the
+ // target location, (2) update liveness, (3) delete the old instruction,
+ // and (4) update liveness again.
+
+ MachineBasicBlock &B = *MI->getParent();
+ DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
+ unsigned Opc = MI->getOpcode();
+ unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
+ MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
+ unsigned Ox = 0, NP = MI->getNumOperands();
+ // Skip all defs from MI first.
+ while (Ox < NP) {
+ MachineOperand &MO = MI->getOperand(Ox);
+ if (!MO.isReg() || !MO.isDef())
+ break;
+ Ox++;
+ }
+ // Add the new def, then the predicate register, then the rest of the
+ // operands.
+ MB.addReg(RD.Reg, RegState::Define, RD.Sub);
+ MB.addReg(PredR);
+ while (Ox < NP) {
+ MachineOperand &MO = MI->getOperand(Ox);
+ if (!MO.isReg() || !MO.isImplicit())
+ MB.addOperand(MO);
+ Ox++;
+ }
+
+ MachineFunction &MF = *B.getParent();
+ MachineInstr::mmo_iterator I = MI->memoperands_begin();
+ unsigned NR = std::distance(I, MI->memoperands_end());
+ MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
+ for (unsigned i = 0; i < NR; ++i)
+ MemRefs[i] = *I++;
+ MB.setMemRefs(MemRefs, MemRefs+NR);
+
+ MachineInstr *NewI = MB;
+ NewI->clearKillInfo();
+ addInstrToLiveness(NewI);
+}
+
+
+/// In the range [First, Last], rename all references to the "old" register RO
+/// to the "new" register RN, but only in instructions predicated on the given
+/// condition.
+void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
+ unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
+ MachineBasicBlock::iterator Last) {
+ MachineBasicBlock::iterator End = std::next(Last);
+ for (MachineBasicBlock::iterator I = First; I != End; ++I) {
+ MachineInstr *MI = &*I;
+ // Do not touch instructions that are not predicated, or are predicated
+ // on the opposite condition.
+ if (!HII->isPredicated(MI))
+ continue;
+ if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
+ continue;
+
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || RO != RegisterRef(Op))
+ continue;
+ Op.setReg(RN.Reg);
+ Op.setSubReg(RN.Sub);
+ // In practice, this isn't supposed to see any defs.
+ assert(!Op.isDef() && "Not expecting a def");
+ }
+ }
+}
+
+
+/// For a given conditional copy, predicate the definition of the source of
+/// the copy under the given condition (using the same predicate register as
+/// the copy).
+bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
+ // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
+ unsigned Opc = TfrI->getOpcode();
+ (void)Opc;
+ assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
+ DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
+ << ": " << *TfrI);
+
+ MachineOperand &MD = TfrI->getOperand(0);
+ MachineOperand &MP = TfrI->getOperand(1);
+ MachineOperand &MS = TfrI->getOperand(2);
+ // The source operand should be a <kill>. This is not strictly necessary,
+ // but it makes things a lot simpler. Otherwise, we would need to rename
+ // some registers, which would complicate the transformation considerably.
+ if (!MS.isKill())
+ return false;
+
+ RegisterRef RT(MS);
+ unsigned PredR = MP.getReg();
+ MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
+ if (!DefI || !isPredicable(DefI))
+ return false;
+
+ DEBUG(dbgs() << "Source def: " << *DefI);
+
+ // Collect the information about registers defined and used between the
+ // DefI and the TfrI.
+ // Map: reg -> bitmask of subregs
+ ReferenceMap Uses, Defs;
+ MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
+
+ // Check if the predicate register is valid between DefI and TfrI.
+ // If it is, we can then ignore instructions predicated on the negated
+ // conditions when collecting def and use information.
+ bool PredValid = true;
+ for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
+ if (!I->modifiesRegister(PredR, 0))
+ continue;
+ PredValid = false;
+ break;
+ }
+
+ for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
+ MachineInstr *MI = &*I;
+ // If this instruction is predicated on the same register, it could
+ // potentially be ignored.
+ // By default assume that the instruction executes on the same condition
+ // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
+ unsigned Exec = Exec_Then | Exec_Else;
+ if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
+ Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
+
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg())
+ continue;
+ // We don't want to deal with physical registers. The reason is that
+ // they can be aliased with other physical registers. Aliased virtual
+ // registers must share the same register number, and can only differ
+ // in the subregisters, which we are keeping track of. Physical
+ // registers ters no longer have subregisters---their super- and
+ // subregisters are other physical registers, and we are not checking
+ // that.
+ RegisterRef RR = Op;
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return false;
+
+ ReferenceMap &Map = Op.isDef() ? Defs : Uses;
+ addRefToMap(RR, Map, Exec);
+ }
+ }
+
+ // The situation:
+ // RT = DefI
+ // ...
+ // RD = TfrI ..., RT
+
+ // If the register-in-the-middle (RT) is used or redefined between
+ // DefI and TfrI, we may not be able proceed with this transformation.
+ // We can ignore a def that will not execute together with TfrI, and a
+ // use that will. If there is such a use (that does execute together with
+ // TfrI), we will not be able to move DefI down. If there is a use that
+ // executed if TfrI's condition is false, then RT must be available
+ // unconditionally (cannot be predicated).
+ // Essentially, we need to be able to rename RT to RD in this segment.
+ if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
+ return false;
+ RegisterRef RD = MD;
+ // If the predicate register is defined between DefI and TfrI, the only
+ // potential thing to do would be to move the DefI down to TfrI, and then
+ // predicate. The reaching def (DefI) must be movable down to the location
+ // of the TfrI.
+ // If the target register of the TfrI (RD) is not used or defined between
+ // DefI and TfrI, consider moving TfrI up to DefI.
+ bool CanUp = canMoveOver(TfrI, Defs, Uses);
+ bool CanDown = canMoveOver(DefI, Defs, Uses);
+ // The TfrI does not access memory, but DefI could. Check if it's safe
+ // to move DefI down to TfrI.
+ if (DefI->mayLoad() || DefI->mayStore())
+ if (!canMoveMemTo(DefI, TfrI, true))
+ CanDown = false;
+
+ DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
+ << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
+ MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
+ if (CanUp)
+ predicateAt(RD, DefI, PastDefIt, PredR, Cond);
+ else if (CanDown)
+ predicateAt(RD, DefI, TfrIt, PredR, Cond);
+ else
+ return false;
+
+ if (RT != RD)
+ renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
+
+ // Delete the user of RT first (it should work either way, but this order
+ // of deleting is more natural).
+ removeInstrFromLiveness(TfrI);
+ removeInstrFromLiveness(DefI);
+ return true;
+}
+
+
+/// Predicate all cases of conditional copies in the specified block.
+bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
+ bool Changed = false;
+ MachineBasicBlock::iterator I, E, NextI;
+ for (I = B.begin(), E = B.end(); I != E; I = NextI) {
+ NextI = std::next(I);
+ unsigned Opc = I->getOpcode();
+ if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
+ bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
+ if (!Done) {
+ // If we didn't predicate I, we may need to remove it in case it is
+ // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1.
+ if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
+ removeInstrFromLiveness(I);
+ }
+ Changed |= Done;
+ }
+ }
+ return Changed;
+}
+
+
+void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
+ for (unsigned i = MI->getNumOperands(); i > 0; --i) {
+ MachineOperand &MO = MI->getOperand(i-1);
+ if (MO.isReg() && MO.isUse() && MO.isImplicit())
+ MI->RemoveOperand(i-1);
+ }
+}
+
+
+void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
+ for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ if (HII->isPredicated(MI))
+ removeImplicitUses(MI);
+ }
+}
+
+
+void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
+ // Implicit uses that are "undef" are only meaningful (outside of the
+ // internals of this pass) when the instruction defines a subregister,
+ // and the implicit-undef use applies to the defined register. In such
+ // cases, the proper way to record the information in the IR is to mark
+ // the definition as "undef", which will be interpreted as "read-undef".
+ typedef SmallSet<unsigned,2> RegisterSet;
+ for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ RegisterSet Undefs;
+ for (unsigned i = MI->getNumOperands(); i > 0; --i) {
+ MachineOperand &MO = MI->getOperand(i-1);
+ if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
+ MI->RemoveOperand(i-1);
+ Undefs.insert(MO.getReg());
+ }
+ }
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
+ continue;
+ if (Undefs.count(Op.getReg()))
+ Op.setIsUndef(true);
+ }
+ }
+}
+
+
+bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return false;
+ const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
+ if (RC == &Hexagon::IntRegsRegClass) {
+ BW = 32;
+ return true;
+ }
+ if (RC == &Hexagon::DoubleRegsRegClass) {
+ BW = (RR.Sub != 0) ? 32 : 64;
+ return true;
+ }
+ return false;
+}
+
+
+bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
+ for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+ LiveRange::Segment &LR = *I;
+ // Range must start at a register...
+ if (!LR.start.isRegister())
+ return false;
+ // ...and end in a register or in a dead slot.
+ if (!LR.end.isRegister() && !LR.end.isDead())
+ return false;
+ }
+ return true;
+}
+
+
+bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
+ if (CoaLimitActive) {
+ if (CoaCounter >= CoaLimit)
+ return false;
+ CoaCounter++;
+ }
+ unsigned BW1, BW2;
+ if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
+ return false;
+ if (MRI->isLiveIn(R1.Reg))
+ return false;
+ if (MRI->isLiveIn(R2.Reg))
+ return false;
+
+ LiveInterval &L1 = LIS->getInterval(R1.Reg);
+ LiveInterval &L2 = LIS->getInterval(R2.Reg);
+ bool Overlap = L1.overlaps(L2);
+
+ DEBUG(dbgs() << "compatible registers: ("
+ << (Overlap ? "overlap" : "disjoint") << ")\n "
+ << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
+ << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
+ if (R1.Sub || R2.Sub)
+ return false;
+ if (Overlap)
+ return false;
+
+ // Coalescing could have a negative impact on scheduling, so try to limit
+ // to some reasonable extent. Only consider coalescing segments, when one
+ // of them does not cross basic block boundaries.
+ if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
+ return false;
+
+ MRI->replaceRegWith(R2.Reg, R1.Reg);
+
+ // Move all live segments from L2 to L1.
+ typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
+ ValueInfoMap VM;
+ for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
+ VNInfo *NewVN, *OldVN = I->valno;
+ ValueInfoMap::iterator F = VM.find(OldVN);
+ if (F == VM.end()) {
+ NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
+ VM.insert(std::make_pair(OldVN, NewVN));
+ } else {
+ NewVN = F->second;
+ }
+ L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
+ }
+ while (L2.begin() != L2.end())
+ L2.removeSegment(*L2.begin());
+
+ updateKillFlags(R1.Reg, L1);
+ DEBUG(dbgs() << "coalesced: " << L1 << "\n");
+ L1.verify();
+
+ return true;
+}
+
+
+/// Attempt to coalesce one of the source registers to a MUX intruction with
+/// the destination register. This could lead to having only one predicated
+/// instruction in the end instead of two.
+bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
+ SmallVector<MachineInstr*,16> Condsets;
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ MachineBasicBlock &B = *I;
+ for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
+ MachineInstr *MI = &*J;
+ if (!isCondset(MI))
+ continue;
+ MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
+ if (!S1.isReg() && !S2.isReg())
+ continue;
+ Condsets.push_back(MI);
+ }
+ }
+
+ bool Changed = false;
+ for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
+ MachineInstr *CI = Condsets[i];
+ RegisterRef RD = CI->getOperand(0);
+ RegisterRef RP = CI->getOperand(1);
+ MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
+ bool Done = false;
+ // Consider this case:
+ // vreg1 = instr1 ...
+ // vreg2 = instr2 ...
+ // vreg0 = C2_mux ..., vreg1, vreg2
+ // If vreg0 was coalesced with vreg1, we could end up with the following
+ // code:
+ // vreg0 = instr1 ...
+ // vreg2 = instr2 ...
+ // vreg0 = A2_tfrf ..., vreg2
+ // which will later become:
+ // vreg0 = instr1 ...
+ // vreg0 = instr2_cNotPt ...
+ // i.e. there will be an unconditional definition (instr1) of vreg0
+ // followed by a conditional one. The output dependency was there before
+ // and it unavoidable, but if instr1 is predicable, we will no longer be
+ // able to predicate it here.
+ // To avoid this scenario, don't coalesce the destination register with
+ // a source register that is defined by a predicable instruction.
+ if (S1.isReg()) {
+ RegisterRef RS = S1;
+ MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
+ if (!RDef || !HII->isPredicable(RDef))
+ Done = coalesceRegisters(RD, RegisterRef(S1));
+ }
+ if (!Done && S2.isReg()) {
+ RegisterRef RS = S2;
+ MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
+ if (!RDef || !HII->isPredicable(RDef))
+ Done = coalesceRegisters(RD, RegisterRef(S2));
+ }
+ Changed |= Done;
+ }
+ return Changed;
+}
+
+
+bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
+ HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
+ TRI = MF.getSubtarget().getRegisterInfo();
+ LIS = &getAnalysis<LiveIntervals>();
+ MRI = &MF.getRegInfo();
+
+ bool Changed = false;
+
+ // Try to coalesce the target of a mux with one of its sources.
+ // This could eliminate a register copy in some circumstances.
+ Changed |= coalesceSegments(MF);
+
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ // First, simply split all muxes into a pair of conditional transfers
+ // and update the live intervals to reflect the new arrangement.
+ // This is done mainly to make the live interval update simpler, than it
+ // would be while trying to predicate instructions at the same time.
+ Changed |= splitInBlock(*I);
+ // Traverse all blocks and collapse predicable instructions feeding
+ // conditional transfers into predicated instructions.
+ // Walk over all the instructions again, so we may catch pre-existing
+ // cases that were not created in the previous step.
+ Changed |= predicateInBlock(*I);
+ }
+
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ postprocessUndefImplicitUses(*I);
+ return Changed;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "Hexagon Expand Condsets";
+ PassInfo *PI = new PassInfo(Name, "expand-condsets",
+ &HexagonExpandCondsets::ID, 0, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+
+FunctionPass *llvm::createHexagonExpandCondsets() {
+ return new HexagonExpandCondsets();
+}