aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/R600/AMDKernelCodeT.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/R600/AMDKernelCodeT.h')
-rw-r--r--lib/Target/R600/AMDKernelCodeT.h704
1 files changed, 704 insertions, 0 deletions
diff --git a/lib/Target/R600/AMDKernelCodeT.h b/lib/Target/R600/AMDKernelCodeT.h
new file mode 100644
index 0000000..4d3041f
--- /dev/null
+++ b/lib/Target/R600/AMDKernelCodeT.h
@@ -0,0 +1,704 @@
+//===-- AMDGPUKernelCodeT.h - Print AMDGPU assembly code ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file AMDKernelCodeT.h
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDKERNELCODET_H
+#define AMDKERNELCODET_H
+
+#include <cstddef>
+#include <cstdint>
+
+//---------------------------------------------------------------------------//
+// AMD Kernel Code, and its dependencies //
+//---------------------------------------------------------------------------//
+
+typedef uint8_t hsa_powertwo8_t;
+typedef uint32_t hsa_ext_code_kind_t;
+typedef uint8_t hsa_ext_brig_profile8_t;
+typedef uint8_t hsa_ext_brig_machine_model8_t;
+typedef uint64_t hsa_ext_control_directive_present64_t;
+typedef uint16_t hsa_ext_exception_kind16_t;
+typedef uint32_t hsa_ext_code_kind32_t;
+
+typedef struct hsa_dim3_s {
+ uint32_t x;
+ uint32_t y;
+ uint32_t z;
+} hsa_dim3_t;
+
+/// The version of the amd_*_code_t struct. Minor versions must be
+/// backward compatible.
+typedef uint32_t amd_code_version32_t;
+enum amd_code_version_t {
+ AMD_CODE_VERSION_MAJOR = 0,
+ AMD_CODE_VERSION_MINOR = 1
+};
+
+/// The values used to define the number of bytes to use for the
+/// swizzle element size.
+enum amd_element_byte_size_t {
+ AMD_ELEMENT_2_BYTES = 0,
+ AMD_ELEMENT_4_BYTES = 1,
+ AMD_ELEMENT_8_BYTES = 2,
+ AMD_ELEMENT_16_BYTES = 3
+};
+
+/// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
+/// COMPUTE_PGM_RSRC2 registers.
+typedef uint64_t amd_compute_pgm_resource_register64_t;
+
+/// Every amd_*_code_t has the following properties, which are composed of
+/// a number of bit fields. Every bit field has a mask (AMD_CODE_PROPERTY_*),
+/// bit width (AMD_CODE_PROPERTY_*_WIDTH, and bit shift amount
+/// (AMD_CODE_PROPERTY_*_SHIFT) for convenient access. Unused bits must be 0.
+///
+/// (Note that bit fields cannot be used as their layout is
+/// implementation defined in the C standard and so cannot be used to
+/// specify an ABI)
+typedef uint32_t amd_code_property32_t;
+enum amd_code_property_mask_t {
+
+ /// Enable the setup of the SGPR user data registers
+ /// (AMD_CODE_PROPERTY_ENABLE_SGPR_*), see documentation of amd_kernel_code_t
+ /// for initial register state.
+ ///
+ /// The total number of SGPRuser data registers requested must not
+ /// exceed 16. Any requests beyond 16 will be ignored.
+ ///
+ /// Used to set COMPUTE_PGM_RSRC2.USER_SGPR (set to total count of
+ /// SGPR user data registers enabled up to 16).
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT = 0,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT = 2,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT = 3,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT = 4,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT = 5,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT = 6,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT = 7,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT = 8,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT = 9,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT,
+
+ /// Control wave ID base counter for GDS ordered-append. Used to set
+ /// COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL. (Not sure if
+ /// ORDERED_APPEND_MODE also needs to be settable)
+ AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT = 10,
+ AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS = ((1 << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT,
+
+ /// The interleave (swizzle) element size in bytes required by the
+ /// code for private memory. This must be 2, 4, 8 or 16. This value
+ /// is provided to the finalizer when it is invoked and is recorded
+ /// here. The hardware will interleave the memory requests of each
+ /// lane of a wavefront by this element size to ensure each
+ /// work-item gets a distinct memory memory location. Therefore, the
+ /// finalizer ensures that all load and store operations done to
+ /// private memory do not exceed this size. For example, if the
+ /// element size is 4 (32-bits or dword) and a 64-bit value must be
+ /// loaded, the finalizer will generate two 32-bit loads. This
+ /// ensures that the interleaving will get the the work-item
+ /// specific dword for both halves of the 64-bit value. If it just
+ /// did a 64-bit load then it would get one dword which belonged to
+ /// its own work-item, but the second dword would belong to the
+ /// adjacent lane work-item since the interleaving is in dwords.
+ ///
+ /// The value used must match the value that the runtime configures
+ /// the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE). This
+ /// is generally DWORD.
+ ///
+ /// Use values from the amd_element_byte_size_t enum.
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT = 11,
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH = 2,
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE = ((1 << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT,
+
+ /// Are global memory addresses 64 bits. Must match
+ /// amd_kernel_code_t.hsail_machine_model ==
+ /// HSA_MACHINE_LARGE. Must also match
+ /// SH_MEM_CONFIG.PTR32 (GFX6 (SI)/GFX7 (CI)),
+ /// SH_MEM_CONFIG.ADDRESS_MODE (GFX8 (VI)+).
+ AMD_CODE_PROPERTY_IS_PTR64_SHIFT = 13,
+ AMD_CODE_PROPERTY_IS_PTR64_WIDTH = 1,
+ AMD_CODE_PROPERTY_IS_PTR64 = ((1 << AMD_CODE_PROPERTY_IS_PTR64_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_PTR64_SHIFT,
+
+ /// Indicate if the generated ISA is using a dynamically sized call
+ /// stack. This can happen if calls are implemented using a call
+ /// stack and recursion, alloca or calls to indirect functions are
+ /// present. In these cases the Finalizer cannot compute the total
+ /// private segment size at compile time. In this case the
+ /// workitem_private_segment_byte_size only specifies the statically
+ /// know private segment size, and additional space must be added
+ /// for the call stack.
+ AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT = 14,
+ AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH = 1,
+ AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK = ((1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT,
+
+ /// Indicate if code generated has support for debugging.
+ AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT = 15,
+ AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH = 1,
+ AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT
+};
+
+/// @brief The hsa_ext_control_directives_t specifies the values for the HSAIL
+/// control directives. These control how the finalizer generates code. This
+/// struct is used both as an argument to hsaFinalizeKernel to specify values for
+/// the control directives, and is used in HsaKernelCode to record the values of
+/// the control directives that the finalize used when generating the code which
+/// either came from the finalizer argument or explicit HSAIL control
+/// directives. See the definition of the control directives in HSA Programmer's
+/// Reference Manual which also defines how the values specified as finalizer
+/// arguments have to agree with the control directives in the HSAIL code.
+typedef struct hsa_ext_control_directives_s {
+ /// This is a bit set indicating which control directives have been
+ /// specified. If the value is 0 then there are no control directives specified
+ /// and the rest of the fields can be ignored. The bits are accessed using the
+ /// hsa_ext_control_directives_present_mask_t. Any control directive that is not
+ /// enabled in this bit set must have the value of all 0s.
+ hsa_ext_control_directive_present64_t enabled_control_directives;
+
+ /// If enableBreakExceptions is not enabled then must be 0, otherwise must be
+ /// non-0 and specifies the set of HSAIL exceptions that must have the BREAK
+ /// policy enabled. If this set is not empty then the generated code may have
+ /// lower performance than if the set is empty. If the kernel being finalized
+ /// has any enablebreakexceptions control directives, then the values specified
+ /// by this argument are unioned with the values in these control
+ /// directives. If any of the functions the kernel calls have an
+ /// enablebreakexceptions control directive, then they must be equal or a
+ /// subset of, this union.
+ hsa_ext_exception_kind16_t enable_break_exceptions;
+
+ /// If enableDetectExceptions is not enabled then must be 0, otherwise must be
+ /// non-0 and specifies the set of HSAIL exceptions that must have the DETECT
+ /// policy enabled. If this set is not empty then the generated code may have
+ /// lower performance than if the set is empty. However, an implementation
+ /// should endeavour to make the performance impact small. If the kernel being
+ /// finalized has any enabledetectexceptions control directives, then the
+ /// values specified by this argument are unioned with the values in these
+ /// control directives. If any of the functions the kernel calls have an
+ /// enabledetectexceptions control directive, then they must be equal or a
+ /// subset of, this union.
+ hsa_ext_exception_kind16_t enable_detect_exceptions;
+
+ /// If maxDynamicGroupSize is not enabled then must be 0, and any amount of
+ /// dynamic group segment can be allocated for a dispatch, otherwise the value
+ /// specifies the maximum number of bytes of dynamic group segment that can be
+ /// allocated for a dispatch. If the kernel being finalized has any
+ /// maxdynamicsize control directives, then the values must be the same, and
+ /// must be the same as this argument if it is enabled. This value can be used
+ /// by the finalizer to determine the maximum number of bytes of group memory
+ /// used by each work-group by adding this value to the group memory required
+ /// for all group segment variables used by the kernel and all functions it
+ /// calls, and group memory used to implement other HSAIL features such as
+ /// fbarriers and the detect exception operations. This can allow the finalizer
+ /// to determine the expected number of work-groups that can be executed by a
+ /// compute unit and allow more resources to be allocated to the work-items if
+ /// it is known that fewer work-groups can be executed due to group memory
+ /// limitations.
+ uint32_t max_dynamic_group_size;
+
+ /// If maxFlatGridSize is not enabled then must be 0, otherwise must be greater
+ /// than 0. See HSA Programmer's Reference Manual description of
+ /// maxflatgridsize control directive.
+ uint32_t max_flat_grid_size;
+
+ /// If maxFlatWorkgroupSize is not enabled then must be 0, otherwise must be
+ /// greater than 0. See HSA Programmer's Reference Manual description of
+ /// maxflatworkgroupsize control directive.
+ uint32_t max_flat_workgroup_size;
+
+ /// If requestedWorkgroupsPerCu is not enabled then must be 0, and the
+ /// finalizer is free to generate ISA that may result in any number of
+ /// work-groups executing on a single compute unit. Otherwise, the finalizer
+ /// should attempt to generate ISA that will allow the specified number of
+ /// work-groups to execute on a single compute unit. This is only a hint and
+ /// can be ignored by the finalizer. If the kernel being finalized, or any of
+ /// the functions it calls, has a requested control directive, then the values
+ /// must be the same. This can be used to determine the number of resources
+ /// that should be allocated to a single work-group and work-item. For example,
+ /// a low value may allow more resources to be allocated, resulting in higher
+ /// per work-item performance, as it is known there will never be more than the
+ /// specified number of work-groups actually executing on the compute
+ /// unit. Conversely, a high value may allocate fewer resources, resulting in
+ /// lower per work-item performance, which is offset by the fact it allows more
+ /// work-groups to actually execute on the compute unit.
+ uint32_t requested_workgroups_per_cu;
+
+ /// If not enabled then all elements for Dim3 must be 0, otherwise every
+ /// element must be greater than 0. See HSA Programmer's Reference Manual
+ /// description of requiredgridsize control directive.
+ hsa_dim3_t required_grid_size;
+
+ /// If requiredWorkgroupSize is not enabled then all elements for Dim3 must be
+ /// 0, and the produced code can be dispatched with any legal work-group range
+ /// consistent with the dispatch dimensions. Otherwise, the code produced must
+ /// always be dispatched with the specified work-group range. No element of the
+ /// specified range must be 0. It must be consistent with required_dimensions
+ /// and max_flat_workgroup_size. If the kernel being finalized, or any of the
+ /// functions it calls, has a requiredworkgroupsize control directive, then the
+ /// values must be the same. Specifying a value can allow the finalizer to
+ /// optimize work-group id operations, and if the number of work-items in the
+ /// work-group is less than the WAVESIZE then barrier operations can be
+ /// optimized to just a memory fence.
+ hsa_dim3_t required_workgroup_size;
+
+ /// If requiredDim is not enabled then must be 0 and the produced kernel code
+ /// can be dispatched with 1, 2 or 3 dimensions. If enabled then the value is
+ /// 1..3 and the code produced must only be dispatched with a dimension that
+ /// matches. Other values are illegal. If the kernel being finalized, or any of
+ /// the functions it calls, has a requireddimsize control directive, then the
+ /// values must be the same. This can be used to optimize the code generated to
+ /// compute the absolute and flat work-group and work-item id, and the dim
+ /// HSAIL operations.
+ uint8_t required_dim;
+
+ /// Reserved. Must be 0.
+ uint8_t reserved[75];
+} hsa_ext_control_directives_t;
+
+/// AMD Kernel Code Object (amd_kernel_code_t). GPU CP uses the AMD Kernel
+/// Code Object to set up the hardware to execute the kernel dispatch.
+///
+/// Initial Kernel Register State.
+///
+/// Initial kernel register state will be set up by CP/SPI prior to the start
+/// of execution of every wavefront. This is limited by the constraints of the
+/// current hardware.
+///
+/// The order of the SGPR registers is defined, but the Finalizer can specify
+/// which ones are actually setup in the amd_kernel_code_t object using the
+/// enable_sgpr_* bit fields. The register numbers used for enabled registers
+/// are dense starting at SGPR0: the first enabled register is SGPR0, the next
+/// enabled register is SGPR1 etc.; disabled registers do not have an SGPR
+/// number.
+///
+/// The initial SGPRs comprise up to 16 User SRGPs that are set up by CP and
+/// apply to all waves of the grid. It is possible to specify more than 16 User
+/// SGPRs using the enable_sgpr_* bit fields, in which case only the first 16
+/// are actually initialized. These are then immediately followed by the System
+/// SGPRs that are set up by ADC/SPI and can have different values for each wave
+/// of the grid dispatch.
+///
+/// SGPR register initial state is defined as follows:
+///
+/// Private Segment Buffer (enable_sgpr_private_segment_buffer):
+/// Number of User SGPR registers: 4. V# that can be used, together with
+/// Scratch Wave Offset as an offset, to access the Private/Spill/Arg
+/// segments using a segment address. It must be set as follows:
+/// - Base address: of the scratch memory area used by the dispatch. It
+/// does not include the scratch wave offset. It will be the per process
+/// SH_HIDDEN_PRIVATE_BASE_VMID plus any offset from this dispatch (for
+/// example there may be a per pipe offset, or per AQL Queue offset).
+/// - Stride + data_format: Element Size * Index Stride (???)
+/// - Cache swizzle: ???
+/// - Swizzle enable: SH_STATIC_MEM_CONFIG.SWIZZLE_ENABLE (must be 1 for
+/// scratch)
+/// - Num records: Flat Scratch Work Item Size / Element Size (???)
+/// - Dst_sel_*: ???
+/// - Num_format: ???
+/// - Element_size: SH_STATIC_MEM_CONFIG.ELEMENT_SIZE (will be DWORD, must
+/// agree with amd_kernel_code_t.privateElementSize)
+/// - Index_stride: SH_STATIC_MEM_CONFIG.INDEX_STRIDE (will be 64 as must
+/// be number of wavefront lanes for scratch, must agree with
+/// amd_kernel_code_t.wavefrontSize)
+/// - Add tid enable: 1
+/// - ATC: from SH_MEM_CONFIG.PRIVATE_ATC,
+/// - Hash_enable: ???
+/// - Heap: ???
+/// - Mtype: from SH_STATIC_MEM_CONFIG.PRIVATE_MTYPE
+/// - Type: 0 (a buffer) (???)
+///
+/// Dispatch Ptr (enable_sgpr_dispatch_ptr):
+/// Number of User SGPR registers: 2. 64 bit address of AQL dispatch packet
+/// for kernel actually executing.
+///
+/// Queue Ptr (enable_sgpr_queue_ptr):
+/// Number of User SGPR registers: 2. 64 bit address of AmdQueue object for
+/// AQL queue on which the dispatch packet was queued.
+///
+/// Kernarg Segment Ptr (enable_sgpr_kernarg_segment_ptr):
+/// Number of User SGPR registers: 2. 64 bit address of Kernarg segment. This
+/// is directly copied from the kernargPtr in the dispatch packet. Having CP
+/// load it once avoids loading it at the beginning of every wavefront.
+///
+/// Dispatch Id (enable_sgpr_dispatch_id):
+/// Number of User SGPR registers: 2. 64 bit Dispatch ID of the dispatch
+/// packet being executed.
+///
+/// Flat Scratch Init (enable_sgpr_flat_scratch_init):
+/// Number of User SGPR registers: 2. This is 2 SGPRs.
+///
+/// For CI/VI:
+/// The first SGPR is a 32 bit byte offset from SH_MEM_HIDDEN_PRIVATE_BASE
+/// to base of memory for scratch for this dispatch. This is the same offset
+/// used in computing the Scratch Segment Buffer base address. The value of
+/// Scratch Wave Offset must be added by the kernel code and moved to
+/// SGPRn-4 for use as the FLAT SCRATCH BASE in flat memory instructions.
+///
+/// The second SGPR is 32 bit byte size of a single work-item’s scratch
+/// memory usage. This is directly loaded from the dispatch packet Private
+/// Segment Byte Size and rounded up to a multiple of DWORD.
+///
+/// \todo [Does CP need to round this to >4 byte alignment?]
+///
+/// The kernel code must move to SGPRn-3 for use as the FLAT SCRATCH SIZE in
+/// flat memory instructions. Having CP load it once avoids loading it at
+/// the beginning of every wavefront.
+///
+/// For PI:
+/// This is the 64 bit base address of the scratch backing memory for
+/// allocated by CP for this dispatch.
+///
+/// Private Segment Size (enable_sgpr_private_segment_size):
+/// Number of User SGPR registers: 1. The 32 bit byte size of a single
+/// work-item’s scratch memory allocation. This is the value from the dispatch
+/// packet. Private Segment Byte Size rounded up by CP to a multiple of DWORD.
+///
+/// \todo [Does CP need to round this to >4 byte alignment?]
+///
+/// Having CP load it once avoids loading it at the beginning of every
+/// wavefront.
+///
+/// \todo [This will not be used for CI/VI since it is the same value as
+/// the second SGPR of Flat Scratch Init. However, it is need for PI which
+/// changes meaning of Flat Scratchg Init..]
+///
+/// Grid Work-Group Count X (enable_sgpr_grid_workgroup_count_x):
+/// Number of User SGPR registers: 1. 32 bit count of the number of
+/// work-groups in the X dimension for the grid being executed. Computed from
+/// the fields in the HsaDispatchPacket as
+/// ((gridSize.x+workgroupSize.x-1)/workgroupSize.x).
+///
+/// Grid Work-Group Count Y (enable_sgpr_grid_workgroup_count_y):
+/// Number of User SGPR registers: 1. 32 bit count of the number of
+/// work-groups in the Y dimension for the grid being executed. Computed from
+/// the fields in the HsaDispatchPacket as
+/// ((gridSize.y+workgroupSize.y-1)/workgroupSize.y).
+///
+/// Only initialized if <16 previous SGPRs initialized.
+///
+/// Grid Work-Group Count Z (enable_sgpr_grid_workgroup_count_z):
+/// Number of User SGPR registers: 1. 32 bit count of the number of
+/// work-groups in the Z dimension for the grid being executed. Computed
+/// from the fields in the HsaDispatchPacket as
+/// ((gridSize.z+workgroupSize.z-1)/workgroupSize.z).
+///
+/// Only initialized if <16 previous SGPRs initialized.
+///
+/// Work-Group Id X (enable_sgpr_workgroup_id_x):
+/// Number of System SGPR registers: 1. 32 bit work group id in X dimension
+/// of grid for wavefront. Always present.
+///
+/// Work-Group Id Y (enable_sgpr_workgroup_id_y):
+/// Number of System SGPR registers: 1. 32 bit work group id in Y dimension
+/// of grid for wavefront.
+///
+/// Work-Group Id Z (enable_sgpr_workgroup_id_z):
+/// Number of System SGPR registers: 1. 32 bit work group id in Z dimension
+/// of grid for wavefront. If present then Work-group Id Y will also be
+/// present
+///
+/// Work-Group Info (enable_sgpr_workgroup_info):
+/// Number of System SGPR registers: 1. {first_wave, 14’b0000,
+/// ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}
+///
+/// Private Segment Wave Byte Offset
+/// (enable_sgpr_private_segment_wave_byte_offset):
+/// Number of System SGPR registers: 1. 32 bit byte offset from base of
+/// dispatch scratch base. Must be used as an offset with Private/Spill/Arg
+/// segment address when using Scratch Segment Buffer. It must be added to
+/// Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.
+///
+///
+/// The order of the VGPR registers is defined, but the Finalizer can specify
+/// which ones are actually setup in the amd_kernel_code_t object using the
+/// enableVgpr* bit fields. The register numbers used for enabled registers
+/// are dense starting at VGPR0: the first enabled register is VGPR0, the next
+/// enabled register is VGPR1 etc.; disabled registers do not have an VGPR
+/// number.
+///
+/// VGPR register initial state is defined as follows:
+///
+/// Work-Item Id X (always initialized):
+/// Number of registers: 1. 32 bit work item id in X dimension of work-group
+/// for wavefront lane.
+///
+/// Work-Item Id X (enable_vgpr_workitem_id > 0):
+/// Number of registers: 1. 32 bit work item id in Y dimension of work-group
+/// for wavefront lane.
+///
+/// Work-Item Id X (enable_vgpr_workitem_id > 0):
+/// Number of registers: 1. 32 bit work item id in Z dimension of work-group
+/// for wavefront lane.
+///
+///
+/// The setting of registers is being done by existing GPU hardware as follows:
+/// 1) SGPRs before the Work-Group Ids are set by CP using the 16 User Data
+/// registers.
+/// 2) Work-group Id registers X, Y, Z are set by SPI which supports any
+/// combination including none.
+/// 3) Scratch Wave Offset is also set by SPI which is why its value cannot
+/// be added into the value Flat Scratch Offset which would avoid the
+/// Finalizer generated prolog having to do the add.
+/// 4) The VGPRs are set by SPI which only supports specifying either (X),
+/// (X, Y) or (X, Y, Z).
+///
+/// Flat Scratch Dispatch Offset and Flat Scratch Size are adjacent SGRRs so
+/// they can be moved as a 64 bit value to the hardware required SGPRn-3 and
+/// SGPRn-4 respectively using the Finalizer ?FLAT_SCRATCH? Register.
+///
+/// The global segment can be accessed either using flat operations or buffer
+/// operations. If buffer operations are used then the Global Buffer used to
+/// access HSAIL Global/Readonly/Kernarg (which are combine) segments using a
+/// segment address is not passed into the kernel code by CP since its base
+/// address is always 0. Instead the Finalizer generates prolog code to
+/// initialize 4 SGPRs with a V# that has the following properties, and then
+/// uses that in the buffer instructions:
+/// - base address of 0
+/// - no swizzle
+/// - ATC=1
+/// - MTYPE set to support memory coherence specified in
+/// amd_kernel_code_t.globalMemoryCoherence
+///
+/// When the Global Buffer is used to access the Kernarg segment, must add the
+/// dispatch packet kernArgPtr to a kernarg segment address before using this V#.
+/// Alternatively scalar loads can be used if the kernarg offset is uniform, as
+/// the kernarg segment is constant for the duration of the kernel execution.
+///
+typedef struct amd_kernel_code_s {
+ /// The AMD major version of the Code Object. Must be the value
+ /// AMD_CODE_VERSION_MAJOR.
+ amd_code_version32_t amd_code_version_major;
+
+ /// The AMD minor version of the Code Object. Minor versions must be
+ /// backward compatible. Must be the value
+ /// AMD_CODE_VERSION_MINOR.
+ amd_code_version32_t amd_code_version_minor;
+
+ /// The byte size of this struct. Must be set to
+ /// sizeof(amd_kernel_code_t). Used for backward
+ /// compatibility.
+ uint32_t struct_byte_size;
+
+ /// The target chip instruction set for which code has been
+ /// generated. Values are from the E_SC_INSTRUCTION_SET enumeration
+ /// in sc/Interface/SCCommon.h.
+ uint32_t target_chip;
+
+ /// Byte offset (possibly negative) from start of amd_kernel_code_t
+ /// object to kernel's entry point instruction. The actual code for
+ /// the kernel is required to be 256 byte aligned to match hardware
+ /// requirements (SQ cache line is 16). The code must be position
+ /// independent code (PIC) for AMD devices to give runtime the
+ /// option of copying code to discrete GPU memory or APU L2
+ /// cache. The Finalizer should endeavour to allocate all kernel
+ /// machine code in contiguous memory pages so that a device
+ /// pre-fetcher will tend to only pre-fetch Kernel Code objects,
+ /// improving cache performance.
+ int64_t kernel_code_entry_byte_offset;
+
+ /// Range of bytes to consider prefetching expressed as an offset
+ /// and size. The offset is from the start (possibly negative) of
+ /// amd_kernel_code_t object. Set both to 0 if no prefetch
+ /// information is available.
+ ///
+ /// \todo ttye 11/15/2013 Is the prefetch definition we want? Did
+ /// not make the size a uint64_t as prefetching more than 4GiB seems
+ /// excessive.
+ int64_t kernel_code_prefetch_byte_offset;
+ uint64_t kernel_code_prefetch_byte_size;
+
+ /// Number of bytes of scratch backing memory required for full
+ /// occupancy of target chip. This takes into account the number of
+ /// bytes of scratch per work-item, the wavefront size, the maximum
+ /// number of wavefronts per CU, and the number of CUs. This is an
+ /// upper limit on scratch. If the grid being dispatched is small it
+ /// may only need less than this. If the kernel uses no scratch, or
+ /// the Finalizer has not computed this value, it must be 0.
+ uint64_t max_scratch_backing_memory_byte_size;
+
+ /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
+ /// COMPUTE_PGM_RSRC2 registers.
+ amd_compute_pgm_resource_register64_t compute_pgm_resource_registers;
+
+ /// Code properties. See amd_code_property_mask_t for a full list of
+ /// properties.
+ amd_code_property32_t code_properties;
+
+ /// The amount of memory required for the combined private, spill
+ /// and arg segments for a work-item in bytes. If
+ /// is_dynamic_callstack is 1 then additional space must be added to
+ /// this value for the call stack.
+ uint32_t workitem_private_segment_byte_size;
+
+ /// The amount of group segment memory required by a work-group in
+ /// bytes. This does not include any dynamically allocated group
+ /// segment memory that may be added when the kernel is
+ /// dispatched.
+ uint32_t workgroup_group_segment_byte_size;
+
+ /// Number of byte of GDS required by kernel dispatch. Must be 0 if
+ /// not using GDS.
+ uint32_t gds_segment_byte_size;
+
+ /// The size in bytes of the kernarg segment that holds the values
+ /// of the arguments to the kernel. This could be used by CP to
+ /// prefetch the kernarg segment pointed to by the dispatch packet.
+ uint64_t kernarg_segment_byte_size;
+
+ /// Number of fbarrier's used in the kernel and all functions it
+ /// calls. If the implementation uses group memory to allocate the
+ /// fbarriers then that amount must already be included in the
+ /// workgroup_group_segment_byte_size total.
+ uint32_t workgroup_fbarrier_count;
+
+ /// Number of scalar registers used by a wavefront. This includes
+ /// the special SGPRs for VCC, Flat Scratch Base, Flat Scratch Size
+ /// and XNACK (for GFX8 (VI)). It does not include the 16 SGPR added if a
+ /// trap handler is enabled. Used to set COMPUTE_PGM_RSRC1.SGPRS.
+ uint16_t wavefront_sgpr_count;
+
+ /// Number of vector registers used by each work-item. Used to set
+ /// COMPUTE_PGM_RSRC1.VGPRS.
+ uint16_t workitem_vgpr_count;
+
+ /// If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the
+ /// first fixed VGPR number reserved.
+ uint16_t reserved_vgpr_first;
+
+ /// The number of consecutive VGPRs reserved by the client. If
+ /// is_debug_supported then this count includes VGPRs reserved
+ /// for debugger use.
+ uint16_t reserved_vgpr_count;
+
+ /// If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the
+ /// first fixed SGPR number reserved.
+ uint16_t reserved_sgpr_first;
+
+ /// The number of consecutive SGPRs reserved by the client. If
+ /// is_debug_supported then this count includes SGPRs reserved
+ /// for debugger use.
+ uint16_t reserved_sgpr_count;
+
+ /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
+ /// fixed SGPR number used to hold the wave scratch offset for the
+ /// entire kernel execution, or uint16_t(-1) if the register is not
+ /// used or not known.
+ uint16_t debug_wavefront_private_segment_offset_sgpr;
+
+ /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
+ /// fixed SGPR number of the first of 4 SGPRs used to hold the
+ /// scratch V# used for the entire kernel execution, or uint16_t(-1)
+ /// if the registers are not used or not known.
+ uint16_t debug_private_segment_buffer_sgpr;
+
+ /// The maximum byte alignment of variables used by the kernel in
+ /// the specified memory segment. Expressed as a power of two. Must
+ /// be at least HSA_POWERTWO_16.
+ hsa_powertwo8_t kernarg_segment_alignment;
+ hsa_powertwo8_t group_segment_alignment;
+ hsa_powertwo8_t private_segment_alignment;
+
+ uint8_t reserved3;
+
+ /// Type of code object.
+ hsa_ext_code_kind32_t code_type;
+
+ /// Reserved for code properties if any are defined in the future.
+ /// There are currently no code properties so this field must be 0.
+ uint32_t reserved4;
+
+ /// Wavefront size expressed as a power of two. Must be a power of 2
+ /// in range 1..64 inclusive. Used to support runtime query that
+ /// obtains wavefront size, which may be used by application to
+ /// allocated dynamic group memory and set the dispatch work-group
+ /// size.
+ hsa_powertwo8_t wavefront_size;
+
+ /// The optimization level specified when the kernel was
+ /// finalized.
+ uint8_t optimization_level;
+
+ /// The HSAIL profile defines which features are used. This
+ /// information is from the HSAIL version directive. If this
+ /// amd_kernel_code_t is not generated from an HSAIL compilation
+ /// unit then must be 0.
+ hsa_ext_brig_profile8_t hsail_profile;
+
+ /// The HSAIL machine model gives the address sizes used by the
+ /// code. This information is from the HSAIL version directive. If
+ /// not generated from an HSAIL compilation unit then must still
+ /// indicate for what machine mode the code is generated.
+ hsa_ext_brig_machine_model8_t hsail_machine_model;
+
+ /// The HSAIL major version. This information is from the HSAIL
+ /// version directive. If this amd_kernel_code_t is not
+ /// generated from an HSAIL compilation unit then must be 0.
+ uint32_t hsail_version_major;
+
+ /// The HSAIL minor version. This information is from the HSAIL
+ /// version directive. If this amd_kernel_code_t is not
+ /// generated from an HSAIL compilation unit then must be 0.
+ uint32_t hsail_version_minor;
+
+ /// Reserved for HSAIL target options if any are defined in the
+ /// future. There are currently no target options so this field
+ /// must be 0.
+ uint16_t reserved5;
+
+ /// Reserved. Must be 0.
+ uint16_t reserved6;
+
+ /// The values should be the actually values used by the finalizer
+ /// in generating the code. This may be the union of values
+ /// specified as finalizer arguments and explicit HSAIL control
+ /// directives. If the finalizer chooses to ignore a control
+ /// directive, and not generate constrained code, then the control
+ /// directive should not be marked as enabled even though it was
+ /// present in the HSAIL or finalizer argument. The values are
+ /// intended to reflect the constraints that the code actually
+ /// requires to correctly execute, not the values that were
+ /// actually specified at finalize time.
+ hsa_ext_control_directives_t control_directive;
+
+ /// The code can immediately follow the amd_kernel_code_t, or can
+ /// come after subsequent amd_kernel_code_t structs when there are
+ /// multiple kernels in the compilation unit.
+
+} amd_kernel_code_t;
+
+#endif // AMDKERNELCODET_H