diff options
Diffstat (limited to 'lib/Target/Sparc')
-rw-r--r-- | lib/Target/Sparc/MCTargetDesc/SparcBaseInfo.h | 62 | ||||
-rw-r--r-- | lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp | 30 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcAsmPrinter.cpp | 50 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcCallingConv.td | 101 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcFrameLowering.cpp | 52 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcFrameLowering.h | 8 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcISelDAGToDAG.cpp | 10 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcISelLowering.cpp | 813 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcISelLowering.h | 38 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcInstr64Bit.td | 333 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcInstrFormats.td | 37 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcInstrInfo.td | 198 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcRegisterInfo.cpp | 11 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcRegisterInfo.h | 3 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcRegisterInfo.td | 14 | ||||
-rw-r--r-- | lib/Target/Sparc/SparcSubtarget.h | 6 |
16 files changed, 1496 insertions, 270 deletions
diff --git a/lib/Target/Sparc/MCTargetDesc/SparcBaseInfo.h b/lib/Target/Sparc/MCTargetDesc/SparcBaseInfo.h new file mode 100644 index 0000000..aac0e8d --- /dev/null +++ b/lib/Target/Sparc/MCTargetDesc/SparcBaseInfo.h @@ -0,0 +1,62 @@ +//===-- SparcBaseInfo.h - Top level definitions for Sparc ---- --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains small standalone helper functions and enum definitions +// for the Sparc target useful for the compiler back-end and the MC libraries. +// As such, it deliberately does not include references to LLVM core code gen +// types, passes, etc.. +// +//===----------------------------------------------------------------------===// + +#ifndef SPARCBASEINFO_H +#define SPARCBASEINFO_H + +namespace llvm { + +/// SPII - This namespace holds target specific flags for instruction info. +namespace SPII { + +/// Target Operand Flags. Sparc specific TargetFlags for MachineOperands and +/// SDNodes. +enum TOF { + MO_NO_FLAG, + + // Extract the low 10 bits of an address. + // Assembler: %lo(addr) + MO_LO, + + // Extract bits 31-10 of an address. Only for sethi. + // Assembler: %hi(addr) or %lm(addr) + MO_HI, + + // Extract bits 43-22 of an adress. Only for sethi. + // Assembler: %h44(addr) + MO_H44, + + // Extract bits 21-12 of an address. + // Assembler: %m44(addr) + MO_M44, + + // Extract bits 11-0 of an address. + // Assembler: %l44(addr) + MO_L44, + + // Extract bits 63-42 of an address. Only for sethi. + // Assembler: %hh(addr) + MO_HH, + + // Extract bits 41-32 of an address. + // Assembler: %hm(addr) + MO_HM +}; + +} // end namespace SPII +} // end namespace llvm + +#endif diff --git a/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp b/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp index 7fdb0c3..1c64e1b 100644 --- a/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp +++ b/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp @@ -50,14 +50,42 @@ static MCSubtargetInfo *createSparcMCSubtargetInfo(StringRef TT, StringRef CPU, return X; } +// Code models. Some only make sense for 64-bit code. +// +// SunCC Reloc CodeModel Constraints +// abs32 Static Small text+data+bss linked below 2^32 bytes +// abs44 Static Medium text+data+bss linked below 2^44 bytes +// abs64 Static Large text smaller than 2^31 bytes +// pic13 PIC_ Small GOT < 2^13 bytes +// pic32 PIC_ Medium GOT < 2^32 bytes +// +// All code models require that the text segment is smaller than 2GB. + static MCCodeGenInfo *createSparcMCCodeGenInfo(StringRef TT, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) { MCCodeGenInfo *X = new MCCodeGenInfo(); + + // The default 32-bit code model is abs32/pic32. + if (CM == CodeModel::Default) + CM = RM == Reloc::PIC_ ? CodeModel::Medium : CodeModel::Small; + X->InitMCCodeGenInfo(RM, CM, OL); return X; } +static MCCodeGenInfo *createSparcV9MCCodeGenInfo(StringRef TT, Reloc::Model RM, + CodeModel::Model CM, + CodeGenOpt::Level OL) { + MCCodeGenInfo *X = new MCCodeGenInfo(); + + // The default 64-bit code model is abs44/pic32. + if (CM == CodeModel::Default) + CM = CodeModel::Medium; + + X->InitMCCodeGenInfo(RM, CM, OL); + return X; +} extern "C" void LLVMInitializeSparcTargetMC() { // Register the MC asm info. RegisterMCAsmInfo<SparcELFMCAsmInfo> X(TheSparcTarget); @@ -67,7 +95,7 @@ extern "C" void LLVMInitializeSparcTargetMC() { TargetRegistry::RegisterMCCodeGenInfo(TheSparcTarget, createSparcMCCodeGenInfo); TargetRegistry::RegisterMCCodeGenInfo(TheSparcV9Target, - createSparcMCCodeGenInfo); + createSparcV9MCCodeGenInfo); // Register the MC instruction info. TargetRegistry::RegisterMCInstrInfo(TheSparcTarget, createSparcMCInstrInfo); diff --git a/lib/Target/Sparc/SparcAsmPrinter.cpp b/lib/Target/Sparc/SparcAsmPrinter.cpp index e14b3cb..108eb90 100644 --- a/lib/Target/Sparc/SparcAsmPrinter.cpp +++ b/lib/Target/Sparc/SparcAsmPrinter.cpp @@ -16,6 +16,7 @@ #include "Sparc.h" #include "SparcInstrInfo.h" #include "SparcTargetMachine.h" +#include "MCTargetDesc/SparcBaseInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineInstr.h" @@ -72,15 +73,39 @@ namespace { void SparcAsmPrinter::printOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand (opNum); - bool CloseParen = false; - if (MI->getOpcode() == SP::SETHIi && !MO.isReg() && !MO.isImm()) { - O << "%hi("; - CloseParen = true; - } else if ((MI->getOpcode() == SP::ORri || MI->getOpcode() == SP::ADDri) && - !MO.isReg() && !MO.isImm()) { - O << "%lo("; - CloseParen = true; + unsigned TF = MO.getTargetFlags(); +#ifndef NDEBUG + // Verify the target flags. + if (MO.isGlobal() || MO.isSymbol() || MO.isCPI()) { + if (MI->getOpcode() == SP::CALL) + assert(TF == SPII::MO_NO_FLAG && + "Cannot handle target flags on call address"); + else if (MI->getOpcode() == SP::SETHIi) + assert((TF == SPII::MO_HI || TF == SPII::MO_H44 || TF == SPII::MO_HH) && + "Invalid target flags for address operand on sethi"); + else + assert((TF == SPII::MO_LO || TF == SPII::MO_M44 || TF == SPII::MO_L44 || + TF == SPII::MO_HM) && + "Invalid target flags for small address operand"); } +#endif + + bool CloseParen = true; + switch (TF) { + default: + llvm_unreachable("Unknown target flags on operand"); + case SPII::MO_NO_FLAG: + CloseParen = false; + break; + case SPII::MO_LO: O << "%lo("; break; + case SPII::MO_HI: O << "%hi("; break; + case SPII::MO_H44: O << "%h44("; break; + case SPII::MO_M44: O << "%m44("; break; + case SPII::MO_L44: O << "%l44("; break; + case SPII::MO_HH: O << "%hh("; break; + case SPII::MO_HM: O << "%hm("; break; + } + switch (MO.getType()) { case MachineOperand::MO_Register: O << "%" << StringRef(getRegisterName(MO.getReg())).lower(); @@ -127,14 +152,7 @@ void SparcAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum, return; // don't print "+0" O << "+"; - if (MI->getOperand(opNum+1).isGlobal() || - MI->getOperand(opNum+1).isCPI()) { - O << "%lo("; - printOperand(MI, opNum+1, O); - O << ")"; - } else { - printOperand(MI, opNum+1, O); - } + printOperand(MI, opNum+1, O); } bool SparcAsmPrinter::printGetPCX(const MachineInstr *MI, unsigned opNum, diff --git a/lib/Target/Sparc/SparcCallingConv.td b/lib/Target/Sparc/SparcCallingConv.td index d471220..54784e0 100644 --- a/lib/Target/Sparc/SparcCallingConv.td +++ b/lib/Target/Sparc/SparcCallingConv.td @@ -12,17 +12,9 @@ //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// -// Return Value Calling Conventions +// SPARC v8 32-bit. //===----------------------------------------------------------------------===// -// Sparc 32-bit C return-value convention. -def RetCC_Sparc32 : CallingConv<[ - CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, - CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>, - CCIfType<[f64], CCAssignToReg<[D0, D1]>> -]>; - -// Sparc 32-bit C Calling convention. def CC_Sparc32 : CallingConv<[ //Custom assign SRet to [sp+64]. CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>, @@ -34,3 +26,94 @@ def CC_Sparc32 : CallingConv<[ // Alternatively, they are assigned to the stack in 4-byte aligned units. CCAssignToStack<4, 4> ]>; + +def RetCC_Sparc32 : CallingConv<[ + CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, + CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>, + CCIfType<[f64], CCAssignToReg<[D0, D1]>> +]>; + + +//===----------------------------------------------------------------------===// +// SPARC v9 64-bit. +//===----------------------------------------------------------------------===// +// +// The 64-bit ABI conceptually assigns all function arguments to a parameter +// array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments +// occupy a multiple of 8 bytes in the array. Integer arguments are extended to +// 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the +// first 4 bytes in the slot are undefined. +// +// The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter +// array at fixed offsets. Integer arguments are promoted to registers when +// possible. +// +// The floating point registers %f0 to %f31 shadow the first 128 bytes of the +// parameter array at fixed offsets. Float and double parameters are promoted +// to these registers when possible. +// +// Structs up to 16 bytes in size are passed by value. They are right-aligned +// in one or two 8-byte slots in the parameter array. Struct members are +// promoted to both floating point and integer registers when possible. A +// struct containing two floats would thus be passed in %f0 and %f1, while two +// float function arguments would occupy 8 bytes each, and be passed in %f1 and +// %f3. +// +// When a struct { int, float } is passed by value, the int goes in the high +// bits of an integer register while the float goes in a floating point +// register. +// +// The difference is encoded in LLVM IR using the inreg atttribute on function +// arguments: +// +// C: void f(float, float); +// IR: declare void f(float %f1, float %f3) +// +// C: void f(struct { float f0, f1; }); +// IR: declare void f(float inreg %f0, float inreg %f1) +// +// C: void f(int, float); +// IR: declare void f(int signext %i0, float %f3) +// +// C: void f(struct { int i0high; float f1; }); +// IR: declare void f(i32 inreg %i0high, float inreg %f1) +// +// Two ints in a struct are simply coerced to i64: +// +// C: void f(struct { int i0high, i0low; }); +// IR: declare void f(i64 %i0.coerced) +// +// The frontend and backend divide the task of producing ABI compliant code for +// C functions. The C frontend will: +// +// - Annotate integer arguments with zeroext or signext attributes. +// +// - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with +// inreg attributes. +// +// - Pass structs larger than 16 bytes indirectly with an explicit pointer +// argument. The byval attribute is not used. +// +// The backend will: +// +// - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg. +// +// - Promote to integer or floating point registers depending on type. +// +// Function return values are passed exactly like function arguments, except a +// struct up to 32 bytes in size can be returned in registers. + +// Function arguments AND return values. +def CC_Sparc64 : CallingConv<[ + // The frontend uses the inreg flag to indicate i32 and float arguments from + // structs. These arguments are not promoted to 64 bits, but they can still + // be assigned to integer and float registers. + CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>, + + // All integers are promoted to i64 by the caller. + CCIfType<[i32], CCPromoteToType<i64>>, + + // Custom assignment is required because stack space is reserved for all + // arguments whether they are passed in registers or not. + CCCustom<"CC_Sparc64_Full"> +]>; diff --git a/lib/Target/Sparc/SparcFrameLowering.cpp b/lib/Target/Sparc/SparcFrameLowering.cpp index a0dae6e..7874240 100644 --- a/lib/Target/Sparc/SparcFrameLowering.cpp +++ b/lib/Target/Sparc/SparcFrameLowering.cpp @@ -37,18 +37,27 @@ void SparcFrameLowering::emitPrologue(MachineFunction &MF) const { // Get the number of bytes to allocate from the FrameInfo int NumBytes = (int) MFI->getStackSize(); - // Emit the correct save instruction based on the number of bytes in - // the frame. Minimum stack frame size according to V8 ABI is: - // 16 words for register window spill - // 1 word for address of returned aggregate-value - // + 6 words for passing parameters on the stack - // ---------- - // 23 words * 4 bytes per word = 92 bytes - NumBytes += 92; + if (SubTarget.is64Bit()) { + // All 64-bit stack frames must be 16-byte aligned, and must reserve space + // for spilling the 16 window registers at %sp+BIAS..%sp+BIAS+128. + NumBytes += 128; + // Frames with calls must also reserve space for 6 outgoing arguments + // whether they are used or not. LowerCall_64 takes care of that. + assert(NumBytes % 16 == 0 && "Stack size not 16-byte aligned"); + } else { + // Emit the correct save instruction based on the number of bytes in + // the frame. Minimum stack frame size according to V8 ABI is: + // 16 words for register window spill + // 1 word for address of returned aggregate-value + // + 6 words for passing parameters on the stack + // ---------- + // 23 words * 4 bytes per word = 92 bytes + NumBytes += 92; - // Round up to next doubleword boundary -- a double-word boundary - // is required by the ABI. - NumBytes = (NumBytes + 7) & ~7; + // Round up to next doubleword boundary -- a double-word boundary + // is required by the ABI. + NumBytes = RoundUpToAlignment(NumBytes, 8); + } NumBytes = -NumBytes; if (NumBytes >= -4096) { @@ -70,15 +79,18 @@ void SparcFrameLowering::emitPrologue(MachineFunction &MF) const { void SparcFrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { - MachineInstr &MI = *I; - DebugLoc dl = MI.getDebugLoc(); - int Size = MI.getOperand(0).getImm(); - if (MI.getOpcode() == SP::ADJCALLSTACKDOWN) - Size = -Size; - const SparcInstrInfo &TII = - *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo()); - if (Size) - BuildMI(MBB, I, dl, TII.get(SP::ADDri), SP::O6).addReg(SP::O6).addImm(Size); + if (!hasReservedCallFrame(MF)) { + MachineInstr &MI = *I; + DebugLoc DL = MI.getDebugLoc(); + int Size = MI.getOperand(0).getImm(); + if (MI.getOpcode() == SP::ADJCALLSTACKDOWN) + Size = -Size; + const SparcInstrInfo &TII = + *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo()); + if (Size) + BuildMI(MBB, I, DL, TII.get(SP::ADDri), SP::O6).addReg(SP::O6) + .addImm(Size); + } MBB.erase(I); } diff --git a/lib/Target/Sparc/SparcFrameLowering.h b/lib/Target/Sparc/SparcFrameLowering.h index 464233e..c375662 100644 --- a/lib/Target/Sparc/SparcFrameLowering.h +++ b/lib/Target/Sparc/SparcFrameLowering.h @@ -22,10 +22,12 @@ namespace llvm { class SparcSubtarget; class SparcFrameLowering : public TargetFrameLowering { + const SparcSubtarget &SubTarget; public: - explicit SparcFrameLowering(const SparcSubtarget &/*sti*/) - : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 8, 0) { - } + explicit SparcFrameLowering(const SparcSubtarget &ST) + : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, + ST.is64Bit() ? 16 : 8, 0, ST.is64Bit() ? 16 : 8), + SubTarget(ST) {} /// emitProlog/emitEpilog - These methods insert prolog and epilog code into /// the function. diff --git a/lib/Target/Sparc/SparcISelDAGToDAG.cpp b/lib/Target/Sparc/SparcISelDAGToDAG.cpp index 5fa545d..a709685 100644 --- a/lib/Target/Sparc/SparcISelDAGToDAG.cpp +++ b/lib/Target/Sparc/SparcISelDAGToDAG.cpp @@ -73,7 +73,7 @@ SDNode* SparcDAGToDAGISel::getGlobalBaseReg() { bool SparcDAGToDAGISel::SelectADDRri(SDValue Addr, SDValue &Base, SDValue &Offset) { if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { - Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), TLI.getPointerTy()); Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } @@ -87,7 +87,8 @@ bool SparcDAGToDAGISel::SelectADDRri(SDValue Addr, if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) { // Constant offset from frame ref. - Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), + TLI.getPointerTy()); } else { Base = Addr.getOperand(0); } @@ -130,7 +131,7 @@ bool SparcDAGToDAGISel::SelectADDRrr(SDValue Addr, SDValue &R1, SDValue &R2) { } R1 = Addr; - R2 = CurDAG->getRegister(SP::G0, MVT::i32); + R2 = CurDAG->getRegister(SP::G0, TLI.getPointerTy()); return true; } @@ -146,6 +147,9 @@ SDNode *SparcDAGToDAGISel::Select(SDNode *N) { case ISD::SDIV: case ISD::UDIV: { + // sdivx / udivx handle 64-bit divides. + if (N->getValueType(0) == MVT::i64) + break; // FIXME: should use a custom expander to expose the SRA to the dag. SDValue DivLHS = N->getOperand(0); SDValue DivRHS = N->getOperand(1); diff --git a/lib/Target/Sparc/SparcISelLowering.cpp b/lib/Target/Sparc/SparcISelLowering.cpp index 28ac02a..3863e2c 100644 --- a/lib/Target/Sparc/SparcISelLowering.cpp +++ b/lib/Target/Sparc/SparcISelLowering.cpp @@ -15,6 +15,7 @@ #include "SparcISelLowering.h" #include "SparcMachineFunctionInfo.h" #include "SparcTargetMachine.h" +#include "MCTargetDesc/SparcBaseInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" @@ -74,25 +75,117 @@ static bool CC_Sparc_Assign_f64(unsigned &ValNo, MVT &ValVT, return true; } +// Allocate a full-sized argument for the 64-bit ABI. +static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) { + assert((LocVT == MVT::f32 || LocVT.getSizeInBits() == 64) && + "Can't handle non-64 bits locations"); + + // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. + unsigned Offset = State.AllocateStack(8, 8); + unsigned Reg = 0; + + if (LocVT == MVT::i64 && Offset < 6*8) + // Promote integers to %i0-%i5. + Reg = SP::I0 + Offset/8; + else if (LocVT == MVT::f64 && Offset < 16*8) + // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). + Reg = SP::D0 + Offset/8; + else if (LocVT == MVT::f32 && Offset < 16*8) + // Promote floats to %f1, %f3, ... + Reg = SP::F1 + Offset/4; + + // Promote to register when possible, otherwise use the stack slot. + if (Reg) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return true; + } + + // This argument goes on the stack in an 8-byte slot. + // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to + // the right-aligned float. The first 4 bytes of the stack slot are undefined. + if (LocVT == MVT::f32) + Offset += 4; + + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return true; +} + +// Allocate a half-sized argument for the 64-bit ABI. +// +// This is used when passing { float, int } structs by value in registers. +static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, + MVT &LocVT, CCValAssign::LocInfo &LocInfo, + ISD::ArgFlagsTy &ArgFlags, CCState &State) { + assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); + unsigned Offset = State.AllocateStack(4, 4); + + if (LocVT == MVT::f32 && Offset < 16*8) { + // Promote floats to %f0-%f31. + State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, + LocVT, LocInfo)); + return true; + } + + if (LocVT == MVT::i32 && Offset < 6*8) { + // Promote integers to %i0-%i5, using half the register. + unsigned Reg = SP::I0 + Offset/8; + LocVT = MVT::i64; + LocInfo = CCValAssign::AExt; + + // Set the Custom bit if this i32 goes in the high bits of a register. + if (Offset % 8 == 0) + State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, + LocVT, LocInfo)); + else + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return true; + } + + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return true; +} + #include "SparcGenCallingConv.inc" +// The calling conventions in SparcCallingConv.td are described in terms of the +// callee's register window. This function translates registers to the +// corresponding caller window %o register. +static unsigned toCallerWindow(unsigned Reg) { + assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7 && "Unexpected enum"); + if (Reg >= SP::I0 && Reg <= SP::I7) + return Reg - SP::I0 + SP::O0; + return Reg; +} + SDValue SparcTargetLowering::LowerReturn(SDValue Chain, - CallingConv::ID CallConv, bool isVarArg, + CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, - DebugLoc dl, SelectionDAG &DAG) const { + DebugLoc DL, SelectionDAG &DAG) const { + if (Subtarget->is64Bit()) + return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); + return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); +} +SDValue +SparcTargetLowering::LowerReturn_32(SDValue Chain, + CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // CCValAssign - represent the assignment of the return value to locations. SmallVector<CCValAssign, 16> RVLocs; // CCState - Info about the registers and stack slot. - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), DAG.getTarget(), RVLocs, *DAG.getContext()); - // Analize return values. + // Analyze return values. CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); SDValue Flag; @@ -105,7 +198,7 @@ SparcTargetLowering::LowerReturn(SDValue Chain, CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); - Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together with flags. @@ -120,8 +213,8 @@ SparcTargetLowering::LowerReturn(SDValue Chain, unsigned Reg = SFI->getSRetReturnReg(); if (!Reg) llvm_unreachable("sret virtual register not created in the entry block"); - SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); - Chain = DAG.getCopyToReg(Chain, dl, SP::I0, Val, Flag); + SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy()); + Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(SP::I0, getPointerTy())); RetAddrOffset = 12; // CallInst + Delay Slot + Unimp @@ -134,22 +227,114 @@ SparcTargetLowering::LowerReturn(SDValue Chain, if (Flag.getNode()) RetOps.push_back(Flag); - return DAG.getNode(SPISD::RET_FLAG, dl, MVT::Other, + return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, &RetOps[0], RetOps.size()); } -/// LowerFormalArguments - V8 uses a very simple ABI, where all values are -/// passed in either one or two GPRs, including FP values. TODO: we should -/// pass FP values in FP registers for fastcc functions. +// Lower return values for the 64-bit ABI. +// Return values are passed the exactly the same way as function arguments. SDValue -SparcTargetLowering::LowerFormalArguments(SDValue Chain, - CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<ISD::InputArg> - &Ins, - DebugLoc dl, SelectionDAG &DAG, - SmallVectorImpl<SDValue> &InVals) - const { +SparcTargetLowering::LowerReturn_64(SDValue Chain, + CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc DL, SelectionDAG &DAG) const { + // CCValAssign - represent the assignment of the return value to locations. + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), + DAG.getTarget(), RVLocs, *DAG.getContext()); + + // Analyze return values. + CCInfo.AnalyzeReturn(Outs, CC_Sparc64); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // The second operand on the return instruction is the return address offset. + // The return address is always %i7+8 with the 64-bit ABI. + RetOps.push_back(DAG.getConstant(8, MVT::i32)); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + SDValue OutVal = OutVals[i]; + + // Integer return values must be sign or zero extended by the callee. + switch (VA.getLocInfo()) { + case CCValAssign::SExt: + OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); + break; + case CCValAssign::ZExt: + OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); + break; + case CCValAssign::AExt: + OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); + default: + break; + } + + // The custom bit on an i32 return value indicates that it should be passed + // in the high bits of the register. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { + OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, + DAG.getConstant(32, MVT::i32)); + + // The next value may go in the low bits of the same register. + // Handle both at once. + if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { + SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); + OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); + // Skip the next value, it's already done. + ++i; + } + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, + &RetOps[0], RetOps.size()); +} +SDValue SparcTargetLowering:: +LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc DL, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + if (Subtarget->is64Bit()) + return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, + DL, DAG, InVals); + return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, + DL, DAG, InVals); +} + +/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are +/// passed in either one or two GPRs, including FP values. TODO: we should +/// pass FP values in FP registers for fastcc functions. +SDValue SparcTargetLowering:: +LowerFormalArguments_32(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); @@ -341,9 +526,132 @@ SparcTargetLowering::LowerFormalArguments(SDValue Chain, return Chain; } +// Lower formal arguments for the 64 bit ABI. +SDValue SparcTargetLowering:: +LowerFormalArguments_64(SDValue Chain, + CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc DL, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + + // Analyze arguments according to CC_Sparc64. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); + + // The argument array begins at %fp+BIAS+128, after the register save area. + const unsigned ArgArea = 128; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) { + // This argument is passed in a register. + // All integer register arguments are promoted by the caller to i64. + + // Create a virtual register for the promoted live-in value. + unsigned VReg = MF.addLiveIn(VA.getLocReg(), + getRegClassFor(VA.getLocVT())); + SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); + + // Get the high bits for i32 struct elements. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) + Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, + DAG.getConstant(32, MVT::i32)); + + // The caller promoted the argument, so insert an Assert?ext SDNode so we + // won't promote the value again in this function. + switch (VA.getLocInfo()) { + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, + DAG.getValueType(VA.getValVT())); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, + DAG.getValueType(VA.getValVT())); + break; + default: + break; + } + + // Truncate the register down to the argument type. + if (VA.isExtInLoc()) + Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); + + InVals.push_back(Arg); + continue; + } + + // The registers are exhausted. This argument was passed on the stack. + assert(VA.isMemLoc()); + // The CC_Sparc64_Full/Half functions compute stack offsets relative to the + // beginning of the arguments area at %fp+BIAS+128. + unsigned Offset = VA.getLocMemOffset() + ArgArea; + unsigned ValSize = VA.getValVT().getSizeInBits() / 8; + // Adjust offset for extended arguments, SPARC is big-endian. + // The caller will have written the full slot with extended bytes, but we + // prefer our own extending loads. + if (VA.isExtInLoc()) + Offset += 8 - ValSize; + int FI = MF.getFrameInfo()->CreateFixedObject(ValSize, Offset, true); + InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, + DAG.getFrameIndex(FI, getPointerTy()), + MachinePointerInfo::getFixedStack(FI), + false, false, false, 0)); + } + + if (!IsVarArg) + return Chain; + + // This function takes variable arguments, some of which may have been passed + // in registers %i0-%i5. Variable floating point arguments are never passed + // in floating point registers. They go on %i0-%i5 or on the stack like + // integer arguments. + // + // The va_start intrinsic needs to know the offset to the first variable + // argument. + unsigned ArgOffset = CCInfo.getNextStackOffset(); + SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); + // Skip the 128 bytes of register save area. + FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + + Subtarget->getStackPointerBias()); + + // Save the variable arguments that were passed in registers. + // The caller is required to reserve stack space for 6 arguments regardless + // of how many arguments were actually passed. + SmallVector<SDValue, 8> OutChains; + for (; ArgOffset < 6*8; ArgOffset += 8) { + unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); + SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); + int FI = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset + ArgArea, true); + OutChains.push_back(DAG.getStore(Chain, DL, VArg, + DAG.getFrameIndex(FI, getPointerTy()), + MachinePointerInfo::getFixedStack(FI), + false, false, 0)); + } + + if (!OutChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + &OutChains[0], OutChains.size()); + + return Chain; +} + SDValue SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { + if (Subtarget->is64Bit()) + return LowerCall_64(CLI, InVals); + return LowerCall_32(CLI, InVals); +} + +// Lower a call for the 32-bit ABI. +SDValue +SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; DebugLoc &dl = CLI.DL; SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; @@ -546,11 +854,7 @@ SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { - unsigned Reg = RegsToPass[i].first; - // Remap I0->I7 -> O0->O7. - if (Reg >= SP::I0 && Reg <= SP::I7) - Reg = Reg-SP::I0+SP::O0; - + unsigned Reg = toCallerWindow(RegsToPass[i].first); Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } @@ -572,13 +876,9 @@ SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, Ops.push_back(Callee); if (hasStructRetAttr) Ops.push_back(DAG.getTargetConstant(SRetArgSize, MVT::i32)); - for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { - unsigned Reg = RegsToPass[i].first; - if (Reg >= SP::I0 && Reg <= SP::I7) - Reg = Reg-SP::I0+SP::O0; - - Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); - } + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), + RegsToPass[i].second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); @@ -598,13 +898,7 @@ SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { - unsigned Reg = RVLocs[i].getLocReg(); - - // Remap I0->I7 -> O0->O7. - if (Reg >= SP::I0 && Reg <= SP::I7) - Reg = Reg-SP::I0+SP::O0; - - Chain = DAG.getCopyFromReg(Chain, dl, Reg, + Chain = DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), RVLocs[i].getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); @@ -637,6 +931,259 @@ SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const return getDataLayout()->getTypeAllocSize(ElementTy); } + +// Fixup floating point arguments in the ... part of a varargs call. +// +// The SPARC v9 ABI requires that floating point arguments are treated the same +// as integers when calling a varargs function. This does not apply to the +// fixed arguments that are part of the function's prototype. +// +// This function post-processes a CCValAssign array created by +// AnalyzeCallOperands(). +static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, + ArrayRef<ISD::OutputArg> Outs) { + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + const CCValAssign &VA = ArgLocs[i]; + // FIXME: What about f32 arguments? C promotes them to f64 when calling + // varargs functions. + if (!VA.isRegLoc() || VA.getLocVT() != MVT::f64) + continue; + // The fixed arguments to a varargs function still go in FP registers. + if (Outs[VA.getValNo()].IsFixed) + continue; + + // This floating point argument should be reassigned. + CCValAssign NewVA; + + // Determine the offset into the argument array. + unsigned Offset = 8 * (VA.getLocReg() - SP::D0); + assert(Offset < 16*8 && "Offset out of range, bad register enum?"); + + if (Offset < 6*8) { + // This argument should go in %i0-%i5. + unsigned IReg = SP::I0 + Offset/8; + // Full register, just bitconvert into i64. + NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), + IReg, MVT::i64, CCValAssign::BCvt); + } else { + // This needs to go to memory, we're out of integer registers. + NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), + Offset, VA.getLocVT(), VA.getLocInfo()); + } + ArgLocs[i] = NewVA; + } +} + +// Lower a call for the 64-bit ABI. +SDValue +SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + DebugLoc DL = CLI.DL; + SDValue Chain = CLI.Chain; + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), + DAG.getTarget(), ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); + + // Get the size of the outgoing arguments stack space requirement. + // The stack offset computed by CC_Sparc64 includes all arguments. + // Called functions expect 6 argument words to exist in the stack frame, used + // or not. + unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); + + // Keep stack frames 16-byte aligned. + ArgsSize = RoundUpToAlignment(ArgsSize, 16); + + // Varargs calls require special treatment. + if (CLI.IsVarArg) + fixupVariableFloatArgs(ArgLocs, CLI.Outs); + + // Adjust the stack pointer to make room for the arguments. + // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls + // with more than 6 arguments. + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true)); + + // Collect the set of registers to pass to the function and their values. + // This will be emitted as a sequence of CopyToReg nodes glued to the call + // instruction. + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + + // Collect chains from all the memory opeations that copy arguments to the + // stack. They must follow the stack pointer adjustment above and precede the + // call instruction itself. + SmallVector<SDValue, 8> MemOpChains; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + const CCValAssign &VA = ArgLocs[i]; + SDValue Arg = CLI.OutVals[i]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown location info!"); + case CCValAssign::Full: + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + } + + if (VA.isRegLoc()) { + // The custom bit on an i32 return value indicates that it should be + // passed in the high bits of the register. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { + Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, + DAG.getConstant(32, MVT::i32)); + + // The next value may go in the low bits of the same register. + // Handle both at once. + if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && + ArgLocs[i+1].getLocReg() == VA.getLocReg()) { + SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, + CLI.OutVals[i+1]); + Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); + // Skip the next value, it's already done. + ++i; + } + } + RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); + continue; + } + + assert(VA.isMemLoc()); + + // Create a store off the stack pointer for this argument. + SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy()); + // The argument area starts at %fp+BIAS+128 in the callee frame, + // %sp+BIAS+128 in ours. + SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + + Subtarget->getStackPointerBias() + + 128); + PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); + MemOpChains.push_back(DAG.getStore(Chain, DL, Arg, PtrOff, + MachinePointerInfo(), + false, false, 0)); + } + + // Emit all stores, make sure they occur before the call. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // Build a sequence of CopyToReg nodes glued together with token chain and + // glue operands which copy the outgoing args into registers. The InGlue is + // necessary since all emitted instructions must be stuck together in order + // to pass the live physical registers. + SDValue InGlue; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, DL, + RegsToPass[i].first, RegsToPass[i].second, InGlue); + InGlue = Chain.getValue(1); + } + + // If the callee is a GlobalAddress node (quite common, every direct call is) + // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. + // Likewise ExternalSymbol -> TargetExternalSymbol. + SDValue Callee = CLI.Callee; + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy()); + else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) + Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy()); + + // Build the operands for the call instruction itself. + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Make sure the CopyToReg nodes are glued to the call instruction which + // consumes the registers. + if (InGlue.getNode()) + Ops.push_back(InGlue); + + // Now the call itself. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); + InGlue = Chain.getValue(1); + + // Revert the stack pointer immediately after the call. + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true), + DAG.getIntPtrConstant(0, true), InGlue); + InGlue = Chain.getValue(1); + + // Now extract the return values. This is more or less the same as + // LowerFormalArguments_64. + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), + DAG.getTarget(), RVLocs, *DAG.getContext()); + RVInfo.AnalyzeCallResult(CLI.Ins, CC_Sparc64); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + unsigned Reg = toCallerWindow(VA.getLocReg()); + + // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can + // reside in the same register in the high and low bits. Reuse the + // CopyFromReg previous node to avoid duplicate copies. + SDValue RV; + if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) + if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) + RV = Chain.getValue(0); + + // But usually we'll create a new CopyFromReg for a different register. + if (!RV.getNode()) { + RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); + Chain = RV.getValue(1); + InGlue = Chain.getValue(2); + } + + // Get the high bits for i32 struct elements. + if (VA.getValVT() == MVT::i32 && VA.needsCustom()) + RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, + DAG.getConstant(32, MVT::i32)); + + // The callee promoted the return value, so insert an Assert?ext SDNode so + // we won't promote the value again in this function. + switch (VA.getLocInfo()) { + case CCValAssign::SExt: + RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, + DAG.getValueType(VA.getValVT())); + break; + case CCValAssign::ZExt: + RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, + DAG.getValueType(VA.getValVT())); + break; + default: + break; + } + + // Truncate the register down to the return value type. + if (VA.isExtInLoc()) + RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); + + InVals.push_back(RV); + } + + return Chain; +} + //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// @@ -689,11 +1236,14 @@ static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { SparcTargetLowering::SparcTargetLowering(TargetMachine &TM) : TargetLowering(TM, new TargetLoweringObjectFileELF()) { + Subtarget = &TM.getSubtarget<SparcSubtarget>(); // Set up the register classes. addRegisterClass(MVT::i32, &SP::IntRegsRegClass); addRegisterClass(MVT::f32, &SP::FPRegsRegClass); addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); + if (Subtarget->is64Bit()) + addRegisterClass(MVT::i64, &SP::I64RegsRegClass); // Turn FP extload into load/fextend setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); @@ -703,9 +1253,9 @@ SparcTargetLowering::SparcTargetLowering(TargetMachine &TM) setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Custom legalize GlobalAddress nodes into LO/HI parts. - setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); - setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); - setOperationAction(ISD::ConstantPool , MVT::i32, Custom); + setOperationAction(ISD::GlobalAddress, getPointerTy(), Custom); + setOperationAction(ISD::GlobalTLSAddress, getPointerTy(), Custom); + setOperationAction(ISD::ConstantPool, getPointerTy(), Custom); // Sparc doesn't have sext_inreg, replace them with shl/sra setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); @@ -749,9 +1299,13 @@ SparcTargetLowering::SparcTargetLowering(TargetMachine &TM) setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::BR_CC, MVT::i64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); + } + // FIXME: There are instructions available for ATOMIC_FENCE // on SparcV8 and later. - setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); setOperationAction(ISD::FSIN , MVT::f64, Expand); @@ -818,8 +1372,10 @@ const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { case SPISD::CMPICC: return "SPISD::CMPICC"; case SPISD::CMPFCC: return "SPISD::CMPFCC"; case SPISD::BRICC: return "SPISD::BRICC"; + case SPISD::BRXCC: return "SPISD::BRXCC"; case SPISD::BRFCC: return "SPISD::BRFCC"; case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; + case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; case SPISD::Hi: return "SPISD::Hi"; case SPISD::Lo: return "SPISD::Lo"; @@ -846,6 +1402,7 @@ void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, switch (Op.getOpcode()) { default: break; case SPISD::SELECT_ICC: + case SPISD::SELECT_XCC: case SPISD::SELECT_FCC: DAG.ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); @@ -866,7 +1423,8 @@ static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, if (isa<ConstantSDNode>(RHS) && cast<ConstantSDNode>(RHS)->isNullValue() && CC == ISD::SETNE && - ((LHS.getOpcode() == SPISD::SELECT_ICC && + (((LHS.getOpcode() == SPISD::SELECT_ICC || + LHS.getOpcode() == SPISD::SELECT_XCC) && LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || (LHS.getOpcode() == SPISD::SELECT_FCC && LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && @@ -881,46 +1439,89 @@ static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, } } +// Convert to a target node and set target flags. +SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, + SelectionDAG &DAG) const { + if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) + return DAG.getTargetGlobalAddress(GA->getGlobal(), + GA->getDebugLoc(), + GA->getValueType(0), + GA->getOffset(), TF); + + if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) + return DAG.getTargetConstantPool(CP->getConstVal(), + CP->getValueType(0), + CP->getAlignment(), + CP->getOffset(), TF); + + if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) + return DAG.getTargetExternalSymbol(ES->getSymbol(), + ES->getValueType(0), TF); + + llvm_unreachable("Unhandled address SDNode"); +} + +// Split Op into high and low parts according to HiTF and LoTF. +// Return an ADD node combining the parts. +SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, + unsigned HiTF, unsigned LoTF, + SelectionDAG &DAG) const { + DebugLoc DL = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); + SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); + return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); +} + +// Build SDNodes for producing an address from a GlobalAddress, ConstantPool, +// or ExternalSymbol SDNode. +SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { + DebugLoc DL = Op.getDebugLoc(); + EVT VT = getPointerTy(); + + // Handle PIC mode first. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { + // This is the pic32 code model, the GOT is known to be smaller than 4GB. + SDValue HiLo = makeHiLoPair(Op, SPII::MO_HI, SPII::MO_LO, DAG); + SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); + SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo); + return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, + MachinePointerInfo::getGOT(), false, false, false, 0); + } + + // This is one of the absolute code models. + switch(getTargetMachine().getCodeModel()) { + default: + llvm_unreachable("Unsupported absolute code model"); + case CodeModel::Small: + // abs32. + return makeHiLoPair(Op, SPII::MO_HI, SPII::MO_LO, DAG); + case CodeModel::Medium: { + // abs44. + SDValue H44 = makeHiLoPair(Op, SPII::MO_H44, SPII::MO_M44, DAG); + H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, MVT::i32)); + SDValue L44 = withTargetFlags(Op, SPII::MO_L44, DAG); + L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); + return DAG.getNode(ISD::ADD, DL, VT, H44, L44); + } + case CodeModel::Large: { + // abs64. + SDValue Hi = makeHiLoPair(Op, SPII::MO_HH, SPII::MO_HM, DAG); + Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, MVT::i32)); + SDValue Lo = makeHiLoPair(Op, SPII::MO_HI, SPII::MO_LO, DAG); + return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); + } + } +} + SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { - const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); - // FIXME there isn't really any debug info here - DebugLoc dl = Op.getDebugLoc(); - SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); - SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, GA); - SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, GA); - - if (getTargetMachine().getRelocationModel() != Reloc::PIC_) - return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); - - SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl, - getPointerTy()); - SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); - SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, - GlobalBase, RelAddr); - return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), - AbsAddr, MachinePointerInfo(), false, false, false, 0); + return makeAddress(Op, DAG); } SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { - ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); - // FIXME there isn't really any debug info here - DebugLoc dl = Op.getDebugLoc(); - const Constant *C = N->getConstVal(); - SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment()); - SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, CP); - SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, CP); - if (getTargetMachine().getRelocationModel() != Reloc::PIC_) - return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); - - SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl, - getPointerTy()); - SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); - SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, - GlobalBase, RelAddr); - return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), - AbsAddr, MachinePointerInfo(), false, false, false, 0); + return makeAddress(Op, DAG); } static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { @@ -954,12 +1555,13 @@ static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) { // Get the condition flag. SDValue CompareFlag; - if (LHS.getValueType() == MVT::i32) { - EVT VTs[] = { MVT::i32, MVT::Glue }; + if (LHS.getValueType().isInteger()) { + EVT VTs[] = { LHS.getValueType(), MVT::Glue }; SDValue Ops[2] = { LHS, RHS }; CompareFlag = DAG.getNode(SPISD::CMPICC, dl, VTs, Ops, 2).getValue(1); if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); - Opc = SPISD::BRICC; + // 32-bit compares use the icc flags, 64-bit uses the xcc flags. + Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; } else { CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); @@ -983,12 +1585,13 @@ static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) { LookThroughSetCC(LHS, RHS, CC, SPCC); SDValue CompareFlag; - if (LHS.getValueType() == MVT::i32) { + if (LHS.getValueType().isInteger()) { // subcc returns a value EVT VTs[] = { LHS.getValueType(), MVT::Glue }; SDValue Ops[2] = { LHS, RHS }; CompareFlag = DAG.getNode(SPISD::CMPICC, dl, VTs, Ops, 2).getValue(1); - Opc = SPISD::SELECT_ICC; + Opc = LHS.getValueType() == MVT::i32 ? + SPISD::SELECT_ICC : SPISD::SELECT_XCC; if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); } else { CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); @@ -1006,14 +1609,13 @@ static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. - DebugLoc dl = Op.getDebugLoc(); + DebugLoc DL = Op.getDebugLoc(); SDValue Offset = - DAG.getNode(ISD::ADD, dl, MVT::i32, - DAG.getRegister(SP::I6, MVT::i32), - DAG.getConstant(FuncInfo->getVarArgsFrameOffset(), - MVT::i32)); + DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), + DAG.getRegister(SP::I6, TLI.getPointerTy()), + DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset())); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); - return DAG.getStore(Op.getOperand(0), dl, Offset, Op.getOperand(1), + return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } @@ -1022,33 +1624,22 @@ static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { EVT VT = Node->getValueType(0); SDValue InChain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); + EVT PtrVT = VAListPtr.getValueType(); const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); - DebugLoc dl = Node->getDebugLoc(); - SDValue VAList = DAG.getLoad(MVT::i32, dl, InChain, VAListPtr, + DebugLoc DL = Node->getDebugLoc(); + SDValue VAList = DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV), false, false, false, 0); - // Increment the pointer, VAList, to the next vaarg - SDValue NextPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, VAList, - DAG.getConstant(VT.getSizeInBits()/8, - MVT::i32)); - // Store the incremented VAList to the legalized pointer - InChain = DAG.getStore(VAList.getValue(1), dl, NextPtr, + // Increment the pointer, VAList, to the next vaarg. + SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, + DAG.getIntPtrConstant(VT.getSizeInBits()/8)); + // Store the incremented VAList to the legalized pointer. + InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, MachinePointerInfo(SV), false, false, 0); - // Load the actual argument out of the pointer VAList, unless this is an - // f64 load. - if (VT != MVT::f64) - return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), - false, false, false, 0); - - // Otherwise, load it as i64, then do a bitconvert. - SDValue V = DAG.getLoad(MVT::i64, dl, InChain, VAList, MachinePointerInfo(), - false, false, false, 0); - - // Bit-Convert the value to f64. - SDValue Ops[2] = { - DAG.getNode(ISD::BITCAST, dl, MVT::f64, V), - V.getValue(1) - }; - return DAG.getMergeValues(Ops, 2, dl); + // Load the actual argument out of the pointer VAList. + // We can't count on greater alignment than the word size. + return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), + false, false, false, + std::min(PtrVT.getSizeInBits(), VT.getSizeInBits())/8); } static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) { diff --git a/lib/Target/Sparc/SparcISelLowering.h b/lib/Target/Sparc/SparcISelLowering.h index 09148ea..fd706be 100644 --- a/lib/Target/Sparc/SparcISelLowering.h +++ b/lib/Target/Sparc/SparcISelLowering.h @@ -19,14 +19,18 @@ #include "llvm/Target/TargetLowering.h" namespace llvm { + class SparcSubtarget; + namespace SPISD { enum { FIRST_NUMBER = ISD::BUILTIN_OP_END, - CMPICC, // Compare two GPR operands, set icc. + CMPICC, // Compare two GPR operands, set icc+xcc. CMPFCC, // Compare two FP operands, set fcc. BRICC, // Branch to dest on icc condition + BRXCC, // Branch to dest on xcc condition (64-bit only). BRFCC, // Branch to dest on fcc condition SELECT_ICC, // Select between two values using the current ICC flags. + SELECT_XCC, // Select between two values using the current XCC flags. SELECT_FCC, // Select between two values using the current FCC flags. Hi, Lo, // Hi/Lo operations, typically on a global address. @@ -42,6 +46,7 @@ namespace llvm { } class SparcTargetLowering : public TargetLowering { + const SparcSubtarget *Subtarget; public: SparcTargetLowering(TargetMachine &TM); virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; @@ -66,6 +71,7 @@ namespace llvm { getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const; virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; + virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; } virtual SDValue LowerFormalArguments(SDValue Chain, @@ -74,10 +80,26 @@ namespace llvm { const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; + SDValue LowerFormalArguments_32(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const; + SDValue LowerFormalArguments_64(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const; virtual SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const; + SDValue LowerCall_32(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const; + SDValue LowerCall_64(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const; virtual SDValue LowerReturn(SDValue Chain, @@ -85,11 +107,25 @@ namespace llvm { const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, DebugLoc dl, SelectionDAG &DAG) const; + SDValue LowerReturn_32(SDValue Chain, + CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc DL, SelectionDAG &DAG) const; + SDValue LowerReturn_64(SDValue Chain, + CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc DL, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; unsigned getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const; + SDValue withTargetFlags(SDValue Op, unsigned TF, SelectionDAG &DAG) const; + SDValue makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, + SelectionDAG &DAG) const; + SDValue makeAddress(SDValue Op, SelectionDAG &DAG) const; }; } // end namespace llvm diff --git a/lib/Target/Sparc/SparcInstr64Bit.td b/lib/Target/Sparc/SparcInstr64Bit.td new file mode 100644 index 0000000..91805f9 --- /dev/null +++ b/lib/Target/Sparc/SparcInstr64Bit.td @@ -0,0 +1,333 @@ +//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains instruction definitions and patterns needed for 64-bit +// code generation on SPARC v9. +// +// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can +// also be used in 32-bit code running on a SPARC v9 CPU. +// +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { +// The same integer registers are used for i32 and i64 values. +// When registers hold i32 values, the high bits are don't care. +// This give us free trunc and anyext. +def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>; +def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Shift Instructions. +//===----------------------------------------------------------------------===// +// +// The 32-bit shift instructions are still available. The left shift srl +// instructions shift all 64 bits, but it only accepts a 5-bit shift amount. +// +// The srl instructions only shift the low 32 bits and clear the high 32 bits. +// Finally, sra shifts the low 32 bits and sign-extends to 64 bits. + +let Predicates = [Is64Bit] in { + +def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>; +def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>; + +def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>; +def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>; + +defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>; +defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>; +defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Immediates. +//===----------------------------------------------------------------------===// +// +// All 32-bit immediates can be materialized with sethi+or, but 64-bit +// immediates may require more code. There may be a point where it is +// preferable to use a constant pool load instead, depending on the +// microarchitecture. + +// The %g0 register is constant 0. +// This is useful for stx %g0, [...], for example. +def : Pat<(i64 0), (i64 G0)>, Requires<[Is64Bit]>; + +// Single-instruction patterns. + +// The ALU instructions want their simm13 operands as i32 immediates. +def as_i32imm : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32); +}]>; +def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>; +def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>; + +// Double-instruction patterns. + +// All unsigned i32 immediates can be handled by sethi+or. +def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; +def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>, + Requires<[Is64Bit]>; + +// All negative i33 immediates can be handled by sethi+xor. +def nimm33 : PatLeaf<(imm), [{ + int64_t Imm = N->getSExtValue(); + return Imm < 0 && isInt<33>(Imm); +}]>; +// Bits 10-31 inverted. Same as assembler's %hix. +def HIX22 : SDNodeXForm<imm, [{ + uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1); + return CurDAG->getTargetConstant(Val, MVT::i32); +}]>; +// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox. +def LOX10 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32); +}]>; +def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>, + Requires<[Is64Bit]>; + +// More possible patterns: +// +// (sllx sethi, n) +// (sllx simm13, n) +// +// 3 instrs: +// +// (xor (sllx sethi), simm13) +// (sllx (xor sethi, simm13)) +// +// 4 instrs: +// +// (or sethi, (sllx sethi)) +// (xnor sethi, (sllx sethi)) +// +// 5 instrs: +// +// (or (sllx sethi), (or sethi, simm13)) +// (xnor (sllx sethi), (or sethi, simm13)) +// (or (sllx sethi), (sllx sethi)) +// (xnor (sllx sethi), (sllx sethi)) +// +// Worst case is 6 instrs: +// +// (or (sllx (or sethi, simmm13)), (or sethi, simm13)) + +// Bits 42-63, same as assembler's %hh. +def HH22 : SDNodeXForm<imm, [{ + uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1); + return CurDAG->getTargetConstant(Val, MVT::i32); +}]>; +// Bits 32-41, same as assembler's %hm. +def HM10 : SDNodeXForm<imm, [{ + uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1); + return CurDAG->getTargetConstant(Val, MVT::i32); +}]>; +def : Pat<(i64 imm:$val), + (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)), + (ORri (SETHIi (HI22 $val)), (LO10 $val)))>, + Requires<[Is64Bit]>; + + +//===----------------------------------------------------------------------===// +// 64-bit Integer Arithmetic and Logic. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +// Register-register instructions. + +def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>; +def : Pat<(or i64:$a, i64:$b), (ORrr $a, $b)>; +def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>; + +def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>; +def : Pat<(or i64:$a, (not i64:$b)), (ORNrr $a, $b)>; +def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>; + +def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>; +def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>; + +// Add/sub with carry were renamed to addc/subc in SPARC v9. +def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>; +def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>; + +def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>; +def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>; + +def : Pat<(SPcmpicc i64:$a, i64:$b), (SUBCCrr $a, $b)>; + +// Register-immediate instructions. + +def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>; +def : Pat<(or i64:$a, (i64 simm13:$b)), (ORri $a, (as_i32imm $b))>; +def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>; + +def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>; +def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>; + +def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (SUBCCri $a, (as_i32imm $b))>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Integer Multiply and Divide. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +def MULXrr : F3_1<2, 0b001001, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "mulx $rs1, $rs2, $rd", + [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>; +def MULXri : F3_2<2, 0b001001, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i), + "mulx $rs1, $i, $rd", + [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>; + +// Division can trap. +let hasSideEffects = 1 in { +def SDIVXrr : F3_1<2, 0b101101, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "sdivx $rs1, $rs2, $rd", + [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>; +def SDIVXri : F3_2<2, 0b101101, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i), + "sdivx $rs1, $i, $rd", + [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>; + +def UDIVXrr : F3_1<2, 0b001101, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "udivx $rs1, $rs2, $rd", + [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>; +def UDIVXri : F3_2<2, 0b001101, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i), + "udivx $rs1, $i, $rd", + [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>; +} // hasSideEffects = 1 + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Loads and Stores. +//===----------------------------------------------------------------------===// +// +// All the 32-bit loads and stores are available. The extending loads are sign +// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits +// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned +// Word). +// +// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads. + +let Predicates = [Is64Bit] in { + +// 64-bit loads. +def LDXrr : F3_1<3, 0b001011, + (outs I64Regs:$dst), (ins MEMrr:$addr), + "ldx [$addr], $dst", + [(set i64:$dst, (load ADDRrr:$addr))]>; +def LDXri : F3_2<3, 0b001011, + (outs I64Regs:$dst), (ins MEMri:$addr), + "ldx [$addr], $dst", + [(set i64:$dst, (load ADDRri:$addr))]>; + +// Extending loads to i64. +def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>; +def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; +def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; +def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>; +def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; +def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; + +// Sign-extending load of i32 into i64 is a new SPARC v9 instruction. +def LDSWrr : F3_1<3, 0b001011, + (outs I64Regs:$dst), (ins MEMrr:$addr), + "ldsw [$addr], $dst", + [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>; +def LDSWri : F3_2<3, 0b001011, + (outs I64Regs:$dst), (ins MEMri:$addr), + "ldsw [$addr], $dst", + [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>; + +// 64-bit stores. +def STXrr : F3_1<3, 0b001110, + (outs), (ins MEMrr:$addr, I64Regs:$src), + "stx $src, [$addr]", + [(store i64:$src, ADDRrr:$addr)]>; +def STXri : F3_2<3, 0b001110, + (outs), (ins MEMri:$addr, I64Regs:$src), + "stx $src, [$addr]", + [(store i64:$src, ADDRri:$addr)]>; + +// Truncating stores from i64 are identical to the i32 stores. +def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>; +def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>; +def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Conditionals. +//===----------------------------------------------------------------------===// +// +// Flag-setting instructions like subcc and addcc set both icc and xcc flags. +// The icc flags correspond to the 32-bit result, and the xcc are for the +// full 64-bit result. +// +// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for +// 64-bit compares. See LowerBR_CC. + +let Predicates = [Is64Bit] in { + +let Uses = [ICC] in +def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc), + "bp$cc %xcc, $dst", + [(SPbrxcc bb:$dst, imm:$cc)]>; + +// Conditional moves on %xcc. +let Uses = [ICC], Constraints = "$f = $rd" in { +def MOVXCCrr : Pseudo<(outs IntRegs:$rd), + (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), + "mov$cond %xcc, $rs2, $rd", + [(set i32:$rd, + (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>; +def MOVXCCri : Pseudo<(outs IntRegs:$rd), + (ins i32imm:$i, IntRegs:$f, CCOp:$cond), + "mov$cond %xcc, $i, $rd", + [(set i32:$rd, + (SPselecticc simm11:$i, i32:$f, imm:$cond))]>; +} // Uses, Constraints + +def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond), + (MOVXCCrr $t, $f, imm:$cond)>; +def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond), + (MOVXCCri (as_i32imm $t), $f, imm:$cond)>; + +} // Predicates = [Is64Bit] diff --git a/lib/Target/Sparc/SparcInstrFormats.td b/lib/Target/Sparc/SparcInstrFormats.td index dce3312..e7fde08 100644 --- a/lib/Target/Sparc/SparcInstrFormats.td +++ b/lib/Target/Sparc/SparcInstrFormats.td @@ -111,4 +111,41 @@ class F3_3<bits<2> opVal, bits<6> op3val, bits<9> opfval, dag outs, dag ins, let Inst{4-0} = rs2; } +// Shift by register rs2. +class F3_Sr<bits<2> opVal, bits<6> op3val, bit xVal, dag outs, dag ins, + string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { + bit x = xVal; // 1 for 64-bit shifts. + bits<5> rs2; + + let op = opVal; + let op3 = op3val; + + let Inst{13} = 0; // i field = 0 + let Inst{12} = x; // extended registers. + let Inst{4-0} = rs2; +} +// Shift by immediate. +class F3_Si<bits<2> opVal, bits<6> op3val, bit xVal, dag outs, dag ins, + string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { + bit x = xVal; // 1 for 64-bit shifts. + bits<6> shcnt; // shcnt32 / shcnt64. + + let op = opVal; + let op3 = op3val; + + let Inst{13} = 1; // i field = 1 + let Inst{12} = x; // extended registers. + let Inst{5-0} = shcnt; +} + +// Define rr and ri shift instructions with patterns. +multiclass F3_S<string OpcStr, bits<6> Op3Val, bit XVal, SDNode OpNode, + ValueType VT, RegisterClass RC> { + def rr : F3_Sr<2, Op3Val, XVal, (outs RC:$rd), (ins RC:$rs, IntRegs:$rs2), + !strconcat(OpcStr, " $rs, $rs2, $rd"), + [(set VT:$rd, (OpNode VT:$rs, i32:$rs2))]>; + def ri : F3_Si<2, Op3Val, XVal, (outs RC:$rd), (ins RC:$rs, i32imm:$shcnt), + !strconcat(OpcStr, " $rs, $shcnt, $rd"), + [(set VT:$rd, (OpNode VT:$rs, (i32 imm:$shcnt)))]>; +} diff --git a/lib/Target/Sparc/SparcInstrInfo.td b/lib/Target/Sparc/SparcInstrInfo.td index 90b698d..baefb06 100644 --- a/lib/Target/Sparc/SparcInstrInfo.td +++ b/lib/Target/Sparc/SparcInstrInfo.td @@ -21,6 +21,12 @@ include "SparcInstrFormats.td" // Feature predicates. //===----------------------------------------------------------------------===// +// True when generating 32-bit code. +def Is32Bit : Predicate<"!Subtarget.is64Bit()">; + +// True when generating 64-bit code. This also implies HasV9. +def Is64Bit : Predicate<"Subtarget.is64Bit()">; + // HasV9 - This predicate is true when the target processor supports V9 // instructions. Note that the machine may be running in 32-bit mode. def HasV9 : Predicate<"Subtarget.isV9()">; @@ -58,22 +64,21 @@ def HI22 : SDNodeXForm<imm, [{ }]>; def SETHIimm : PatLeaf<(imm), [{ - return (((unsigned)N->getZExtValue() >> 10) << 10) == - (unsigned)N->getZExtValue(); + return isShiftedUInt<22, 10>(N->getZExtValue()); }], HI22>; // Addressing modes. -def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; -def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; +def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; +def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>; // Address operands -def MEMrr : Operand<i32> { +def MEMrr : Operand<iPTR> { let PrintMethod = "printMemOperand"; - let MIOperandInfo = (ops IntRegs, IntRegs); + let MIOperandInfo = (ops ptr_rc, ptr_rc); } -def MEMri : Operand<i32> { +def MEMri : Operand<iPTR> { let PrintMethod = "printMemOperand"; - let MIOperandInfo = (ops IntRegs, i32imm); + let MIOperandInfo = (ops ptr_rc, i32imm); } // Branch targets have OtherVT type. @@ -98,6 +103,7 @@ SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>; def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; +def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; @@ -107,6 +113,7 @@ def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; +def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; // These are target-independent nodes, but have target-specific formats. @@ -182,11 +189,11 @@ multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> { def rr : F3_1<2, Op3Val, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat(OpcStr, " $b, $c, $dst"), - [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; + [(set i32:$dst, (OpNode i32:$b, i32:$c))]>; def ri : F3_2<2, Op3Val, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), !strconcat(OpcStr, " $b, $c, $dst"), - [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; + [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>; } /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no @@ -243,10 +250,10 @@ let Predicates = [HasNoV9] in { // Only emit these in V8 mode. "!FpMOVD $src, $dst", []>; def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), "!FpNEGD $src, $dst", - [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; + [(set f64:$dst, (fneg f64:$src))]>; def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), "!FpABSD $src, $dst", - [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; + [(set f64:$dst, (fabs f64:$src))]>; } // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after @@ -257,19 +264,16 @@ let Uses = [ICC], usesCustomInserter = 1 in { def SELECT_CC_Int_ICC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_ICC PSEUDO!", - [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F, - imm:$Cond))]>; + [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_ICC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_ICC PSEUDO!", - [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F, - imm:$Cond))]>; + [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_ICC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_ICC PSEUDO!", - [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F, - imm:$Cond))]>; + [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; } let usesCustomInserter = 1, Uses = [FCC] in { @@ -277,19 +281,16 @@ let usesCustomInserter = 1, Uses = [FCC] in { def SELECT_CC_Int_FCC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_FCC PSEUDO!", - [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F, - imm:$Cond))]>; + [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_FCC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_FCC PSEUDO!", - [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F, - imm:$Cond))]>; + [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_FCC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_FCC PSEUDO!", - [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F, - imm:$Cond))]>; + [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; } @@ -309,111 +310,111 @@ let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { def LDSBrr : F3_1<3, 0b001001, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldsb [$addr], $dst", - [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>; + [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>; def LDSBri : F3_2<3, 0b001001, (outs IntRegs:$dst), (ins MEMri:$addr), "ldsb [$addr], $dst", - [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>; + [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>; def LDSHrr : F3_1<3, 0b001010, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldsh [$addr], $dst", - [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>; + [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>; def LDSHri : F3_2<3, 0b001010, (outs IntRegs:$dst), (ins MEMri:$addr), "ldsh [$addr], $dst", - [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>; + [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>; def LDUBrr : F3_1<3, 0b000001, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldub [$addr], $dst", - [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>; + [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>; def LDUBri : F3_2<3, 0b000001, (outs IntRegs:$dst), (ins MEMri:$addr), "ldub [$addr], $dst", - [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>; + [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>; def LDUHrr : F3_1<3, 0b000010, (outs IntRegs:$dst), (ins MEMrr:$addr), "lduh [$addr], $dst", - [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>; + [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>; def LDUHri : F3_2<3, 0b000010, (outs IntRegs:$dst), (ins MEMri:$addr), "lduh [$addr], $dst", - [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>; + [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>; def LDrr : F3_1<3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), "ld [$addr], $dst", - [(set IntRegs:$dst, (load ADDRrr:$addr))]>; + [(set i32:$dst, (load ADDRrr:$addr))]>; def LDri : F3_2<3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), "ld [$addr], $dst", - [(set IntRegs:$dst, (load ADDRri:$addr))]>; + [(set i32:$dst, (load ADDRri:$addr))]>; // Section B.2 - Load Floating-point Instructions, p. 92 def LDFrr : F3_1<3, 0b100000, (outs FPRegs:$dst), (ins MEMrr:$addr), "ld [$addr], $dst", - [(set FPRegs:$dst, (load ADDRrr:$addr))]>; + [(set f32:$dst, (load ADDRrr:$addr))]>; def LDFri : F3_2<3, 0b100000, (outs FPRegs:$dst), (ins MEMri:$addr), "ld [$addr], $dst", - [(set FPRegs:$dst, (load ADDRri:$addr))]>; + [(set f32:$dst, (load ADDRri:$addr))]>; def LDDFrr : F3_1<3, 0b100011, (outs DFPRegs:$dst), (ins MEMrr:$addr), "ldd [$addr], $dst", - [(set DFPRegs:$dst, (load ADDRrr:$addr))]>; + [(set f64:$dst, (load ADDRrr:$addr))]>; def LDDFri : F3_2<3, 0b100011, (outs DFPRegs:$dst), (ins MEMri:$addr), "ldd [$addr], $dst", - [(set DFPRegs:$dst, (load ADDRri:$addr))]>; + [(set f64:$dst, (load ADDRri:$addr))]>; // Section B.4 - Store Integer Instructions, p. 95 def STBrr : F3_1<3, 0b000101, (outs), (ins MEMrr:$addr, IntRegs:$src), "stb $src, [$addr]", - [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>; + [(truncstorei8 i32:$src, ADDRrr:$addr)]>; def STBri : F3_2<3, 0b000101, (outs), (ins MEMri:$addr, IntRegs:$src), "stb $src, [$addr]", - [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>; + [(truncstorei8 i32:$src, ADDRri:$addr)]>; def STHrr : F3_1<3, 0b000110, (outs), (ins MEMrr:$addr, IntRegs:$src), "sth $src, [$addr]", - [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>; + [(truncstorei16 i32:$src, ADDRrr:$addr)]>; def STHri : F3_2<3, 0b000110, (outs), (ins MEMri:$addr, IntRegs:$src), "sth $src, [$addr]", - [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>; + [(truncstorei16 i32:$src, ADDRri:$addr)]>; def STrr : F3_1<3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), "st $src, [$addr]", - [(store IntRegs:$src, ADDRrr:$addr)]>; + [(store i32:$src, ADDRrr:$addr)]>; def STri : F3_2<3, 0b000100, (outs), (ins MEMri:$addr, IntRegs:$src), "st $src, [$addr]", - [(store IntRegs:$src, ADDRri:$addr)]>; + [(store i32:$src, ADDRri:$addr)]>; // Section B.5 - Store Floating-point Instructions, p. 97 def STFrr : F3_1<3, 0b100100, (outs), (ins MEMrr:$addr, FPRegs:$src), "st $src, [$addr]", - [(store FPRegs:$src, ADDRrr:$addr)]>; + [(store f32:$src, ADDRrr:$addr)]>; def STFri : F3_2<3, 0b100100, (outs), (ins MEMri:$addr, FPRegs:$src), "st $src, [$addr]", - [(store FPRegs:$src, ADDRri:$addr)]>; + [(store f32:$src, ADDRri:$addr)]>; def STDFrr : F3_1<3, 0b100111, (outs), (ins MEMrr:$addr, DFPRegs:$src), "std $src, [$addr]", - [(store DFPRegs:$src, ADDRrr:$addr)]>; + [(store f64:$src, ADDRrr:$addr)]>; def STDFri : F3_2<3, 0b100111, (outs), (ins MEMri:$addr, DFPRegs:$src), "std $src, [$addr]", - [(store DFPRegs:$src, ADDRri:$addr)]>; + [(store f64:$src, ADDRri:$addr)]>; // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, (outs IntRegs:$dst), (ins i32imm:$src), "sethi $src, $dst", - [(set IntRegs:$dst, SETHIimm:$src)]>; + [(set i32:$dst, SETHIimm:$src)]>; // Section B.10 - NOP Instruction, p. 105 // (It's a special case of SETHI) @@ -426,7 +427,7 @@ defm AND : F3_12<"and", 0b000001, and>; def ANDNrr : F3_1<2, 0b000101, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "andn $b, $c, $dst", - [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>; + [(set i32:$dst, (and i32:$b, (not i32:$c)))]>; def ANDNri : F3_2<2, 0b000101, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), "andn $b, $c, $dst", []>; @@ -436,7 +437,7 @@ defm OR : F3_12<"or", 0b000010, or>; def ORNrr : F3_1<2, 0b000110, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "orn $b, $c, $dst", - [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>; + [(set i32:$dst, (or i32:$b, (not i32:$c)))]>; def ORNri : F3_2<2, 0b000110, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), "orn $b, $c, $dst", []>; @@ -445,7 +446,7 @@ defm XOR : F3_12<"xor", 0b000011, xor>; def XNORrr : F3_1<2, 0b000111, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "xnor $b, $c, $dst", - [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; + [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>; def XNORri : F3_2<2, 0b000111, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), "xnor $b, $c, $dst", []>; @@ -462,7 +463,7 @@ defm ADD : F3_12<"add", 0b000000, add>; def LEA_ADDri : F3_2<2, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), "add ${addr:arith}, $dst", - [(set IntRegs:$dst, ADDRri:$addr)]>; + [(set i32:$dst, ADDRri:$addr)]>; let Defs = [ICC] in defm ADDCC : F3_12<"addcc", 0b010000, addc>; @@ -603,11 +604,11 @@ def FDTOI : F3_3<2, 0b110100, 0b011010010, def FSTOD : F3_3<2, 0b110100, 0b011001001, (outs DFPRegs:$dst), (ins FPRegs:$src), "fstod $src, $dst", - [(set DFPRegs:$dst, (fextend FPRegs:$src))]>; + [(set f64:$dst, (fextend f32:$src))]>; def FDTOS : F3_3<2, 0b110100, 0b011000110, (outs FPRegs:$dst), (ins DFPRegs:$src), "fdtos $src, $dst", - [(set FPRegs:$dst, (fround DFPRegs:$src))]>; + [(set f32:$dst, (fround f64:$src))]>; // Floating-point Move Instructions, p. 144 def FMOVS : F3_3<2, 0b110100, 0b000000001, @@ -616,22 +617,22 @@ def FMOVS : F3_3<2, 0b110100, 0b000000001, def FNEGS : F3_3<2, 0b110100, 0b000000101, (outs FPRegs:$dst), (ins FPRegs:$src), "fnegs $src, $dst", - [(set FPRegs:$dst, (fneg FPRegs:$src))]>; + [(set f32:$dst, (fneg f32:$src))]>; def FABSS : F3_3<2, 0b110100, 0b000001001, (outs FPRegs:$dst), (ins FPRegs:$src), "fabss $src, $dst", - [(set FPRegs:$dst, (fabs FPRegs:$src))]>; + [(set f32:$dst, (fabs f32:$src))]>; // Floating-point Square Root Instructions, p.145 def FSQRTS : F3_3<2, 0b110100, 0b000101001, (outs FPRegs:$dst), (ins FPRegs:$src), "fsqrts $src, $dst", - [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>; + [(set f32:$dst, (fsqrt f32:$src))]>; def FSQRTD : F3_3<2, 0b110100, 0b000101010, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fsqrtd $src, $dst", - [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>; + [(set f64:$dst, (fsqrt f64:$src))]>; @@ -639,42 +640,42 @@ def FSQRTD : F3_3<2, 0b110100, 0b000101010, def FADDS : F3_3<2, 0b110100, 0b001000001, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fadds $src1, $src2, $dst", - [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>; + [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>; def FADDD : F3_3<2, 0b110100, 0b001000010, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "faddd $src1, $src2, $dst", - [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>; + [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>; def FSUBS : F3_3<2, 0b110100, 0b001000101, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fsubs $src1, $src2, $dst", - [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>; + [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>; def FSUBD : F3_3<2, 0b110100, 0b001000110, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "fsubd $src1, $src2, $dst", - [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>; + [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>; // Floating-point Multiply and Divide Instructions, p. 147 def FMULS : F3_3<2, 0b110100, 0b001001001, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fmuls $src1, $src2, $dst", - [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>; + [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>; def FMULD : F3_3<2, 0b110100, 0b001001010, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "fmuld $src1, $src2, $dst", - [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>; + [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>; def FSMULD : F3_3<2, 0b110100, 0b001101001, (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fsmuld $src1, $src2, $dst", - [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1), - (fextend FPRegs:$src2)))]>; + [(set f64:$dst, (fmul (fextend f32:$src1), + (fextend f32:$src2)))]>; def FDIVS : F3_3<2, 0b110100, 0b001001101, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fdivs $src1, $src2, $dst", - [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>; + [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>; def FDIVD : F3_3<2, 0b110100, 0b001001110, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "fdivd $src1, $src2, $dst", - [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>; + [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>; // Floating-point Compare Instructions, p. 148 // Note: the 2nd template arg is different for these guys. @@ -685,11 +686,11 @@ let Defs = [FCC] in { def FCMPS : F3_3<2, 0b110101, 0b001010001, (outs), (ins FPRegs:$src1, FPRegs:$src2), "fcmps $src1, $src2\n\tnop", - [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>; + [(SPcmpfcc f32:$src1, f32:$src2)]>; def FCMPD : F3_3<2, 0b110101, 0b001010010, (outs), (ins DFPRegs:$src1, DFPRegs:$src2), "fcmpd $src1, $src2\n\tnop", - [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>; + [(SPcmpfcc f64:$src1, f64:$src2)]>; } //===----------------------------------------------------------------------===// @@ -704,52 +705,45 @@ let Predicates = [HasV9], Constraints = "$T = $dst" in { def MOVICCrr : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), "mov$cc %icc, $F, $dst", - [(set IntRegs:$dst, - (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>; + [(set i32:$dst, (SPselecticc i32:$F, i32:$T, imm:$cc))]>; def MOVICCri : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), "mov$cc %icc, $F, $dst", - [(set IntRegs:$dst, - (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>; + [(set i32:$dst, (SPselecticc simm11:$F, i32:$T, imm:$cc))]>; } let Uses = [FCC] in { def MOVFCCrr : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), "mov$cc %fcc0, $F, $dst", - [(set IntRegs:$dst, - (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>; + [(set i32:$dst, (SPselectfcc i32:$F, i32:$T, imm:$cc))]>; def MOVFCCri : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), "mov$cc %fcc0, $F, $dst", - [(set IntRegs:$dst, - (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>; + [(set i32:$dst, (SPselectfcc simm11:$F, i32:$T, imm:$cc))]>; } let Uses = [ICC] in { def FMOVS_ICC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), "fmovs$cc %icc, $F, $dst", - [(set FPRegs:$dst, - (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>; + [(set f32:$dst, + (SPselecticc f32:$F, f32:$T, imm:$cc))]>; def FMOVD_ICC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), "fmovd$cc %icc, $F, $dst", - [(set DFPRegs:$dst, - (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; + [(set f64:$dst, (SPselecticc f64:$F, f64:$T, imm:$cc))]>; } let Uses = [FCC] in { def FMOVS_FCC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), "fmovs$cc %fcc0, $F, $dst", - [(set FPRegs:$dst, - (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>; + [(set f32:$dst, (SPselectfcc f32:$F, f32:$T, imm:$cc))]>; def FMOVD_FCC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), "fmovd$cc %fcc0, $F, $dst", - [(set DFPRegs:$dst, - (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; + [(set f64:$dst, (SPselectfcc f64:$F, f64:$T, imm:$cc))]>; } } @@ -762,11 +756,11 @@ let Predicates = [HasV9] in { def FNEGD : F3_3<2, 0b110100, 0b000000110, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fnegd $src, $dst", - [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; + [(set f64:$dst, (fneg f64:$src))]>; def FABSD : F3_3<2, 0b110100, 0b000001010, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fabsd $src, $dst", - [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; + [(set f64:$dst, (fabs f64:$src))]>; } // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear @@ -774,8 +768,8 @@ let Predicates = [HasV9] in { def POPCrr : F3_1<2, 0b101110, (outs IntRegs:$dst), (ins IntRegs:$src), "popc $src, $dst", []>, Requires<[HasV9]>; -def : Pat<(ctpop IntRegs:$src), - (POPCrr (SLLri IntRegs:$src, 0))>; +def : Pat<(ctpop i32:$src), + (POPCrr (SLLri $src, 0))>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns @@ -783,28 +777,26 @@ def : Pat<(ctpop IntRegs:$src), // Small immediates. def : Pat<(i32 simm13:$val), - (ORri G0, imm:$val)>; + (ORri (i32 G0), imm:$val)>; // Arbitrary immediates. def : Pat<(i32 imm:$val), (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; // subc -def : Pat<(subc IntRegs:$b, IntRegs:$c), - (SUBCCrr IntRegs:$b, IntRegs:$c)>; -def : Pat<(subc IntRegs:$b, simm13:$val), - (SUBCCri IntRegs:$b, imm:$val)>; +def : Pat<(subc i32:$b, i32:$c), + (SUBCCrr $b, $c)>; +def : Pat<(subc i32:$b, simm13:$val), + (SUBCCri $b, imm:$val)>; // Global addresses, constant pool entries def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; -def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>; +def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; -def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>; +def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; // Add reg, lo. This is used when taking the addr of a global/constpool entry. -def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)), - (ADDri IntRegs:$r, tglobaladdr:$in)>; -def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)), - (ADDri IntRegs:$r, tconstpool:$in)>; +def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; +def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; // Calls: def : Pat<(call tglobaladdr:$dst), @@ -823,3 +815,5 @@ def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; // zextload bool -> zextload byte def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; + +include "SparcInstr64Bit.td" diff --git a/lib/Target/Sparc/SparcRegisterInfo.cpp b/lib/Target/Sparc/SparcRegisterInfo.cpp index 25e90b7..3af4c61 100644 --- a/lib/Target/Sparc/SparcRegisterInfo.cpp +++ b/lib/Target/Sparc/SparcRegisterInfo.cpp @@ -56,6 +56,12 @@ BitVector SparcRegisterInfo::getReservedRegs(const MachineFunction &MF) const { return Reserved; } +const TargetRegisterClass* +SparcRegisterInfo::getPointerRegClass(const MachineFunction &MF, + unsigned Kind) const { + return Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass; +} + void SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, @@ -68,8 +74,9 @@ SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, // Addressable stack objects are accessed using neg. offsets from %fp MachineFunction &MF = *MI.getParent()->getParent(); - int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + - MI.getOperand(FIOperandNum + 1).getImm(); + int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + + MI.getOperand(FIOperandNum + 1).getImm() + + Subtarget.getStackPointerBias(); // Replace frame index with a frame pointer reference. if (Offset >= -4096 && Offset <= 4095) { diff --git a/lib/Target/Sparc/SparcRegisterInfo.h b/lib/Target/Sparc/SparcRegisterInfo.h index b53a1ed..f91df53 100644 --- a/lib/Target/Sparc/SparcRegisterInfo.h +++ b/lib/Target/Sparc/SparcRegisterInfo.h @@ -36,6 +36,9 @@ struct SparcRegisterInfo : public SparcGenRegisterInfo { BitVector getReservedRegs(const MachineFunction &MF) const; + const TargetRegisterClass *getPointerRegClass(const MachineFunction &MF, + unsigned Kind) const; + void eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS = NULL) const; diff --git a/lib/Target/Sparc/SparcRegisterInfo.td b/lib/Target/Sparc/SparcRegisterInfo.td index 81bff6c..497e7c5 100644 --- a/lib/Target/Sparc/SparcRegisterInfo.td +++ b/lib/Target/Sparc/SparcRegisterInfo.td @@ -43,7 +43,7 @@ class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> { } // Control Registers -def ICC : SparcCtrlReg<"ICC">; +def ICC : SparcCtrlReg<"ICC">; // This represents icc and xcc in 64-bit code. def FCC : SparcCtrlReg<"FCC">; // Y register @@ -140,7 +140,10 @@ def D15 : Rd<30, "F30", [F30, F31]>, DwarfRegNum<[87]>; // FIXME: the register order should be defined in terms of the preferred // allocation order... // -def IntRegs : RegisterClass<"SP", [i32], 32, +// This register class should not be used to hold i64 values, use the I64Regs +// register class for that. The i64 type is included here to allow i64 patterns +// using the integer instructions. +def IntRegs : RegisterClass<"SP", [i32, i64], 32, (add L0, L1, L2, L3, L4, L5, L6, L7, I0, I1, I2, I3, I4, I5, O0, O1, O2, O3, O4, O5, O7, @@ -155,6 +158,13 @@ def IntRegs : RegisterClass<"SP", [i32], 32, G5, G6, G7 // reserved for kernel )>; +// Register class for 64-bit mode, with a 64-bit spill slot size. +// These are the same as the 32-bit registers, so TableGen will consider this +// to be a sub-class of IntRegs. That works out because requiring a 64-bit +// spill slot is a stricter constraint than only requiring a 32-bit spill slot. +def I64Regs : RegisterClass<"SP", [i64], 64, (add IntRegs)>; + +// Floating point register classes. def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; def DFPRegs : RegisterClass<"SP", [f64], 64, (sequence "D%u", 0, 15)>; diff --git a/lib/Target/Sparc/SparcSubtarget.h b/lib/Target/Sparc/SparcSubtarget.h index a81931b..b94dd11 100644 --- a/lib/Target/Sparc/SparcSubtarget.h +++ b/lib/Target/Sparc/SparcSubtarget.h @@ -52,6 +52,12 @@ public: } return std::string(p); } + + /// The 64-bit ABI uses biased stack and frame pointers, so the stack frame + /// of the current function is the area from [%sp+BIAS] to [%fp+BIAS]. + int64_t getStackPointerBias() const { + return is64Bit() ? 2047 : 0; + } }; } // end namespace llvm |