diff options
Diffstat (limited to 'lib/Target/SparcV9/SparcV9InstrSelection.cpp')
-rw-r--r-- | lib/Target/SparcV9/SparcV9InstrSelection.cpp | 2523 |
1 files changed, 1301 insertions, 1222 deletions
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9InstrSelection.cpp index ca46798..e7cdbc0 100644 --- a/lib/Target/SparcV9/SparcV9InstrSelection.cpp +++ b/lib/Target/SparcV9/SparcV9InstrSelection.cpp @@ -4,6 +4,7 @@ // SparcInstrSelection.cpp // // Purpose: +// BURS instruction selection for SPARC V9 architecture. // // History: // 7/02/01 - Vikram Adve - Created @@ -27,8 +28,8 @@ // to be used later struct BranchPattern { - bool flipCondition; // should the sense of the test be reversed - BasicBlock* targetBB; // which basic block to branch to + bool flipCondition; // should the sense of the test be reversed + BasicBlock* targetBB; // which basic block to branch to MachineInstr* extraBranch; // if neither branch is fall-through, then this // BA must be inserted after the cond'l one }; @@ -36,68 +37,12 @@ struct BranchPattern { //************************* Forward Declarations ***************************/ -static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode, - bool& isFPBranch); - -static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode, - const BinaryOperator* setCCInst); - -static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode, - const BinaryOperator* setCCInst); - -static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*); - -static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode, - bool& mustClearReg, - int& valueToMove); - -static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*, - const Type* opType); - -static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode, - const Type* opType); - -static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode, - bool checkCasts); - -static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseLoadInstruction (const Type* resultType); - -static MachineOpCode ChooseStoreInstruction (const Type* valueType); - -static void SetOperandsForMemInstr(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - const TargetMachine& target); - -static void SetMemOperands_Internal (MachineInstr* minstr, - const InstructionNode* vmInstrNode, - Value* ptrVal, - Value* arrayOffsetVal, - const vector<ConstPoolVal*>& idxVec, - const TargetMachine& target); - -static unsigned FixConstantOperands(const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr, - TargetMachine& target); - -static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr, - Value* val, - TmpInstruction*& tmpReg, - MachineInstr*& getMinstr2); - -static void ForwardOperand (InstructionNode* treeNode, - InstrTreeNode* parent, - int operandNum); +static void SetMemOperands_Internal (MachineInstr* minstr, + const InstructionNode* vmInstrNode, + Value* ptrVal, + Value* arrayOffsetVal, + const vector<ConstPoolVal*>& idxVec, + const TargetMachine& target); //************************ Internal Functions ******************************/ @@ -105,31 +50,37 @@ static void ForwardOperand (InstructionNode* treeNode, // Convenience function to get the value of an integer constant, for an // appropriate integer or non-integer type that can be held in an integer. // The type of the argument must be the following: -// Signed or unsigned integer -// Boolean -// Pointer +// Signed or unsigned integer +// Boolean +// Pointer // // isValidConstant is set to true if a valid constant was found. // static int64_t GetConstantValueAsSignedInt(const Value *V, - bool &isValidConstant) + bool &isValidConstant) { - if (!V->isConstant()) { isValidConstant = false; return 0; } + if (!V->isConstant()) + { + isValidConstant = false; + return 0; + } + isValidConstant = true; if (V->getType() == Type::BoolTy) - return ((ConstPoolBool*)V)->getValue(); - if (V->getType()->isIntegral()) { - if (V->getType()->isSigned()) - return ((ConstPoolSInt*)V)->getValue(); - - assert(V->getType()->isUnsigned()); - uint64_t Val = ((ConstPoolUInt*)V)->getValue(); - - if (Val < INT64_MAX) // then safe to cast to signed - return (int64_t)Val; - } + return (int64_t) ((ConstPoolBool*)V)->getValue(); + + if (V->getType()->isIntegral()) + { + if (V->getType()->isSigned()) + return ((ConstPoolSInt*)V)->getValue(); + + assert(V->getType()->isUnsigned()); + uint64_t Val = ((ConstPoolUInt*)V)->getValue(); + if (Val < INT64_MAX) // then safe to cast to signed + return (int64_t)Val; + } isValidConstant = false; return 0; @@ -150,10 +101,7 @@ ThisIsAChainRule(int eruleno) switch(eruleno) { case 111: // stmt: reg - case 112: // stmt: boolconst case 113: // stmt: bool - case 121: - case 122: case 123: case 124: case 125: @@ -165,11 +113,9 @@ ThisIsAChainRule(int eruleno) case 131: case 132: case 133: - case 153: case 155: case 221: case 222: - case 232: case 241: case 242: case 243: @@ -209,25 +155,8 @@ ChooseBprInstruction(const InstructionNode* instrNode) static inline MachineOpCode -ChooseBccInstruction(const InstructionNode* instrNode, - bool& isFPBranch) -{ - InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); - BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); - const Type* setCCType = setCCInstr->getOperand(0)->getType(); - - isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); - - if (isFPBranch) - return ChooseBFpccInstruction(instrNode, setCCInstr); - else - return ChooseBpccInstruction(instrNode, setCCInstr); -} - - -static inline MachineOpCode ChooseBpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) + const BinaryOperator* setCCInstr) { MachineOpCode opCode = INVALID_OPCODE; @@ -236,32 +165,32 @@ ChooseBpccInstruction(const InstructionNode* instrNode, if (isSigned) { switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BE; break; - case Instruction::SetNE: opCode = BNE; break; - case Instruction::SetLE: opCode = BLE; break; - case Instruction::SetGE: opCode = BGE; break; - case Instruction::SetLT: opCode = BL; break; - case Instruction::SetGT: opCode = BG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } + { + case Instruction::SetEQ: opCode = BE; break; + case Instruction::SetNE: opCode = BNE; break; + case Instruction::SetLE: opCode = BLE; break; + case Instruction::SetGE: opCode = BGE; break; + case Instruction::SetLT: opCode = BL; break; + case Instruction::SetGT: opCode = BG; break; + default: + assert(0 && "Unrecognized VM instruction!"); + break; + } } else { switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BE; break; - case Instruction::SetNE: opCode = BNE; break; - case Instruction::SetLE: opCode = BLEU; break; - case Instruction::SetGE: opCode = BCC; break; - case Instruction::SetLT: opCode = BCS; break; - case Instruction::SetGT: opCode = BGU; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } + { + case Instruction::SetEQ: opCode = BE; break; + case Instruction::SetNE: opCode = BNE; break; + case Instruction::SetLE: opCode = BLEU; break; + case Instruction::SetGE: opCode = BCC; break; + case Instruction::SetLT: opCode = BCS; break; + case Instruction::SetGT: opCode = BGU; break; + default: + assert(0 && "Unrecognized VM instruction!"); + break; + } } return opCode; @@ -269,7 +198,7 @@ ChooseBpccInstruction(const InstructionNode* instrNode, static inline MachineOpCode ChooseBFpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) + const BinaryOperator* setCCInstr) { MachineOpCode opCode = INVALID_OPCODE; @@ -291,6 +220,23 @@ ChooseBFpccInstruction(const InstructionNode* instrNode, static inline MachineOpCode +ChooseBccInstruction(const InstructionNode* instrNode, + bool& isFPBranch) +{ + InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); + BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); + const Type* setCCType = setCCInstr->getOperand(0)->getType(); + + isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); + + if (isFPBranch) + return ChooseBFpccInstruction(instrNode, setCCInstr); + else + return ChooseBpccInstruction(instrNode, setCCInstr); +} + + +static inline MachineOpCode ChooseMovFpccInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; @@ -322,8 +268,8 @@ ChooseMovFpccInstruction(const InstructionNode* instrNode) // static MachineOpCode ChooseMovpccAfterSub(const InstructionNode* instrNode, - bool& mustClearReg, - int& valueToMove) + bool& mustClearReg, + int& valueToMove) { MachineOpCode opCode = INVALID_OPCODE; mustClearReg = true; @@ -346,7 +292,7 @@ ChooseMovpccAfterSub(const InstructionNode* instrNode, static inline MachineOpCode ChooseConvertToFloatInstr(const InstructionNode* instrNode, - const Type* opType) + const Type* opType) { MachineOpCode opCode = INVALID_OPCODE; @@ -354,28 +300,28 @@ ChooseConvertToFloatInstr(const InstructionNode* instrNode, { case ToFloatTy: if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) - opCode = FITOS; + opCode = FITOS; else if (opType == Type::LongTy) - opCode = FXTOS; + opCode = FXTOS; else if (opType == Type::DoubleTy) - opCode = FDTOS; + opCode = FDTOS; else if (opType == Type::FloatTy) - ; + ; else - assert(0 && "Cannot convert this type to FLOAT on SPARC"); + assert(0 && "Cannot convert this type to FLOAT on SPARC"); break; case ToDoubleTy: if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) - opCode = FITOD; + opCode = FITOD; else if (opType == Type::LongTy) - opCode = FXTOD; + opCode = FXTOD; else if (opType == Type::FloatTy) - opCode = FSTOD; + opCode = FSTOD; else if (opType == Type::DoubleTy) - ; + ; else - assert(0 && "Cannot convert this type to DOUBLE on SPARC"); + assert(0 && "Cannot convert this type to DOUBLE on SPARC"); break; default: @@ -387,7 +333,7 @@ ChooseConvertToFloatInstr(const InstructionNode* instrNode, static inline MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode, - const Type* opType) + const Type* opType) { MachineOpCode opCode = INVALID_OPCODE;; @@ -396,24 +342,24 @@ ChooseConvertToIntInstr(const InstructionNode* instrNode, if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy) { switch (opType->getPrimitiveID()) - { + { case Type::FloatTyID: opCode = FSTOI; break; case Type::DoubleTyID: opCode = FDTOI; break; - default: - assert(0 && "Non-numeric non-bool type cannot be converted to Int"); - break; - } + default: + assert(0 && "Non-numeric non-bool type cannot be converted to Int"); + break; + } } else if (instrType == ToLongTy) { switch (opType->getPrimitiveID()) - { + { case Type::FloatTyID: opCode = FSTOX; break; case Type::DoubleTyID: opCode = FDTOX; break; - default: - assert(0 && "Non-numeric non-bool type cannot be converted to Long"); - break; - } + default: + assert(0 && "Non-numeric non-bool type cannot be converted to Long"); + break; + } } else assert(0 && "Should not get here, Mo!"); @@ -423,44 +369,47 @@ ChooseConvertToIntInstr(const InstructionNode* instrNode, static inline MachineOpCode -ChooseAddInstruction(const InstructionNode* instrNode) +ChooseAddInstructionByType(const Type* resultType) { MachineOpCode opCode = INVALID_OPCODE; - const Type* resultType = instrNode->getInstruction()->getType(); - if (resultType->isIntegral() || resultType->isPointerType() || resultType->isMethodType() || - resultType->isLabelType()) + resultType->isLabelType() || + resultType == Type::BoolTy) { opCode = ADD; } else - { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FADDS; break; - case Type::DoubleTyID: opCode = FADDD; break; - default: assert(0 && "Invalid type for ADD instruction"); break; - } - } + switch(resultType->getPrimitiveID()) + { + case Type::FloatTyID: opCode = FADDS; break; + case Type::DoubleTyID: opCode = FADDD; break; + default: assert(0 && "Invalid type for ADD instruction"); break; + } return opCode; } +static inline MachineOpCode +ChooseAddInstruction(const InstructionNode* instrNode) +{ + return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); +} + + static inline MachineInstr* CreateMovFloatInstruction(const InstructionNode* instrNode, - const Type* resultType) + const Type* resultType) { MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy) - ? FMOVS : FMOVD); + ? FMOVS : FMOVD); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); + instrNode->leftChild()->getValue()); minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - instrNode->getValue()); + instrNode->getValue()); return minstr; } @@ -478,11 +427,13 @@ CreateAddConstInstruction(const InstructionNode* instrNode) // const Type* resultType = instrNode->getInstruction()->getType(); - if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { - double dval = ((ConstPoolFP*) constOp)->getValue(); - if (dval == 0.0) - minstr = CreateMovFloatInstruction(instrNode, resultType); - } + if (resultType == Type::FloatTy || + resultType == Type::DoubleTy) + { + double dval = ((ConstPoolFP*) constOp)->getValue(); + if (dval == 0.0) + minstr = CreateMovFloatInstruction(instrNode, resultType); + } return minstr; } @@ -501,15 +452,12 @@ ChooseSubInstruction(const InstructionNode* instrNode) opCode = SUB; } else - { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FSUBS; break; - case Type::DoubleTyID: opCode = FSUBD; break; - default: assert(0 && "Invalid type for SUB instruction"); break; - } - } + switch(resultType->getPrimitiveID()) + { + case Type::FloatTyID: opCode = FSUBS; break; + case Type::DoubleTyID: opCode = FSUBD; break; + default: assert(0 && "Invalid type for SUB instruction"); break; + } return opCode; } @@ -534,7 +482,7 @@ CreateSubConstInstruction(const InstructionNode* instrNode) { double dval = ((ConstPoolFP*) constOp)->getValue(); if (dval == 0.0) - minstr = CreateMovFloatInstruction(instrNode, resultType); + minstr = CreateMovFloatInstruction(instrNode, resultType); } return minstr; @@ -570,14 +518,14 @@ BothFloatToDouble(const InstructionNode* instrNode) // Check if both arguments are floats cast to double return (leftArg->getValue()->getType() == Type::DoubleTy && - leftArgArg->getValue()->getType() == Type::FloatTy && - rightArgArg->getValue()->getType() == Type::FloatTy); + leftArgArg->getValue()->getType() == Type::FloatTy && + rightArgArg->getValue()->getType() == Type::FloatTy); } static inline MachineOpCode ChooseMulInstruction(const InstructionNode* instrNode, - bool checkCasts) + bool checkCasts) { MachineOpCode opCode = INVALID_OPCODE; @@ -594,24 +542,23 @@ ChooseMulInstruction(const InstructionNode* instrNode, opCode = MULX; } else - { - switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FMULS; break; - case Type::DoubleTyID: opCode = FMULD; break; - default: assert(0 && "Invalid type for MUL instruction"); break; - } - } + switch(resultType->getPrimitiveID()) + { + case Type::FloatTyID: opCode = FMULS; break; + case Type::DoubleTyID: opCode = FMULD; break; + default: assert(0 && "Invalid type for MUL instruction"); break; + } return opCode; } static inline MachineInstr* -CreateIntNegInstruction(Value* vreg) +CreateIntNegInstruction(TargetMachine& target, + Value* vreg) { MachineInstr* minstr = new MachineInstr(SUB); - minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); + minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum()); minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg); minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg); return minstr; @@ -619,8 +566,9 @@ CreateIntNegInstruction(Value* vreg) static inline MachineInstr* -CreateMulConstInstruction(const InstructionNode* instrNode, - MachineInstr*& getMinstr2) +CreateMulConstInstruction(TargetMachine &target, + const InstructionNode* instrNode, + MachineInstr*& getMinstr2) { MachineInstr* minstr = NULL; getMinstr2 = NULL; @@ -641,111 +589,111 @@ CreateMulConstInstruction(const InstructionNode* instrNode, bool isValidConst; int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); if (isValidConst) - { - bool needNeg = false; - if (C < 0) - { - needNeg = true; - C = -C; - } - - if (C == 0 || C == 1) - { - minstr = new MachineInstr(ADD); - - if (C == 0) - minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); - else - minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - } - else if (IsPowerOf2(C, pow)) - { - minstr = new MachineInstr((resultType == Type::LongTy) - ? SLLX : SLL); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - pow); - } - - if (minstr && needNeg) - { // insert <reg = SUB 0, reg> after the instr to flip the sign - getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); - } - } + { + bool needNeg = false; + if (C < 0) + { + needNeg = true; + C = -C; + } + + if (C == 0 || C == 1) + { + minstr = new MachineInstr(ADD); + + if (C == 0) + minstr->SetMachineOperand(0, + target.getRegInfo().getZeroRegNum()); + else + minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum()); + } + else if (IsPowerOf2(C, pow)) + { + minstr = new MachineInstr((resultType == Type::LongTy) + ? SLLX : SLL); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, + pow); + } + + if (minstr && needNeg) + { // insert <reg = SUB 0, reg> after the instr to flip the sign + getMinstr2 = CreateIntNegInstruction(target, + instrNode->getValue()); + } + } } else { if (resultType == Type::FloatTy || - resultType == Type::DoubleTy) - { - bool isValidConst; - double dval = ((ConstPoolFP*) constOp)->getValue(); - - if (isValidConst) - { - if (dval == 0) - { - minstr = new MachineInstr((resultType == Type::FloatTy) - ? FITOS : FITOD); - minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); - } - else if (fabs(dval) == 1) - { - bool needNeg = (dval < 0); - - MachineOpCode opCode = needNeg - ? (resultType == Type::FloatTy? FNEGS : FNEGD) - : (resultType == Type::FloatTy? FMOVS : FMOVD); - - minstr = new MachineInstr(opCode); - minstr->SetMachineOperand(0, - MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - } - } - } + resultType == Type::DoubleTy) + { + bool isValidConst; + double dval = ((ConstPoolFP*) constOp)->getValue(); + + if (isValidConst) + { + if (dval == 0) + { + minstr = new MachineInstr((resultType == Type::FloatTy) + ? FITOS : FITOD); + minstr->SetMachineOperand(0, + target.getRegInfo().getZeroRegNum()); + } + else if (fabs(dval) == 1) + { + bool needNeg = (dval < 0); + + MachineOpCode opCode = needNeg + ? (resultType == Type::FloatTy? FNEGS : FNEGD) + : (resultType == Type::FloatTy? FMOVS : FMOVD); + + minstr = new MachineInstr(opCode); + minstr->SetMachineOperand(0, + MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + } + } + } } if (minstr != NULL) minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - instrNode->getValue()); + instrNode->getValue()); return minstr; } static inline MachineOpCode -ChooseDivInstruction(const InstructionNode* instrNode) +ChooseDivInstruction(TargetMachine &target, + const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isIntegral()) - { - opCode = resultType->isSigned()? SDIVX : UDIVX; - } + opCode = resultType->isSigned()? SDIVX : UDIVX; else - { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FDIVS; break; - case Type::DoubleTyID: opCode = FDIVD; break; - default: assert(0 && "Invalid type for DIV instruction"); break; - } - } + switch(resultType->getPrimitiveID()) + { + case Type::FloatTyID: opCode = FDIVS; break; + case Type::DoubleTyID: opCode = FDIVD; break; + default: assert(0 && "Invalid type for DIV instruction"); break; + } return opCode; } static inline MachineInstr* -CreateDivConstInstruction(const InstructionNode* instrNode, - MachineInstr*& getMinstr2) +CreateDivConstInstruction(TargetMachine &target, + const InstructionNode* instrNode, + MachineInstr*& getMinstr2) { MachineInstr* minstr = NULL; getMinstr2 = NULL; @@ -765,71 +713,74 @@ CreateDivConstInstruction(const InstructionNode* instrNode, bool isValidConst; int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); if (isValidConst) - { - bool needNeg = false; - if (C < 0) - { - needNeg = true; - C = -C; - } - - if (C == 1) - { - minstr = new MachineInstr(ADD); - minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - } - else if (IsPowerOf2(C, pow)) - { - MachineOpCode opCode= ((resultType->isSigned()) - ? (resultType==Type::LongTy)? SRAX : SRA - : (resultType==Type::LongTy)? SRLX : SRL); - minstr = new MachineInstr(opCode); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - pow); - } - - if (minstr && needNeg) - { // insert <reg = SUB 0, reg> after the instr to flip the sign - getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); - } - } + { + bool needNeg = false; + if (C < 0) + { + needNeg = true; + C = -C; + } + + if (C == 1) + { + minstr = new MachineInstr(ADD); + minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum()); + } + else if (IsPowerOf2(C, pow)) + { + MachineOpCode opCode= ((resultType->isSigned()) + ? (resultType==Type::LongTy)? SRAX : SRA + : (resultType==Type::LongTy)? SRLX : SRL); + minstr = new MachineInstr(opCode); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, + pow); + } + + if (minstr && needNeg) + { // insert <reg = SUB 0, reg> after the instr to flip the sign + getMinstr2 = CreateIntNegInstruction(target, + instrNode->getValue()); + } + } } else { if (resultType == Type::FloatTy || - resultType == Type::DoubleTy) - { - bool isValidConst; - double dval = ((ConstPoolFP*) constOp)->getValue(); - - if (isValidConst && fabs(dval) == 1) - { - bool needNeg = (dval < 0); - - MachineOpCode opCode = needNeg - ? (resultType == Type::FloatTy? FNEGS : FNEGD) - : (resultType == Type::FloatTy? FMOVS : FMOVD); - - minstr = new MachineInstr(opCode); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - } - } + resultType == Type::DoubleTy) + { + bool isValidConst; + double dval = ((ConstPoolFP*) constOp)->getValue(); + + if (isValidConst && fabs(dval) == 1) + { + bool needNeg = (dval < 0); + + MachineOpCode opCode = needNeg + ? (resultType == Type::FloatTy? FNEGS : FNEGD) + : (resultType == Type::FloatTy? FMOVS : FMOVD); + + minstr = new MachineInstr(opCode); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + } + } } if (minstr != NULL) minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - instrNode->getValue()); + instrNode->getValue()); return minstr; } -static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) { +static inline MachineOpCode +ChooseLoadInstruction(const Type *DestTy) +{ switch (DestTy->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: return LDUB; @@ -850,7 +801,9 @@ static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) { } -static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) { +static inline MachineOpCode +ChooseStoreInstruction(const Type *DestTy) +{ switch (DestTy->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: @@ -889,8 +842,8 @@ static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) { static void SetOperandsForMemInstr(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - const TargetMachine& target) + const InstructionNode* vmInstrNode, + const TargetMachine& target) { MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); @@ -908,8 +861,8 @@ SetOperandsForMemInstr(MachineInstr* minstr, // and in the right child for Store instructions. // InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store - ? vmInstrNode->rightChild() - : vmInstrNode->leftChild()); + ? vmInstrNode->rightChild() + : vmInstrNode->leftChild()); if (ptrChild->getOpLabel() == Instruction::GetElementPtr || ptrChild->getOpLabel() == GetElemPtrIdx) @@ -927,7 +880,7 @@ SetOperandsForMemInstr(MachineInstr* minstr, idxVec = newIdxVec; assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() - && "GetElemPtr cannot be folded into array refs in selection"); + && "GetElemPtr cannot be folded into array refs in selection"); } else { @@ -938,19 +891,19 @@ SetOperandsForMemInstr(MachineInstr* minstr, ptrVal = memInst->getPtrOperand(); const Type* opType = - ((const PointerType*) ptrVal->getType())->getValueType(); + ((const PointerType*) ptrVal->getType())->getValueType(); if (opType->isArrayType()) - { - assert((memInst->getNumOperands() - == (unsigned) 1 + memInst->getFirstOffsetIdx()) - && "Array refs must be lowered before Instruction Selection"); - - arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); - } + { + assert((memInst->getNumOperands() + == (unsigned) 1 + memInst->getFirstOffsetIdx()) + && "Array refs must be lowered before Instruction Selection"); + + arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); + } } SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, - *idxVec, target); + *idxVec, target); if (newIdxVec != NULL) delete newIdxVec; @@ -959,11 +912,11 @@ SetOperandsForMemInstr(MachineInstr* minstr, static void SetMemOperands_Internal(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - Value* ptrVal, - Value* arrayOffsetVal, - const vector<ConstPoolVal*>& idxVec, - const TargetMachine& target) + const InstructionNode* vmInstrNode, + Value* ptrVal, + Value* arrayOffsetVal, + const vector<ConstPoolVal*>& idxVec, + const TargetMachine& target) { MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); @@ -983,41 +936,41 @@ SetMemOperands_Internal(MachineInstr* minstr, const PointerType* ptrType = (PointerType*) ptrVal->getType(); if (ptrType->getValueType()->isStructType()) - { - // the offset is always constant for structs - isConstantOffset = true; - - // Compute the offset value using the index vector - offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); - } + { + // the offset is always constant for structs + isConstantOffset = true; + + // Compute the offset value using the index vector + offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); + } else - { - // It must be an array ref. Check if the offset is a constant, - // and that the indexing has been lowered to a single offset. - // - assert(ptrType->getValueType()->isArrayType()); - assert(arrayOffsetVal != NULL - && "Expect to be given Value* for array offsets"); - - if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) - { - isConstantOffset = true; // always constant for structs - assert(arrayOffsetVal->getType()->isIntegral()); - offset = (CPV->getType()->isSigned() - ? ((ConstPoolSInt*)CPV)->getValue() - : (int64_t) ((ConstPoolUInt*)CPV)->getValue()); - } - else - { - valueForRegOffset = arrayOffsetVal; - } - } + { + // It must be an array ref. Check if the offset is a constant, + // and that the indexing has been lowered to a single offset. + // + assert(ptrType->getValueType()->isArrayType()); + assert(arrayOffsetVal != NULL + && "Expect to be given Value* for array offsets"); + + if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) + { + isConstantOffset = true; // always constant for structs + assert(arrayOffsetVal->getType()->isIntegral()); + offset = (CPV->getType()->isSigned() + ? ((ConstPoolSInt*)CPV)->getValue() + : (int64_t) ((ConstPoolUInt*)CPV)->getValue()); + } + else + { + valueForRegOffset = arrayOffsetVal; + } + } if (isConstantOffset) - { - // create a virtual register for the constant - valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset); - } + { + // create a virtual register for the constant + valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset); + } } else { @@ -1031,7 +984,7 @@ SetMemOperands_Internal(MachineInstr* minstr, minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR - // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR + // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR // unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; if (offsetOpType == MachineOperand::MO_VirtualRegister) @@ -1046,96 +999,12 @@ SetMemOperands_Internal(MachineInstr* minstr, minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal); else minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - vmInstrNode->getValue()); -} - - -// Special handling for constant operands: -// -- if the constant is 0, use the hardwired 0 register, if any; -// -- if the constant is of float or double type but has an integer value, -// use int-to-float conversion instruction instead of generating a load; -// -- if the constant fits in the IMMEDIATE field, use that field; -// -- else insert instructions to put the constant into a register, either -// directly or by loading explicitly from the constant pool. -// -static unsigned -FixConstantOperands(const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr, - TargetMachine& target) -{ - static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; - - unsigned numNew = 0; - Instruction* vmInstr = vmInstrNode->getInstruction(); - - for (unsigned i=0; i < numInstr; i++) - { - MachineInstr* minstr = mvec[i]; - const MachineInstrDescriptor& instrDesc = - target.getInstrInfo().getDescriptor(minstr->getOpCode()); - - for (unsigned op=0; op < minstr->getNumOperands(); op++) - { - const MachineOperand& mop = minstr->getOperand(op); - - // skip the result position (for efficiency below) and any other - // positions already marked as not a virtual register - if (instrDesc.resultPos == (int) op || - mop.getOperandType() != MachineOperand::MO_VirtualRegister || - mop.getVRegValue() == NULL) - { - break; - } - - Value* opValue = mop.getVRegValue(); - - if (opValue->isConstant()) - { - unsigned int machineRegNum; - int64_t immedValue; - MachineOperand::MachineOperandType opType = - ChooseRegOrImmed(opValue, minstr->getOpCode(), target, - /*canUseImmed*/ (op == 1), - machineRegNum, immedValue); - - if (opType == MachineOperand::MO_MachineRegister) - minstr->SetMachineOperand(op, machineRegNum); - else if (opType == MachineOperand::MO_VirtualRegister) - { - // value is constant and must be loaded into a register - TmpInstruction* tmpReg; - MachineInstr* minstr2; - loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue, - tmpReg, minstr2); - minstr->SetMachineOperand(op, opType, tmpReg); - if (minstr2 != NULL) - loadConstVec[numNew++] = minstr2; - } - else - minstr->SetMachineOperand(op, opType, immedValue); - } - } - } - - if (numNew > 0) - { - // Insert the new instructions *before* the old ones by moving - // the old ones over `numNew' positions (last-to-first, of course!). - // We do check *after* returning that we did not exceed the vector mvec. - for (int i=numInstr-1; i >= 0; i--) - mvec[i+numNew] = mvec[i]; - - for (unsigned i=0; i < numNew; i++) - mvec[i] = loadConstVec[i]; - } - - return (numInstr + numNew); + vmInstrNode->getValue()); } static inline MachineInstr* -MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest) +CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest) { MachineInstr* minstr; if (isSigned) @@ -1155,22 +1024,25 @@ MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest) } +// Create an instruction sequence to load a constant into a register. +// This always creates either one or two instructions. +// If two instructions are created, the second one is returned in getMinstr2 +// The implicit virtual register used to hold the constant is returned in +// tmpReg. +// static MachineInstr* -MakeLoadConstInstr(Instruction* vmInstr, - Value* val, - TmpInstruction*& tmpReg, - MachineInstr*& getMinstr2) +CreateLoadConstInstr(const TargetMachine &target, + Instruction* vmInstr, + Value* val, + Instruction* dest, + MachineInstr*& getMinstr2) { assert(val->isConstant()); - MachineInstr* minstr; + MachineInstr* minstr1 = NULL; getMinstr2 = NULL; - // Create a TmpInstruction to mark the hidden register used for the constant - tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL); - vmInstr->getMachineInstrVec().addTempValue(tmpReg); - // Use a "set" instruction for known constants that can go in an integer reg. // Use a "set" instruction followed by a int-to-float conversion for known // constants that must go in a floating point reg but have an integer value. @@ -1179,84 +1051,199 @@ MakeLoadConstInstr(Instruction* vmInstr, // const Type* valType = val->getType(); - if (valType->isIntegral() || - valType->isPointerType() || - valType == Type::BoolTy) + if (valType->isIntegral() || valType == Type::BoolTy) { bool isValidConstant; int64_t C = GetConstantValueAsSignedInt(val, isValidConstant); assert(isValidConstant && "Unrecognized constant"); - - minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg); + minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest); } else { + +#undef MOVE_INT_TO_FP_REG_AVAILABLE +#ifdef MOVE_INT_TO_FP_REG_AVAILABLE + // + // This code was written to generate the following sequence: + // SET[SU]W <int-const> <int-reg> + // FITO[SD] <int-reg> <fp-reg> + // (it really should have moved the int-reg to an fp-reg and then FITOS). + // But for now the only way to move a value from an int-reg to an fp-reg + // is via memory. Leave this code here but unused. + // assert(valType == Type::FloatTy || valType == Type::DoubleTy); double dval = ((ConstPoolFP*) val)->getValue(); if (dval == (int64_t) dval) - { - // The constant actually has an integer value, so use a - // [set; int-to-float] sequence instead of a load instruction. - // - TmpInstruction* tmpReg2 = NULL; - if (dval != 0.0) - { // First, create an integer constant of the same value as dval - ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy, - (int64_t) dval); - // Create another TmpInstruction for the hidden integer register - TmpInstruction* tmpReg2 = - new TmpInstruction(Instruction::UserOp1, ival, NULL); - vmInstr->getMachineInstrVec().addTempValue(tmpReg2); - - // Create the `SET' instruction - minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2); - } - - // In which variable do we put the second instruction? - MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr; - - // Create the int-to-float instruction - instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD); - - if (dval == 0.0) - instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); - else - instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, - tmpReg2); - - instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - tmpReg); - } + { + // The constant actually has an integer value, so use a + // [set; int-to-float] sequence instead of a load instruction. + // + TmpInstruction* tmpReg2 = NULL; + if (dval != 0.0) + { // First, create an integer constant of the same value as dval + ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy, + (int64_t) dval); + // Create another TmpInstruction for the hidden integer register + tmpReg2 = new TmpInstruction(Instruction::UserOp1, ival, NULL); + vmInstr->getMachineInstrVec().addTempValue(tmpReg2); + + // Create the `SET' instruction + minstr1 = CreateIntSetInstruction((int64_t)dval, true, tmpReg2); + tmpReg2->addMachineInstruction(minstr1); + } + + // In which variable do we put the second instruction? + MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1; + + // Create the int-to-float instruction + instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD); + + if (dval == 0.0) + instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum()); + else + instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + tmpReg2); + + instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + dest); + } else - { - // Make a Load instruction, and make `val' both the ptr value *and* - // the result value, and set the offset field to 0. Final code - // generation will have to generate the base+offset for the constant. - // - int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0 - minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val); - minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - zeroOffset); - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - tmpReg); - } +#endif MOVE_INT_TO_FP_REG_AVAILABLE + + { + // Make an instruction sequence to load the constant, viz: + // SETSW <addr-of-constant>, tmpReg2 + // LOAD /*addr*/ tmpReg2, /*offset*/ 0, dest + // set the offset field to 0. + // + int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0 + + // Create another TmpInstruction for the hidden integer register + TmpInstruction* tmpReg2 = + new TmpInstruction(Instruction::UserOp1, val, NULL); + vmInstr->getMachineInstrVec().addTempValue(tmpReg2); + + minstr1 = new MachineInstr(SETUW); + minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val); + minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + tmpReg2); + tmpReg2->addMachineInstruction(minstr1); + + getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType())); + getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, + tmpReg2); + getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed, + zeroOffset); + getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister, + dest); + } } - tmpReg->addMachineInstruction(minstr); + assert(minstr1); + return minstr1; +} + +// Special handling for constant operands: +// -- if the constant is 0, use the hardwired 0 register, if any; +// -- if the constant is of float or double type but has an integer value, +// use int-to-float conversion instruction instead of generating a load; +// -- if the constant fits in the IMMEDIATE field, use that field; +// -- else insert instructions to put the constant into a register, either +// directly or by loading explicitly from the constant pool. +// +static unsigned +FixConstantOperands(const InstructionNode* vmInstrNode, + MachineInstr** mvec, + unsigned numInstr, + TargetMachine& target) +{ + static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; + + unsigned numNew = 0; + Instruction* vmInstr = vmInstrNode->getInstruction(); + + for (unsigned i=0; i < numInstr; i++) + { + MachineInstr* minstr = mvec[i]; + const MachineInstrDescriptor& instrDesc = + target.getInstrInfo().getDescriptor(minstr->getOpCode()); + + for (unsigned op=0; op < minstr->getNumOperands(); op++) + { + const MachineOperand& mop = minstr->getOperand(op); + + // skip the result position (for efficiency below) and any other + // positions already marked as not a virtual register + if (instrDesc.resultPos == (int) op || + mop.getOperandType() != MachineOperand::MO_VirtualRegister || + mop.getVRegValue() == NULL) + { + continue; + } + + Value* opValue = mop.getVRegValue(); + + if (opValue->isConstant()) + { + unsigned int machineRegNum; + int64_t immedValue; + MachineOperand::MachineOperandType opType = + ChooseRegOrImmed(opValue, minstr->getOpCode(), target, + /*canUseImmed*/ (op == 1), + machineRegNum, immedValue); + + if (opType == MachineOperand::MO_MachineRegister) + minstr->SetMachineOperand(op, machineRegNum); + else if (opType == MachineOperand::MO_VirtualRegister) + { + // value is constant and must be loaded into a register. + // First, create a tmp virtual register (TmpInstruction) + // to hold the constant. + // This will replace the constant operand in `minstr'. + TmpInstruction* tmpReg = + new TmpInstruction(Instruction::UserOp1, opValue, NULL); + vmInstr->getMachineInstrVec().addTempValue(tmpReg); + minstr->SetMachineOperand(op, opType, tmpReg); + + MachineInstr *minstr1, *minstr2; + minstr1 = CreateLoadConstInstr(target, vmInstr, + opValue, tmpReg, minstr2); + tmpReg->addMachineInstruction(minstr1); + + loadConstVec[numNew++] = minstr1; + if (minstr2 != NULL) + loadConstVec[numNew++] = minstr2; + } + else + minstr->SetMachineOperand(op, opType, immedValue); + } + } + } - assert(minstr); - return minstr; + if (numNew > 0) + { + // Insert the new instructions *before* the old ones by moving + // the old ones over `numNew' positions (last-to-first, of course!). + // We do check *after* returning that we did not exceed the vector mvec. + for (int i=numInstr-1; i >= 0; i--) + mvec[i+numNew] = mvec[i]; + + for (unsigned i=0; i < numNew; i++) + mvec[i] = loadConstVec[i]; + } + + return (numInstr + numNew); } + // // Substitute operand `operandNum' of the instruction in node `treeNode' // in place the use(s) of that instruction in node `parent'. // static void ForwardOperand(InstructionNode* treeNode, - InstrTreeNode* parent, - int operandNum) + InstrTreeNode* parent, + int operandNum) { assert(treeNode && parent && "Invalid invocation of ForwardOperand"); @@ -1277,19 +1264,73 @@ ForwardOperand(InstructionNode* treeNode, { MachineInstr* minstr = mvec[i]; for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++) - { - const MachineOperand& mop = minstr->getOperand(i); - if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && - mop.getVRegValue() == unusedOp) - { - minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, - fwdOp); - } - } + { + const MachineOperand& mop = minstr->getOperand(i); + if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && + mop.getVRegValue() == unusedOp) + { + minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, + fwdOp); + } + } } } +MachineInstr* +CreateCopyInstructionsByType(const TargetMachine& target, + Value* src, + Instruction* dest, + MachineInstr*& getMinstr2) +{ + getMinstr2 = NULL; // initialize second return value + + MachineInstr* minstr1 = NULL; + + const Type* resultType = dest->getType(); + + MachineOpCode opCode = ChooseAddInstructionByType(resultType); + if (opCode == INVALID_OPCODE) + { + assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); + return NULL; + } + + // if `src' is a constant that doesn't fit in the immed field, generate + // a load instruction instead of an add + if (src->isConstant()) + { + unsigned int machineRegNum; + int64_t immedValue; + MachineOperand::MachineOperandType opType = + ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, + machineRegNum, immedValue); + + if (opType == MachineOperand::MO_VirtualRegister) + { // value is constant and cannot fit in immed field for the ADD + minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2); + } + } + + if (minstr1 == NULL) + { // Create the appropriate add instruction. + // Make `src' the second operand, in case it is a constant + // Use (unsigned long) 0 for a NULL pointer value. + // + const Type* nullValueType = + (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy + : resultType; + minstr1 = new MachineInstr(opCode); + minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + ConstPoolVal::getNullConstant(nullValueType)); + minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src); + minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest); + } + + return minstr1; +} + + // This function is currently unused and incomplete but will be // used if we have a linear layout of basic blocks in LLVM code. // It decides which branch should fall-through, and whether an @@ -1301,11 +1342,11 @@ ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) BranchInst* brInstr = (BranchInst*) vmInstr; brPattern.flipCondition = false; - brPattern.targetBB = brInstr->getSuccessor(0); + brPattern.targetBB = brInstr->getSuccessor(0); brPattern.extraBranch = NULL; assert(brInstr->getNumSuccessors() > 1 && - "Unnecessary analysis for unconditional branch"); + "Unnecessary analysis for unconditional branch"); assert(0 && "Fold branches in peephole optimization"); } @@ -1324,10 +1365,10 @@ ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) unsigned GetInstructionsByRule(InstructionNode* subtreeRoot, - int ruleForNode, - short* nts, - TargetMachine &target, - MachineInstr** mvec) + int ruleForNode, + short* nts, + TargetMachine &target, + MachineInstr** mvec) { int numInstr = 1; // initialize for common case bool checkCast = false; // initialize here to use fall-through @@ -1340,678 +1381,715 @@ GetInstructionsByRule(InstructionNode* subtreeRoot, mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety - switch(ruleForNode) { - case 1: // stmt: Ret - case 2: // stmt: RetValue(reg) - // NOTE: Prepass of register allocation is responsible - // for moving return value to appropriate register. - // Mark the return-address register as a hidden virtual reg. - { - Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->getInstruction(), NULL); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); - - mvec[0] = new MachineInstr(RETURN); - mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0); - - returnReg->addMachineInstruction(mvec[0]); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - } - - case 3: // stmt: Store(reg,reg) - case 4: // stmt: Store(reg,ptrreg) - mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 5: // stmt: BrUncond - mvec[0] = new MachineInstr(BA); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - break; - - case 206: // stmt: BrCond(setCCconst) - // setCCconst => boolean was computed with `%b = setCC type reg1 constant' - // If the constant is ZERO, we can use the branch-on-integer-register - // instructions and avoid the SUBcc instruction entirely. - // Otherwise this is just the same as case 5, so just fall through. + // + // Let's check for chain rules outside the switch so that we don't have + // to duplicate the list of chain rule production numbers here again + // + if (ThisIsAChainRule(ruleForNode)) { - InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); - assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); - ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); - bool isValidConst; - - if ((constVal->getType()->isIntegral() - || constVal->getType()->isPointerType()) - && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 - && isValidConst) - { - // That constant is a zero after all... - // Use the left child of the setCC instruction as the first argument! - mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - break; - } - // ELSE FALL THROUGH + // Chain rules have a single nonterminal on the RHS. + // Get the rule that matches the RHS non-terminal and use that instead. + // + assert(nts[0] && ! nts[1] + && "A chain rule should have only one RHS non-terminal!"); + nextRule = burm_rule(subtreeRoot->state, nts[0]); + nts = burm_nts[nextRule]; + numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); } - - case 6: // stmt: BrCond(bool) - // bool => boolean was computed with some boolean operator (setCC,Not,...) - // Need to check whether the type was a FP, signed int or unsigned int, - // and check the branching condition in order to choose the branch to use. - // + else { - bool isFPBranch; - mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - break; - } - - case 8: // stmt: BrCond(boolreg) - case 208: // stmt: BrCond(boolconst) - // boolreg => boolean is stored in an existing register. - // boolconst => boolean is a constant; can be loaded into a register. - // Just use the branch-on-integer-register instruction! - // - mvec[0] = new MachineInstr(BRNZ); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - break; - - case 9: // stmt: Switch(reg) - assert(0 && "*** SWITCH instruction is not implemented yet."); - numInstr = 0; - break; - - case 10: // reg: VRegList(reg, reg) - assert(0 && "VRegList should never be the topmost non-chain rule"); - break; - - case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 - mvec[0] = new MachineInstr(XNOR); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - break; - - case 322: // reg: ToBoolTy(bool): - case 22: // reg: ToBoolTy(reg): - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - numInstr = 0; - forwardOperandNum = 0; - break; - - case 23: // reg: ToUByteTy(reg) - case 25: // reg: ToUShortTy(reg) - case 27: // reg: ToUIntTy(reg) - case 29: // reg: ToULongTy(reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || - opType->isPointerType() || - opType == Type::BoolTy && "Ignoring cast: illegal for other types"); - numInstr = 0; - forwardOperandNum = 0; - break; - - case 24: // reg: ToSByteTy(reg) - case 26: // reg: ToShortTy(reg) - case 28: // reg: ToIntTy(reg) - case 30: // reg: ToLongTy(reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - if (opType->isIntegral() || opType == Type::BoolTy) - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); - Set2OperandsFromInstr(mvec[0], subtreeRoot, target); - } - break; - - case 31: // reg: ToFloatTy(reg): - case 32: // reg: ToDoubleTy(reg): - - // If this instruction has a parent (a user) in the tree - // and the user is translated as an FsMULd instruction, - // then the cast is unnecessary. So check that first. - // In the future, we'll want to do the same for the FdMULq instruction, - // so do the check here instead of only for ToFloatTy(reg). - // - if (subtreeRoot->parent() != NULL && - ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - opType = subtreeRoot->leftChild()->getValue()->getType(); - MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType); - if (opCode == INVALID_OPCODE) // no conversion needed - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - mvec[0] = new MachineInstr(opCode); - Set2OperandsFromInstr(mvec[0], subtreeRoot, target); - } - } - break; - - case 19: // reg: ToArrayTy(reg): - case 20: // reg: ToPointerTy(reg): - numInstr = 0; - forwardOperandNum = 0; - break; - - case 233: // reg: Add(reg, Constant) - mvec[0] = CreateAddConstInstruction(subtreeRoot); - if (mvec[0] != NULL) - break; - // ELSE FALL THROUGH - - case 33: // reg: Add(reg, reg) - mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 234: // reg: Sub(reg, Constant) - mvec[0] = CreateSubConstInstruction(subtreeRoot); - if (mvec[0] != NULL) - break; - // ELSE FALL THROUGH - - case 34: // reg: Sub(reg, reg) - mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 135: // reg: Mul(todouble, todouble) - checkCast = true; - // FALL THROUGH - - case 35: // reg: Mul(reg, reg) - mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 335: // reg: Mul(todouble, todoubleConst) - checkCast = true; - // FALL THROUGH - - case 235: // reg: Mul(reg, Constant) - mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]); - if (mvec[0] == NULL) - { - mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - } - else - if (mvec[1] != NULL) - ++numInstr; - break; - - case 236: // reg: Div(reg, Constant) - mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]); - if (mvec[0] != NULL) - { - if (mvec[1] != NULL) - ++numInstr; - } - else - // ELSE FALL THROUGH - - case 36: // reg: Div(reg, reg) - mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 37: // reg: Rem(reg, reg) - case 237: // reg: Rem(reg, Constant) - assert(0 && "REM instruction unimplemented for the SPARC."); - break; - - case 38: // reg: And(reg, reg) - case 238: // reg: And(reg, Constant) - mvec[0] = new MachineInstr(AND); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 138: // reg: And(reg, not) - mvec[0] = new MachineInstr(ANDN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 39: // reg: Or(reg, reg) - case 239: // reg: Or(reg, Constant) - mvec[0] = new MachineInstr(ORN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 139: // reg: Or(reg, not) - mvec[0] = new MachineInstr(ORN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 40: // reg: Xor(reg, reg) - case 240: // reg: Xor(reg, Constant) - mvec[0] = new MachineInstr(XOR); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 140: // reg: Xor(reg, not) - mvec[0] = new MachineInstr(XNOR); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 41: // boolconst: SetCC(reg, Constant) - // Check if this is an integer comparison, and - // there is a parent, and the parent decided to use - // a branch-on-integer-register instead of branch-on-condition-code. - // If so, the SUBcc instruction is not required. - // (However, we must still check for constants to be loaded from - // the constant pool so that such a load can be associated with - // this instruction.) - // - // Otherwise this is just the same as case 42, so just fall through. - // - if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && - subtreeRoot->parent() != NULL) - { - InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); - assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); - const vector<MachineInstr*>& - minstrVec = parentNode->getInstruction()->getMachineInstrVec(); - MachineOpCode parentOpCode; - if (parentNode->getInstruction()->getOpcode() == Instruction::Br && - (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && - parentOpCode <= BRGEZ) - { - numInstr = 0; // don't forward the operand! - break; - } - } - // ELSE FALL THROUGH - - case 42: // bool: SetCC(reg, reg): - { - // If result of the SetCC is only used for a branch, we can - // discard the result. otherwise, it must go into an integer register. - // Note that the user may or may not be in the same tree, so we have - // to follow SSA def-use edges here, not BURG tree edges. - // - Instruction* result = subtreeRoot->getInstruction(); - Value* firstUse = result->use_empty() ? 0 : *result->use_begin(); - bool discardResult = - (result->use_size() == 1 - && firstUse->isInstruction() - && ((Instruction*) firstUse)->getOpcode() == Instruction::Br); - - bool mustClearReg; - int valueToMove; - MachineOpCode movOpCode; - - if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() || - subtreeRoot->leftChild()->getValue()->getType()->isPointerType()) - { - // Integer condition: destination should be %g0 or integer register. - // If result must be saved but condition is not SetEQ then we need - // a separate instruction to compute the bool result, so discard - // result of SUBcc instruction anyway. - // - mvec[0] = new MachineInstr(SUBcc); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult); - - // mark the 4th operand as being a CC register, and a "result" - mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, - subtreeRoot->getValue(), /*def*/ true); - - if (!discardResult) - { // recompute bool if needed, using the integer condition codes - if (result->getOpcode() == Instruction::SetNE) - discardResult = true; - else - movOpCode = - ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove); - } - } - else - { - // FP condition: dest of FCMP should be some FCCn register - mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->rightChild()->getValue()); - - if (!discardResult) - {// recompute bool using the FP condition codes - mustClearReg = true; - valueToMove = 1; - movOpCode = ChooseMovFpccInstruction(subtreeRoot); - } - } - - if (!discardResult) - { - if (mustClearReg) - {// Unconditionally set register to 0 - int n = numInstr++; - mvec[n] = new MachineInstr(SETHI); - mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0); - mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - } - - // Now conditionally move `valueToMove' (0 or 1) into the register - int n = numInstr++; - mvec[n] = new MachineInstr(movOpCode); - mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->getValue()); - mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - valueToMove); - mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - } - break; - } - - case 43: // boolreg: VReg - case 44: // boolreg: Constant - numInstr = 0; - break; - - case 51: // reg: Load(reg) - case 52: // reg: Load(ptrreg) - case 53: // reg: LoadIdx(reg,reg) - case 54: // reg: LoadIdx(ptrreg,reg) - mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 55: // reg: GetElemPtr(reg) - case 56: // reg: GetElemPtrIdx(reg,reg) - if (subtreeRoot->parent() != NULL) + switch(ruleForNode) { + case 1: // stmt: Ret + case 2: // stmt: RetValue(reg) + // NOTE: Prepass of register allocation is responsible + // for moving return value to appropriate register. + // Mark the return-address register as a hidden virtual reg. + // Mark the return value register as an implicit use. + { + ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction(); + assert(returnInstr->getOpcode() == Instruction::Ret); + + Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, + returnInstr, NULL); + returnInstr->getMachineInstrVec().addTempValue(returnReg); + + if (returnInstr->getReturnValue() != NULL) + returnInstr->getMachineInstrVec().addImplicitUse( + returnInstr->getReturnValue()); + + mvec[0] = new MachineInstr(RETURN); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + returnReg); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s0); + + returnReg->addMachineInstruction(mvec[0]); + + mvec[numInstr++] = new MachineInstr(NOP); // delay slot + break; + } + + case 3: // stmt: Store(reg,reg) + case 4: // stmt: Store(reg,ptrreg) + mvec[0] = new MachineInstr( + ChooseStoreInstruction( + subtreeRoot->leftChild()->getValue()->getType())); + SetOperandsForMemInstr(mvec[0], subtreeRoot, target); + break; + + case 5: // stmt: BrUncond + mvec[0] = new MachineInstr(BA); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*)NULL); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; + + case 206: // stmt: BrCond(setCCconst) + // setCCconst => boolean was computed with `%b = setCC type reg1 const' + // If the constant is ZERO, we can use the branch-on-integer-register + // instructions and avoid the SUBcc instruction entirely. + // Otherwise this is just the same as case 5, so just fall through. + { + InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); + assert(constNode && + constNode->getNodeType() ==InstrTreeNode::NTConstNode); + ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); + bool isValidConst; + + if ((constVal->getType()->isIntegral() + || constVal->getType()->isPointerType()) + && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 + && isValidConst) + { + // That constant is a zero after all... + // Use the left child of setCC as the first argument! + mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + + // false branch + int n = numInstr++; + mvec[n] = new MachineInstr(BA); + mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + + break; + } + // ELSE FALL THROUGH + } + + case 6: // stmt: BrCond(bool) + // bool => boolean was computed with some boolean operator + // (SetCC, Not, ...). We need to check whether the type was a FP, + // signed int or unsigned int, and check the branching condition in + // order to choose the branch to use. + // + { + bool isFPBranch; + mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, + isFPBranch)); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + + // false branch + int n = numInstr++; + mvec[n] = new MachineInstr(BA); + mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; + } + + case 208: // stmt: BrCond(boolconst) + { + // boolconst => boolean is a constant; use BA to first or second label + ConstPoolVal* constVal = + subtreeRoot->leftChild()->getValue()->castConstantAsserting(); + unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1; + + mvec[0] = new MachineInstr(BA); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; + } + + case 8: // stmt: BrCond(boolreg) + // boolreg => boolean is stored in an existing register. + // Just use the branch-on-integer-register instruction! + // + { + mvec[0] = new MachineInstr(BRNZ); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); // delay slot + + // false branch + int n = numInstr++; + mvec[n] = new MachineInstr(BA); + mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; + } + + case 9: // stmt: Switch(reg) + assert(0 && "*** SWITCH instruction is not implemented yet."); + numInstr = 0; + break; + + case 10: // reg: VRegList(reg, reg) + assert(0 && "VRegList should never be the topmost non-chain rule"); + break; + + case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 + mvec[0] = new MachineInstr(XNOR); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum()); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + break; + + case 322: // reg: ToBoolTy(bool): + case 22: // reg: ToBoolTy(reg): + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() || opType == Type::BoolTy); + numInstr = 0; + forwardOperandNum = 0; + break; + + case 23: // reg: ToUByteTy(reg) + case 25: // reg: ToUShortTy(reg) + case 27: // reg: ToUIntTy(reg) + case 29: // reg: ToULongTy(reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() || + opType->isPointerType() || + opType == Type::BoolTy && "Cast is illegal for other types"); + numInstr = 0; + forwardOperandNum = 0; + break; + + case 24: // reg: ToSByteTy(reg) + case 26: // reg: ToShortTy(reg) + case 28: // reg: ToIntTy(reg) + case 30: // reg: ToLongTy(reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + if (opType->isIntegral() || opType == Type::BoolTy) + { + numInstr = 0; + forwardOperandNum = 0; + } + else + { + mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot, + opType)); + Set2OperandsFromInstr(mvec[0], subtreeRoot, target); + } + break; + + case 31: // reg: ToFloatTy(reg): + case 32: // reg: ToDoubleTy(reg): + case 232: // reg: ToDoubleTy(Constant): + + // If this instruction has a parent (a user) in the tree + // and the user is translated as an FsMULd instruction, + // then the cast is unnecessary. So check that first. + // In the future, we'll want to do the same for the FdMULq instruction, + // so do the check here instead of only for ToFloatTy(reg). + // + if (subtreeRoot->parent() != NULL && + ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) + { + numInstr = 0; + forwardOperandNum = 0; + } + else + { + opType = subtreeRoot->leftChild()->getValue()->getType(); + MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType); + if (opCode == INVALID_OPCODE) // no conversion needed + { + numInstr = 0; + forwardOperandNum = 0; + } + else + { + mvec[0] = new MachineInstr(opCode); + Set2OperandsFromInstr(mvec[0], subtreeRoot, target); + } + } + break; + + case 19: // reg: ToArrayTy(reg): + case 20: // reg: ToPointerTy(reg): + numInstr = 0; + forwardOperandNum = 0; + break; + + case 233: // reg: Add(reg, Constant) + mvec[0] = CreateAddConstInstruction(subtreeRoot); + if (mvec[0] != NULL) + break; + // ELSE FALL THROUGH + + case 33: // reg: Add(reg, reg) + mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 234: // reg: Sub(reg, Constant) + mvec[0] = CreateSubConstInstruction(subtreeRoot); + if (mvec[0] != NULL) + break; + // ELSE FALL THROUGH + + case 34: // reg: Sub(reg, reg) + mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 135: // reg: Mul(todouble, todouble) + checkCast = true; + // FALL THROUGH + + case 35: // reg: Mul(reg, reg) + mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 335: // reg: Mul(todouble, todoubleConst) + checkCast = true; + // FALL THROUGH + + case 235: // reg: Mul(reg, Constant) + mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]); + if (mvec[0] == NULL) + { + mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, + checkCast)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + } + else + if (mvec[1] != NULL) + ++numInstr; + break; + + case 236: // reg: Div(reg, Constant) + mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]); + if (mvec[0] != NULL) + { + if (mvec[1] != NULL) + ++numInstr; + } + else + // ELSE FALL THROUGH + + case 36: // reg: Div(reg, reg) + mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 37: // reg: Rem(reg, reg) + case 237: // reg: Rem(reg, Constant) + assert(0 && "REM instruction unimplemented for the SPARC."); + break; + + case 38: // reg: And(reg, reg) + case 238: // reg: And(reg, Constant) + mvec[0] = new MachineInstr(AND); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 138: // reg: And(reg, not) + mvec[0] = new MachineInstr(ANDN); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 39: // reg: Or(reg, reg) + case 239: // reg: Or(reg, Constant) + mvec[0] = new MachineInstr(ORN); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 139: // reg: Or(reg, not) + mvec[0] = new MachineInstr(ORN); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 40: // reg: Xor(reg, reg) + case 240: // reg: Xor(reg, Constant) + mvec[0] = new MachineInstr(XOR); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 140: // reg: Xor(reg, not) + mvec[0] = new MachineInstr(XNOR); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 41: // boolconst: SetCC(reg, Constant) + // Check if this is an integer comparison, and + // there is a parent, and the parent decided to use + // a branch-on-integer-register instead of branch-on-condition-code. + // If so, the SUBcc instruction is not required. + // (However, we must still check for constants to be loaded from + // the constant pool so that such a load can be associated with + // this instruction.) + // + // Otherwise this is just the same as case 42, so just fall through. + // + if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && + subtreeRoot->parent() != NULL) + { + InstructionNode* parent = (InstructionNode*) subtreeRoot->parent(); + assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode); + const vector<MachineInstr*>& + minstrVec = parent->getInstruction()->getMachineInstrVec(); + MachineOpCode parentOpCode; + if (parent->getInstruction()->getOpcode() == Instruction::Br && + (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && + parentOpCode <= BRGEZ) + { + numInstr = 0; // don't forward the operand! + break; + } + } + // ELSE FALL THROUGH + + case 42: // bool: SetCC(reg, reg): { - // Check if the parent was an array access. - // If so, we still need to generate this instruction. - MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); - const PointerType* ptrType = - (const PointerType*) memInst->getPtrOperand()->getType(); - if (! ptrType->getValueType()->isArrayType()) - {// we don't need a separate instr - numInstr = 0; // don't forward operand! - break; - } + // If result of the SetCC is only used for a single branch, we can + // discard the result. Otherwise, the boolean value must go into + // an integer register. + // + bool keepBoolVal = (subtreeRoot->parent() == NULL || + ((InstructionNode*) subtreeRoot->parent()) + ->getInstruction()->getOpcode() !=Instruction::Br); + bool subValIsBoolVal = + subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE; + bool keepSubVal = keepBoolVal && subValIsBoolVal; + bool computeBoolVal = keepBoolVal && ! subValIsBoolVal; + + bool mustClearReg; + int valueToMove; + MachineOpCode movOpCode; + + if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() || + subtreeRoot->leftChild()->getValue()->getType()->isPointerType()) + { + // Integer condition: dest. should be %g0 or an integer register. + // If result must be saved but condition is not SetEQ then we need + // a separate instruction to compute the bool result, so discard + // result of SUBcc instruction anyway. + // + mvec[0] = new MachineInstr(SUBcc); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal); + + // mark the 4th operand as being a CC register, and a "result" + mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, + subtreeRoot->getValue(),/*def*/true); + + if (computeBoolVal) + { // recompute bool using the integer condition codes + movOpCode = + ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove); + } + } + else + { + // FP condition: dest of FCMP should be some FCCn register + mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); + mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister, + subtreeRoot->getValue()); + mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister, + subtreeRoot->rightChild()->getValue()); + + if (computeBoolVal) + {// recompute bool using the FP condition codes + mustClearReg = true; + valueToMove = 1; + movOpCode = ChooseMovFpccInstruction(subtreeRoot); + } + } + + if (computeBoolVal) + { + if (mustClearReg) + {// Unconditionally set register to 0 + int n = numInstr++; + mvec[n] = new MachineInstr(SETHI); + mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed, + s0); + mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + } + + // Now conditionally move `valueToMove' (0 or 1) into the register + int n = numInstr++; + mvec[n] = new MachineInstr(movOpCode); + mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + subtreeRoot->getValue()); + mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, + valueToMove); + mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + } + break; + } + + case 43: // boolreg: VReg + case 44: // boolreg: Constant + numInstr = 0; + break; + + case 51: // reg: Load(reg) + case 52: // reg: Load(ptrreg) + case 53: // reg: LoadIdx(reg,reg) + case 54: // reg: LoadIdx(ptrreg,reg) + mvec[0] = new MachineInstr(ChooseLoadInstruction( + subtreeRoot->getValue()->getType())); + SetOperandsForMemInstr(mvec[0], subtreeRoot, target); + break; + + case 55: // reg: GetElemPtr(reg) + case 56: // reg: GetElemPtrIdx(reg,reg) + if (subtreeRoot->parent() != NULL) + { + // Check if the parent was an array access. + // If so, we still need to generate this instruction. + MemAccessInst* memInst = (MemAccessInst*) + subtreeRoot->getInstruction(); + const PointerType* ptrType = + (const PointerType*) memInst->getPtrOperand()->getType(); + if (! ptrType->getValueType()->isArrayType()) + {// we don't need a separate instr + numInstr = 0; // don't forward operand! + break; + } + } + // else in all other cases we need to a separate ADD instruction + mvec[0] = new MachineInstr(ADD); + SetOperandsForMemInstr(mvec[0], subtreeRoot, target); + break; + + case 57: // reg: Alloca: Implement as 2 instructions: + // sub %sp, tmp -> %sp + { // add %sp, 0 -> result + Instruction* instr = subtreeRoot->getInstruction(); + const PointerType* instrType = (const PointerType*) instr->getType(); + assert(instrType->isPointerType()); + int tsize = (int) + target.findOptimalStorageSize(instrType->getValueType()); + assert(tsize != 0 && "Just to check when this can happen"); + + // Create a temporary Value to hold the constant type-size + ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); + + // Instruction 1: sub %sp, tsize -> %sp + // tsize is always constant, but it may have to be put into a + // register if it doesn't fit in the immediate field. + // + mvec[0] = new MachineInstr(SUB); + mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + valueForTSize); + mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14); + + // Instruction 2: add %sp, 0 -> result + numInstr++; + mvec[1] = new MachineInstr(ADD); + mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14); + mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum()); + mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + instr); + break; + } + + case 58: // reg: Alloca(reg): Implement as 3 instructions: + // mul num, typeSz -> tmp + // sub %sp, tmp -> %sp + { // add %sp, 0 -> result + Instruction* instr = subtreeRoot->getInstruction(); + const PointerType* instrType = (const PointerType*) instr->getType(); + assert(instrType->isPointerType() && + instrType->getValueType()->isArrayType()); + const Type* eltType = + ((ArrayType*) instrType->getValueType())->getElementType(); + int tsize = (int) target.findOptimalStorageSize(eltType); + + assert(tsize != 0 && "Just to check when this can happen"); + // if (tsize == 0) + // { + // numInstr = 0; + // break; + // } + //else go on to create the instructions needed... + + // Create a temporary Value to hold the constant type-size + ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); + + // Create a temporary value to hold `tmp' + Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, + subtreeRoot->leftChild()->getValue(), + NULL /*could insert tsize here*/); + subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); + + // Instruction 1: mul numElements, typeSize -> tmp + mvec[0] = new MachineInstr(MULX); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + valueForTSize); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + tmpInstr); + + tmpInstr->addMachineInstruction(mvec[0]); + + // Instruction 2: sub %sp, tmp -> %sp + numInstr++; + mvec[1] = new MachineInstr(SUB); + mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14); + mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + tmpInstr); + mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14); + + // Instruction 3: add %sp, 0 -> result + numInstr++; + mvec[2] = new MachineInstr(ADD); + mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14); + mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum()); + mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + instr); + break; + } + + case 61: // reg: Call + // Generate a call-indirect (i.e., JMPL) for now to expose + // the potential need for registers. If an absolute address + // is available, replace this with a CALL instruction. + // Mark both the indirection register and the return-address + // register as hidden virtual registers. + // Also, mark the operands of the Call as implicit operands + // of the machine instruction. + { + CallInst* callInstr = (CallInst*) subtreeRoot->getInstruction(); + Method* callee = callInstr->getCalledMethod(); + assert(callInstr->getOpcode() == Instruction::Call); + + Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, + callee, NULL); + Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, + callInstr, NULL); + + // Note temporary values and implicit uses in mvec + callInstr->getMachineInstrVec().addTempValue(jmpAddrReg); + callInstr->getMachineInstrVec().addTempValue(retAddrReg); + for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i) + if (callInstr->getOperand(i) != callee) + callInstr->getMachineInstrVec().addImplicitUse( + callInstr->getOperand(i)); + + // Generate the machine instruction and its operands + mvec[0] = new MachineInstr(JMPL); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + jmpAddrReg); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, + (int64_t) 0); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + retAddrReg); + + // NOTE: jmpAddrReg will be loaded by a different instruction generated + // by the final code generator, so we just mark the CALL instruction + // as computing that value. + // The retAddrReg is actually computed by the CALL instruction. + // + jmpAddrReg->addMachineInstruction(mvec[0]); + retAddrReg->addMachineInstruction(mvec[0]); + + mvec[numInstr++] = new MachineInstr(NOP); // delay slot + break; + } + + case 62: // reg: Shl(reg, reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() + || opType == Type::BoolTy + || opType->isPointerType()&& "Shl unsupported for other types"); + mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 63: // reg: Shr(reg, reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() + || opType == Type::BoolTy + || opType->isPointerType() &&"Shr unsupported for other types"); + mvec[0] = new MachineInstr((opType->isSigned() + ? ((opType == Type::LongTy)? SRAX : SRA) + : ((opType == Type::LongTy)? SRLX : SRL))); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 64: // reg: Phi(reg,reg) + { // This instruction has variable #operands, so resultPos is 0. + Instruction* phi = subtreeRoot->getInstruction(); + mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) + mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, + phi->getOperand(i)); + break; + } + case 71: // reg: VReg + case 72: // reg: Constant + numInstr = 0; // don't forward the value + break; + + default: + assert(0 && "Unrecognized BURG rule"); + numInstr = 0; + break; } - // else in all other cases we need to a separate ADD instruction - mvec[0] = new MachineInstr(ADD); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 57: // reg: Alloca: Implement as 2 instructions: - // sub %sp, tmp -> %sp - { // add %sp, 0 -> result - Instruction* instr = subtreeRoot->getInstruction(); - const PointerType* instrType = (const PointerType*) instr->getType(); - assert(instrType->isPointerType()); - int tsize = (int) target.findOptimalStorageSize(instrType->getValueType()); - assert(tsize != 0 && "Just to check when this can happen"); - // if (tsize == 0) - // { - // numInstr = 0; - // break; - // } - //else go on to create the instructions needed... - - // Create a temporary Value to hold the constant type-size - ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); - - // Instruction 1: sub %sp, tsize -> %sp - // tsize is always constant, but it may have to be put into a - // register if it doesn't fit in the immediate field. - // - mvec[0] = new MachineInstr(SUB); - mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); - mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - - // Instruction 2: add %sp, 0 -> result - numInstr++; - mvec[1] = new MachineInstr(ADD); - mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); - break; - } - - case 58: // reg: Alloca(reg): Implement as 3 instructions: - // mul num, typeSz -> tmp - // sub %sp, tmp -> %sp - { // add %sp, 0 -> result - Instruction* instr = subtreeRoot->getInstruction(); - const PointerType* instrType = (const PointerType*) instr->getType(); - assert(instrType->isPointerType() && - instrType->getValueType()->isArrayType()); - const Type* eltType = - ((ArrayType*) instrType->getValueType())->getElementType(); - int tsize = (int) target.findOptimalStorageSize(eltType); - - assert(tsize != 0 && "Just to check when this can happen"); - // if (tsize == 0) - // { - // numInstr = 0; - // break; - // } - //else go on to create the instructions needed... - - // Create a temporary Value to hold the constant type-size - ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); - - // Create a temporary value to hold `tmp' - Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->leftChild()->getValue(), - NULL /*could insert tsize here*/); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); - - // Instruction 1: mul numElements, typeSize -> tmp - mvec[0] = new MachineInstr(MULX); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr); - - tmpInstr->addMachineInstruction(mvec[0]); - - // Instruction 2: sub %sp, tmp -> %sp - numInstr++; - mvec[1] = new MachineInstr(SUB); - mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr); - mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - - // Instruction 3: add %sp, 0 -> result - numInstr++; - mvec[2] = new MachineInstr(ADD); - mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); - break; } - - case 61: // reg: Call - // Generate a call-indirect (i.e., JMPL) for now to expose - // the potential need for registers. If an absolute address - // is available, replace this with a CALL instruction. - // Mark both the indirection register and the return-address - { // register as hidden virtual registers. - - Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, - ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); - Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->getValue(), NULL); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg); - - mvec[0] = new MachineInstr(JMPL); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - (int64_t) 0); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg); - - // NOTE: jmpAddrReg will be loaded by a different instruction generated - // by the final code generator, so we just mark the CALL instruction - // as computing that value. - // The retAddrReg is actually computed by the CALL instruction. - // - jmpAddrReg->addMachineInstruction(mvec[0]); - retAddrReg->addMachineInstruction(mvec[0]); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - } - - case 62: // reg: Shl(reg, reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() - || opType == Type::BoolTy - || opType->isPointerType() && "Shl unsupported for other types"); - mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 63: // reg: Shr(reg, reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() - || opType == Type::BoolTy - || opType->isPointerType() && "Shr unsupported for other types"); - mvec[0] = new MachineInstr((opType->isSigned() - ? ((opType == Type::LongTy)? SRAX : SRA) - : ((opType == Type::LongTy)? SRLX : SRL))); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 64: // reg: Phi(reg,reg) - { // This instruction has variable #operands, so resultPos is 0. - Instruction* phi = subtreeRoot->getInstruction(); - mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) - mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, - phi->getOperand(i)); - break; - } - case 71: // reg: VReg - case 72: // reg: Constant - numInstr = 0; // don't forward the value - break; - - case 111: // stmt: reg - case 112: // stmt: boolconst - case 113: // stmt: bool - case 121: - case 122: - case 123: - case 124: - case 125: - case 126: - case 127: - case 128: - case 129: - case 130: - case 131: - case 132: - case 133: - case 153: - case 155: - case 221: - case 222: - case 232: - case 241: - case 242: - case 243: - case 244: - // - // These are all chain rules, which have a single nonterminal on the RHS. - // Get the rule that matches the RHS non-terminal and use that instead. - // - assert(ThisIsAChainRule(ruleForNode)); - assert(nts[0] && ! nts[1] - && "A chain rule should have only one RHS non-terminal!"); - nextRule = burm_rule(subtreeRoot->state, nts[0]); - nts = burm_nts[nextRule]; - numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); - break; - - default: - assert(0 && "Unrecognized BURG rule"); - numInstr = 0; - break; - } if (forwardOperandNum >= 0) { // We did not generate a machine instruction but need to use operand. @@ -2019,17 +2097,18 @@ GetInstructionsByRule(InstructionNode* subtreeRoot, // If not, insert a copy instruction which should get coalesced away // by register allocation. if (subtreeRoot->parent() != NULL) - ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); + ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); else - { - int n = numInstr++; - mvec[n] = new MachineInstr(ADD); - mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->getInstruction()->getOperand(forwardOperandNum)); - mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getInstruction()); - } + { + MachineInstr *minstr1 = NULL, *minstr2 = NULL; + minstr1 = CreateCopyInstructionsByType(target, + subtreeRoot->getInstruction()->getOperand(forwardOperandNum), + subtreeRoot->getInstruction(), minstr2); + assert(minstr1); + mvec[numInstr++] = minstr1; + if (minstr2 != NULL) + mvec[numInstr++] = minstr2; + } } if (! ThisIsAChainRule(ruleForNode)) |