aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/Disassembler/X86Disassembler.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/Disassembler/X86Disassembler.h')
-rw-r--r--lib/Target/X86/Disassembler/X86Disassembler.h150
1 files changed, 150 insertions, 0 deletions
diff --git a/lib/Target/X86/Disassembler/X86Disassembler.h b/lib/Target/X86/Disassembler/X86Disassembler.h
new file mode 100644
index 0000000..0e6e0b0
--- /dev/null
+++ b/lib/Target/X86/Disassembler/X86Disassembler.h
@@ -0,0 +1,150 @@
+//===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
+// 64-bit X86 instruction sets. The main decode sequence for an assembly
+// instruction in this disassembler is:
+//
+// 1. Read the prefix bytes and determine the attributes of the instruction.
+// These attributes, recorded in enum attributeBits
+// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
+// provides a mapping from bitmasks to contexts, which are represented by
+// enum InstructionContext (ibid.).
+//
+// 2. Read the opcode, and determine what kind of opcode it is. The
+// disassembler distinguishes four kinds of opcodes, which are enumerated in
+// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
+// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
+// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
+//
+// 3. Depending on the opcode type, look in one of four ClassDecision structures
+// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
+// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
+// a ModRMDecision (ibid.).
+//
+// 4. Some instructions, such as escape opcodes or extended opcodes, or even
+// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
+// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
+// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
+// ModR/M byte is required and how to interpret it.
+//
+// 5. After resolving the ModRMDecision, the disassembler has a unique ID
+// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
+// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
+// meanings of its operands.
+//
+// 6. For each operand, its encoding is an entry from OperandEncoding
+// (X86DisassemblerDecoderCommon.h) and its type is an entry from
+// OperandType (ibid.). The encoding indicates how to read it from the
+// instruction; the type indicates how to interpret the value once it has
+// been read. For example, a register operand could be stored in the R/M
+// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
+// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
+// register, for instance). Given this information, the operands can be
+// extracted and interpreted.
+//
+// 7. As the last step, the disassembler translates the instruction information
+// and operands into a format understandable by the client - in this case, an
+// MCInst for use by the MC infrastructure.
+//
+// The disassembler is broken broadly into two parts: the table emitter that
+// emits the instruction decode tables discussed above during compilation, and
+// the disassembler itself. The table emitter is documented in more detail in
+// utils/TableGen/X86DisassemblerEmitter.h.
+//
+// X86Disassembler.h contains the public interface for the disassembler,
+// adhering to the MCDisassembler interface.
+// X86Disassembler.cpp contains the code responsible for step 7, and for
+// invoking the decoder to execute steps 1-6.
+// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
+// table emitter and the disassembler.
+// X86DisassemblerDecoder.h contains the public interface of the decoder,
+// factored out into C for possible use by other projects.
+// X86DisassemblerDecoder.c contains the source code of the decoder, which is
+// responsible for steps 1-6.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86DISASSEMBLER_H
+#define X86DISASSEMBLER_H
+
+#define INSTRUCTION_SPECIFIER_FIELDS \
+ const char* name;
+
+#define INSTRUCTION_IDS \
+ InstrUID* instructionIDs;
+
+#include "X86DisassemblerDecoderCommon.h"
+
+#undef INSTRUCTION_SPECIFIER_FIELDS
+#undef INSTRUCTION_IDS
+
+#include "llvm/MC/MCDisassembler.h"
+
+struct InternalInstruction;
+
+namespace llvm {
+
+class MCInst;
+class MemoryObject;
+class raw_ostream;
+
+namespace X86Disassembler {
+
+/// X86GenericDisassembler - Generic disassembler for all X86 platforms.
+/// All each platform class should have to do is subclass the constructor, and
+/// provide a different disassemblerMode value.
+class X86GenericDisassembler : public MCDisassembler {
+protected:
+ /// Constructor - Initializes the disassembler.
+ ///
+ /// @param mode - The X86 architecture mode to decode for.
+ X86GenericDisassembler(DisassemblerMode mode);
+public:
+ ~X86GenericDisassembler();
+
+ /// getInstruction - See MCDisassembler.
+ bool getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream) const;
+private:
+ DisassemblerMode fMode;
+};
+
+/// X86_16Disassembler - 16-bit X86 disassembler.
+class X86_16Disassembler : public X86GenericDisassembler {
+public:
+ X86_16Disassembler() :
+ X86GenericDisassembler(MODE_16BIT) {
+ }
+};
+
+/// X86_16Disassembler - 32-bit X86 disassembler.
+class X86_32Disassembler : public X86GenericDisassembler {
+public:
+ X86_32Disassembler() :
+ X86GenericDisassembler(MODE_32BIT) {
+ }
+};
+
+/// X86_16Disassembler - 64-bit X86 disassembler.
+class X86_64Disassembler : public X86GenericDisassembler {
+public:
+ X86_64Disassembler() :
+ X86GenericDisassembler(MODE_64BIT) {
+ }
+};
+
+} // namespace X86Disassembler
+
+} // namespace llvm
+
+#endif