aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp')
-rw-r--r--lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp1838
1 files changed, 1838 insertions, 0 deletions
diff --git a/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp b/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
new file mode 100644
index 0000000..804606d
--- /dev/null
+++ b/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
@@ -0,0 +1,1838 @@
+//===-- X86DisassemblerDecoder.c - Disassembler decoder -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the X86 Disassembler.
+// It contains the implementation of the instruction decoder.
+// Documentation for the disassembler can be found in X86Disassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#include <stdarg.h> /* for va_*() */
+#include <stdio.h> /* for vsnprintf() */
+#include <stdlib.h> /* for exit() */
+#include <string.h> /* for memset() */
+
+#include "X86DisassemblerDecoder.h"
+
+using namespace llvm::X86Disassembler;
+
+/// Specifies whether a ModR/M byte is needed and (if so) which
+/// instruction each possible value of the ModR/M byte corresponds to. Once
+/// this information is known, we have narrowed down to a single instruction.
+struct ModRMDecision {
+ uint8_t modrm_type;
+ uint16_t instructionIDs;
+};
+
+/// Specifies which set of ModR/M->instruction tables to look at
+/// given a particular opcode.
+struct OpcodeDecision {
+ ModRMDecision modRMDecisions[256];
+};
+
+/// Specifies which opcode->instruction tables to look at given
+/// a particular context (set of attributes). Since there are many possible
+/// contexts, the decoder first uses CONTEXTS_SYM to determine which context
+/// applies given a specific set of attributes. Hence there are only IC_max
+/// entries in this table, rather than 2^(ATTR_max).
+struct ContextDecision {
+ OpcodeDecision opcodeDecisions[IC_max];
+};
+
+#include "X86GenDisassemblerTables.inc"
+
+#ifndef NDEBUG
+#define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
+#else
+#define debug(s) do { } while (0)
+#endif
+
+
+/*
+ * contextForAttrs - Client for the instruction context table. Takes a set of
+ * attributes and returns the appropriate decode context.
+ *
+ * @param attrMask - Attributes, from the enumeration attributeBits.
+ * @return - The InstructionContext to use when looking up an
+ * an instruction with these attributes.
+ */
+static InstructionContext contextForAttrs(uint16_t attrMask) {
+ return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
+}
+
+/*
+ * modRMRequired - Reads the appropriate instruction table to determine whether
+ * the ModR/M byte is required to decode a particular instruction.
+ *
+ * @param type - The opcode type (i.e., how many bytes it has).
+ * @param insnContext - The context for the instruction, as returned by
+ * contextForAttrs.
+ * @param opcode - The last byte of the instruction's opcode, not counting
+ * ModR/M extensions and escapes.
+ * @return - true if the ModR/M byte is required, false otherwise.
+ */
+static int modRMRequired(OpcodeType type,
+ InstructionContext insnContext,
+ uint16_t opcode) {
+ const struct ContextDecision* decision = nullptr;
+
+ switch (type) {
+ case ONEBYTE:
+ decision = &ONEBYTE_SYM;
+ break;
+ case TWOBYTE:
+ decision = &TWOBYTE_SYM;
+ break;
+ case THREEBYTE_38:
+ decision = &THREEBYTE38_SYM;
+ break;
+ case THREEBYTE_3A:
+ decision = &THREEBYTE3A_SYM;
+ break;
+ case XOP8_MAP:
+ decision = &XOP8_MAP_SYM;
+ break;
+ case XOP9_MAP:
+ decision = &XOP9_MAP_SYM;
+ break;
+ case XOPA_MAP:
+ decision = &XOPA_MAP_SYM;
+ break;
+ }
+
+ return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
+ modrm_type != MODRM_ONEENTRY;
+}
+
+/*
+ * decode - Reads the appropriate instruction table to obtain the unique ID of
+ * an instruction.
+ *
+ * @param type - See modRMRequired().
+ * @param insnContext - See modRMRequired().
+ * @param opcode - See modRMRequired().
+ * @param modRM - The ModR/M byte if required, or any value if not.
+ * @return - The UID of the instruction, or 0 on failure.
+ */
+static InstrUID decode(OpcodeType type,
+ InstructionContext insnContext,
+ uint8_t opcode,
+ uint8_t modRM) {
+ const struct ModRMDecision* dec = nullptr;
+
+ switch (type) {
+ case ONEBYTE:
+ dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case TWOBYTE:
+ dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEBYTE_38:
+ dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEBYTE_3A:
+ dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOP8_MAP:
+ dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOP9_MAP:
+ dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOPA_MAP:
+ dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ }
+
+ switch (dec->modrm_type) {
+ default:
+ debug("Corrupt table! Unknown modrm_type");
+ return 0;
+ case MODRM_ONEENTRY:
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITRM:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+1];
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITREG:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
+ case MODRM_SPLITMISC:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
+ case MODRM_FULL:
+ return modRMTable[dec->instructionIDs+modRM];
+ }
+}
+
+/*
+ * specifierForUID - Given a UID, returns the name and operand specification for
+ * that instruction.
+ *
+ * @param uid - The unique ID for the instruction. This should be returned by
+ * decode(); specifierForUID will not check bounds.
+ * @return - A pointer to the specification for that instruction.
+ */
+static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
+ return &INSTRUCTIONS_SYM[uid];
+}
+
+/*
+ * consumeByte - Uses the reader function provided by the user to consume one
+ * byte from the instruction's memory and advance the cursor.
+ *
+ * @param insn - The instruction with the reader function to use. The cursor
+ * for this instruction is advanced.
+ * @param byte - A pointer to a pre-allocated memory buffer to be populated
+ * with the data read.
+ * @return - 0 if the read was successful; nonzero otherwise.
+ */
+static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
+ int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
+
+ if (!ret)
+ ++(insn->readerCursor);
+
+ return ret;
+}
+
+/*
+ * lookAtByte - Like consumeByte, but does not advance the cursor.
+ *
+ * @param insn - See consumeByte().
+ * @param byte - See consumeByte().
+ * @return - See consumeByte().
+ */
+static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
+ return insn->reader(insn->readerArg, byte, insn->readerCursor);
+}
+
+static void unconsumeByte(struct InternalInstruction* insn) {
+ insn->readerCursor--;
+}
+
+#define CONSUME_FUNC(name, type) \
+ static int name(struct InternalInstruction* insn, type* ptr) { \
+ type combined = 0; \
+ unsigned offset; \
+ for (offset = 0; offset < sizeof(type); ++offset) { \
+ uint8_t byte; \
+ int ret = insn->reader(insn->readerArg, \
+ &byte, \
+ insn->readerCursor + offset); \
+ if (ret) \
+ return ret; \
+ combined = combined | ((uint64_t)byte << (offset * 8)); \
+ } \
+ *ptr = combined; \
+ insn->readerCursor += sizeof(type); \
+ return 0; \
+ }
+
+/*
+ * consume* - Use the reader function provided by the user to consume data
+ * values of various sizes from the instruction's memory and advance the
+ * cursor appropriately. These readers perform endian conversion.
+ *
+ * @param insn - See consumeByte().
+ * @param ptr - A pointer to a pre-allocated memory of appropriate size to
+ * be populated with the data read.
+ * @return - See consumeByte().
+ */
+CONSUME_FUNC(consumeInt8, int8_t)
+CONSUME_FUNC(consumeInt16, int16_t)
+CONSUME_FUNC(consumeInt32, int32_t)
+CONSUME_FUNC(consumeUInt16, uint16_t)
+CONSUME_FUNC(consumeUInt32, uint32_t)
+CONSUME_FUNC(consumeUInt64, uint64_t)
+
+/*
+ * dbgprintf - Uses the logging function provided by the user to log a single
+ * message, typically without a carriage-return.
+ *
+ * @param insn - The instruction containing the logging function.
+ * @param format - See printf().
+ * @param ... - See printf().
+ */
+static void dbgprintf(struct InternalInstruction* insn,
+ const char* format,
+ ...) {
+ char buffer[256];
+ va_list ap;
+
+ if (!insn->dlog)
+ return;
+
+ va_start(ap, format);
+ (void)vsnprintf(buffer, sizeof(buffer), format, ap);
+ va_end(ap);
+
+ insn->dlog(insn->dlogArg, buffer);
+
+ return;
+}
+
+/*
+ * setPrefixPresent - Marks that a particular prefix is present at a particular
+ * location.
+ *
+ * @param insn - The instruction to be marked as having the prefix.
+ * @param prefix - The prefix that is present.
+ * @param location - The location where the prefix is located (in the address
+ * space of the instruction's reader).
+ */
+static void setPrefixPresent(struct InternalInstruction* insn,
+ uint8_t prefix,
+ uint64_t location)
+{
+ insn->prefixPresent[prefix] = 1;
+ insn->prefixLocations[prefix] = location;
+}
+
+/*
+ * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
+ * present at a given location.
+ *
+ * @param insn - The instruction to be queried.
+ * @param prefix - The prefix.
+ * @param location - The location to query.
+ * @return - Whether the prefix is at that location.
+ */
+static bool isPrefixAtLocation(struct InternalInstruction* insn,
+ uint8_t prefix,
+ uint64_t location)
+{
+ if (insn->prefixPresent[prefix] == 1 &&
+ insn->prefixLocations[prefix] == location)
+ return true;
+ else
+ return false;
+}
+
+/*
+ * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
+ * instruction as having them. Also sets the instruction's default operand,
+ * address, and other relevant data sizes to report operands correctly.
+ *
+ * @param insn - The instruction whose prefixes are to be read.
+ * @return - 0 if the instruction could be read until the end of the prefix
+ * bytes, and no prefixes conflicted; nonzero otherwise.
+ */
+static int readPrefixes(struct InternalInstruction* insn) {
+ bool isPrefix = true;
+ bool prefixGroups[4] = { false };
+ uint64_t prefixLocation;
+ uint8_t byte = 0;
+ uint8_t nextByte;
+
+ bool hasAdSize = false;
+ bool hasOpSize = false;
+
+ dbgprintf(insn, "readPrefixes()");
+
+ while (isPrefix) {
+ prefixLocation = insn->readerCursor;
+
+ /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
+ if (consumeByte(insn, &byte))
+ break;
+
+ /*
+ * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
+ * break and let it be disassembled as a normal "instruction".
+ */
+ if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
+ break;
+
+ if (insn->readerCursor - 1 == insn->startLocation
+ && (byte == 0xf2 || byte == 0xf3)
+ && !lookAtByte(insn, &nextByte))
+ {
+ /*
+ * If the byte is 0xf2 or 0xf3, and any of the following conditions are
+ * met:
+ * - it is followed by a LOCK (0xf0) prefix
+ * - it is followed by an xchg instruction
+ * then it should be disassembled as a xacquire/xrelease not repne/rep.
+ */
+ if ((byte == 0xf2 || byte == 0xf3) &&
+ ((nextByte == 0xf0) |
+ ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
+ insn->xAcquireRelease = true;
+ /*
+ * Also if the byte is 0xf3, and the following condition is met:
+ * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
+ * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
+ * then it should be disassembled as an xrelease not rep.
+ */
+ if (byte == 0xf3 &&
+ (nextByte == 0x88 || nextByte == 0x89 ||
+ nextByte == 0xc6 || nextByte == 0xc7))
+ insn->xAcquireRelease = true;
+ if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
+ if (consumeByte(insn, &nextByte))
+ return -1;
+ if (lookAtByte(insn, &nextByte))
+ return -1;
+ unconsumeByte(insn);
+ }
+ if (nextByte != 0x0f && nextByte != 0x90)
+ break;
+ }
+
+ switch (byte) {
+ case 0xf0: /* LOCK */
+ case 0xf2: /* REPNE/REPNZ */
+ case 0xf3: /* REP or REPE/REPZ */
+ if (prefixGroups[0])
+ dbgprintf(insn, "Redundant Group 1 prefix");
+ prefixGroups[0] = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ case 0x2e: /* CS segment override -OR- Branch not taken */
+ case 0x36: /* SS segment override -OR- Branch taken */
+ case 0x3e: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ switch (byte) {
+ case 0x2e:
+ insn->segmentOverride = SEG_OVERRIDE_CS;
+ break;
+ case 0x36:
+ insn->segmentOverride = SEG_OVERRIDE_SS;
+ break;
+ case 0x3e:
+ insn->segmentOverride = SEG_OVERRIDE_DS;
+ break;
+ case 0x26:
+ insn->segmentOverride = SEG_OVERRIDE_ES;
+ break;
+ case 0x64:
+ insn->segmentOverride = SEG_OVERRIDE_FS;
+ break;
+ case 0x65:
+ insn->segmentOverride = SEG_OVERRIDE_GS;
+ break;
+ default:
+ debug("Unhandled override");
+ return -1;
+ }
+ if (prefixGroups[1])
+ dbgprintf(insn, "Redundant Group 2 prefix");
+ prefixGroups[1] = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ case 0x66: /* Operand-size override */
+ if (prefixGroups[2])
+ dbgprintf(insn, "Redundant Group 3 prefix");
+ prefixGroups[2] = true;
+ hasOpSize = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ case 0x67: /* Address-size override */
+ if (prefixGroups[3])
+ dbgprintf(insn, "Redundant Group 4 prefix");
+ prefixGroups[3] = true;
+ hasAdSize = true;
+ setPrefixPresent(insn, byte, prefixLocation);
+ break;
+ default: /* Not a prefix byte */
+ isPrefix = false;
+ break;
+ }
+
+ if (isPrefix)
+ dbgprintf(insn, "Found prefix 0x%hhx", byte);
+ }
+
+ insn->vectorExtensionType = TYPE_NO_VEX_XOP;
+
+ if (byte == 0x62) {
+ uint8_t byte1, byte2;
+
+ if (consumeByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
+ return -1;
+ }
+
+ if (lookAtByte(insn, &byte2)) {
+ dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+
+ if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
+ ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
+ insn->vectorExtensionType = TYPE_EVEX;
+ }
+ else {
+ unconsumeByte(insn); /* unconsume byte1 */
+ unconsumeByte(insn); /* unconsume byte */
+ insn->necessaryPrefixLocation = insn->readerCursor - 2;
+ }
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ insn->vectorExtensionPrefix[0] = byte;
+ insn->vectorExtensionPrefix[1] = byte1;
+ if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
+ dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+ if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
+ dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
+ return -1;
+ }
+
+ /* We simulate the REX prefix for simplicity's sake */
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
+ }
+ }
+ else if (byte == 0xc4) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
+ insn->vectorExtensionType = TYPE_VEX_3B;
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+
+ if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+ consumeByte(insn, &insn->vectorExtensionPrefix[2]);
+
+ /* We simulate the REX prefix for simplicity's sake */
+
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2]);
+ }
+ }
+ else if (byte == 0xc5) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
+ insn->vectorExtensionType = TYPE_VEX_2B;
+ }
+ else {
+ unconsumeByte(insn);
+ }
+
+ if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
+ }
+
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1]))
+ {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ hasOpSize = true;
+ break;
+ }
+
+ dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0],
+ insn->vectorExtensionPrefix[1]);
+ }
+ }
+ else if (byte == 0x8f) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ dbgprintf(insn, "Couldn't read second byte of XOP");
+ return -1;
+ }
+
+ if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
+ insn->vectorExtensionType = TYPE_XOP;
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+
+ if (insn->vectorExtensionType == TYPE_XOP) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+ consumeByte(insn, &insn->vectorExtensionPrefix[2]);
+
+ /* We simulate the REX prefix for simplicity's sake */
+
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2]))
+ {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ hasOpSize = true;
+ break;
+ }
+
+ dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2]);
+ }
+ }
+ else {
+ if (insn->mode == MODE_64BIT) {
+ if ((byte & 0xf0) == 0x40) {
+ uint8_t opcodeByte;
+
+ if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
+ dbgprintf(insn, "Redundant REX prefix");
+ return -1;
+ }
+
+ insn->rexPrefix = byte;
+ insn->necessaryPrefixLocation = insn->readerCursor - 2;
+
+ dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
+ } else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ } else {
+ unconsumeByte(insn);
+ insn->necessaryPrefixLocation = insn->readerCursor - 1;
+ }
+ }
+
+ if (insn->mode == MODE_16BIT) {
+ insn->registerSize = (hasOpSize ? 4 : 2);
+ insn->addressSize = (hasAdSize ? 4 : 2);
+ insn->displacementSize = (hasAdSize ? 4 : 2);
+ insn->immediateSize = (hasOpSize ? 4 : 2);
+ } else if (insn->mode == MODE_32BIT) {
+ insn->registerSize = (hasOpSize ? 2 : 4);
+ insn->addressSize = (hasAdSize ? 2 : 4);
+ insn->displacementSize = (hasAdSize ? 2 : 4);
+ insn->immediateSize = (hasOpSize ? 2 : 4);
+ } else if (insn->mode == MODE_64BIT) {
+ if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
+ insn->registerSize = 8;
+ insn->addressSize = (hasAdSize ? 4 : 8);
+ insn->displacementSize = 4;
+ insn->immediateSize = 4;
+ } else if (insn->rexPrefix) {
+ insn->registerSize = (hasOpSize ? 2 : 4);
+ insn->addressSize = (hasAdSize ? 4 : 8);
+ insn->displacementSize = (hasOpSize ? 2 : 4);
+ insn->immediateSize = (hasOpSize ? 2 : 4);
+ } else {
+ insn->registerSize = (hasOpSize ? 2 : 4);
+ insn->addressSize = (hasAdSize ? 4 : 8);
+ insn->displacementSize = (hasOpSize ? 2 : 4);
+ insn->immediateSize = (hasOpSize ? 2 : 4);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
+ * extended or escape opcodes).
+ *
+ * @param insn - The instruction whose opcode is to be read.
+ * @return - 0 if the opcode could be read successfully; nonzero otherwise.
+ */
+static int readOpcode(struct InternalInstruction* insn) {
+ /* Determine the length of the primary opcode */
+
+ uint8_t current;
+
+ dbgprintf(insn, "readOpcode()");
+
+ insn->opcodeType = ONEBYTE;
+
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ {
+ switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
+ default:
+ dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
+ mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
+ mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ }
+ else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
+ mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case XOP_MAP_SELECT_8:
+ insn->opcodeType = XOP8_MAP;
+ return consumeByte(insn, &insn->opcode);
+ case XOP_MAP_SELECT_9:
+ insn->opcodeType = XOP9_MAP;
+ return consumeByte(insn, &insn->opcode);
+ case XOP_MAP_SELECT_A:
+ insn->opcodeType = XOPA_MAP;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ if (current == 0x0f) {
+ dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ if (current == 0x38) {
+ dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEBYTE_38;
+ } else if (current == 0x3a) {
+ dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEBYTE_3A;
+ } else {
+ dbgprintf(insn, "Didn't find a three-byte escape prefix");
+
+ insn->opcodeType = TWOBYTE;
+ }
+ }
+
+ /*
+ * At this point we have consumed the full opcode.
+ * Anything we consume from here on must be unconsumed.
+ */
+
+ insn->opcode = current;
+
+ return 0;
+}
+
+static int readModRM(struct InternalInstruction* insn);
+
+/*
+ * getIDWithAttrMask - Determines the ID of an instruction, consuming
+ * the ModR/M byte as appropriate for extended and escape opcodes,
+ * and using a supplied attribute mask.
+ *
+ * @param instructionID - A pointer whose target is filled in with the ID of the
+ * instruction.
+ * @param insn - The instruction whose ID is to be determined.
+ * @param attrMask - The attribute mask to search.
+ * @return - 0 if the ModR/M could be read when needed or was not
+ * needed; nonzero otherwise.
+ */
+static int getIDWithAttrMask(uint16_t* instructionID,
+ struct InternalInstruction* insn,
+ uint16_t attrMask) {
+ bool hasModRMExtension;
+
+ InstructionContext instructionClass = contextForAttrs(attrMask);
+
+ hasModRMExtension = modRMRequired(insn->opcodeType,
+ instructionClass,
+ insn->opcode);
+
+ if (hasModRMExtension) {
+ if (readModRM(insn))
+ return -1;
+
+ *instructionID = decode(insn->opcodeType,
+ instructionClass,
+ insn->opcode,
+ insn->modRM);
+ } else {
+ *instructionID = decode(insn->opcodeType,
+ instructionClass,
+ insn->opcode,
+ 0);
+ }
+
+ return 0;
+}
+
+/*
+ * is16BitEquivalent - Determines whether two instruction names refer to
+ * equivalent instructions but one is 16-bit whereas the other is not.
+ *
+ * @param orig - The instruction that is not 16-bit
+ * @param equiv - The instruction that is 16-bit
+ */
+static bool is16BitEquivalent(const char* orig, const char* equiv) {
+ off_t i;
+
+ for (i = 0;; i++) {
+ if (orig[i] == '\0' && equiv[i] == '\0')
+ return true;
+ if (orig[i] == '\0' || equiv[i] == '\0')
+ return false;
+ if (orig[i] != equiv[i]) {
+ if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
+ continue;
+ if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
+ continue;
+ if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
+ continue;
+ return false;
+ }
+ }
+}
+
+/*
+ * getID - Determines the ID of an instruction, consuming the ModR/M byte as
+ * appropriate for extended and escape opcodes. Determines the attributes and
+ * context for the instruction before doing so.
+ *
+ * @param insn - The instruction whose ID is to be determined.
+ * @return - 0 if the ModR/M could be read when needed or was not needed;
+ * nonzero otherwise.
+ */
+static int getID(struct InternalInstruction* insn, const void *miiArg) {
+ uint16_t attrMask;
+ uint16_t instructionID;
+
+ dbgprintf(insn, "getID()");
+
+ attrMask = ATTR_NONE;
+
+ if (insn->mode == MODE_64BIT)
+ attrMask |= ATTR_64BIT;
+
+ if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
+ attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXKZ;
+ if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXB;
+ if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXK;
+ if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL;
+ if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL2;
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ }
+ else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
+ attrMask |= ATTR_VEXL;
+ }
+ else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ }
+ else {
+ return -1;
+ }
+ }
+ else {
+ if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_OPSIZE;
+ else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_ADSIZE;
+ else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_XS;
+ else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
+ attrMask |= ATTR_XD;
+ }
+
+ if (insn->rexPrefix & 0x08)
+ attrMask |= ATTR_REXW;
+
+ if (getIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+
+ /*
+ * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
+ * of the AdSize prefix is inverted w.r.t. 32-bit mode.
+ */
+ if (insn->mode == MODE_16BIT && insn->opcode == 0xE3) {
+ const struct InstructionSpecifier *spec;
+ spec = specifierForUID(instructionID);
+
+ /*
+ * Check for Ii8PCRel instructions. We could alternatively do a
+ * string-compare on the names, but this is probably cheaper.
+ */
+ if (x86OperandSets[spec->operands][0].type == TYPE_REL8) {
+ attrMask ^= ATTR_ADSIZE;
+ if (getIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+ }
+ }
+
+ /* The following clauses compensate for limitations of the tables. */
+
+ if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
+ !(attrMask & ATTR_OPSIZE)) {
+ /*
+ * The instruction tables make no distinction between instructions that
+ * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
+ * particular spot (i.e., many MMX operations). In general we're
+ * conservative, but in the specific case where OpSize is present but not
+ * in the right place we check if there's a 16-bit operation.
+ */
+
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithOpsize;
+ const char *specName, *specWithOpSizeName;
+
+ spec = specifierForUID(instructionID);
+
+ if (getIDWithAttrMask(&instructionIDWithOpsize,
+ insn,
+ attrMask | ATTR_OPSIZE)) {
+ /*
+ * ModRM required with OpSize but not present; give up and return version
+ * without OpSize set
+ */
+
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ return 0;
+ }
+
+ specName = GetInstrName(instructionID, miiArg);
+ specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
+
+ if (is16BitEquivalent(specName, specWithOpSizeName) &&
+ (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
+ insn->instructionID = instructionIDWithOpsize;
+ insn->spec = specifierForUID(instructionIDWithOpsize);
+ } else {
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ }
+ return 0;
+ }
+
+ if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
+ insn->rexPrefix & 0x01) {
+ /*
+ * NOOP shouldn't decode as NOOP if REX.b is set. Instead
+ * it should decode as XCHG %r8, %eax.
+ */
+
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithNewOpcode;
+ const struct InstructionSpecifier *specWithNewOpcode;
+
+ spec = specifierForUID(instructionID);
+
+ /* Borrow opcode from one of the other XCHGar opcodes */
+ insn->opcode = 0x91;
+
+ if (getIDWithAttrMask(&instructionIDWithNewOpcode,
+ insn,
+ attrMask)) {
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ return 0;
+ }
+
+ specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
+
+ /* Change back */
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionIDWithNewOpcode;
+ insn->spec = specWithNewOpcode;
+
+ return 0;
+ }
+
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(insn->instructionID);
+
+ return 0;
+}
+
+/*
+ * readSIB - Consumes the SIB byte to determine addressing information for an
+ * instruction.
+ *
+ * @param insn - The instruction whose SIB byte is to be read.
+ * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
+ */
+static int readSIB(struct InternalInstruction* insn) {
+ SIBIndex sibIndexBase = SIB_INDEX_NONE;
+ SIBBase sibBaseBase = SIB_BASE_NONE;
+ uint8_t index, base;
+
+ dbgprintf(insn, "readSIB()");
+
+ if (insn->consumedSIB)
+ return 0;
+
+ insn->consumedSIB = true;
+
+ switch (insn->addressSize) {
+ case 2:
+ dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
+ return -1;
+ case 4:
+ sibIndexBase = SIB_INDEX_EAX;
+ sibBaseBase = SIB_BASE_EAX;
+ break;
+ case 8:
+ sibIndexBase = SIB_INDEX_RAX;
+ sibBaseBase = SIB_BASE_RAX;
+ break;
+ }
+
+ if (consumeByte(insn, &insn->sib))
+ return -1;
+
+ index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
+
+ switch (index) {
+ case 0x4:
+ insn->sibIndex = SIB_INDEX_NONE;
+ break;
+ default:
+ insn->sibIndex = (SIBIndex)(sibIndexBase + index);
+ if (insn->sibIndex == SIB_INDEX_sib ||
+ insn->sibIndex == SIB_INDEX_sib64)
+ insn->sibIndex = SIB_INDEX_NONE;
+ break;
+ }
+
+ switch (scaleFromSIB(insn->sib)) {
+ case 0:
+ insn->sibScale = 1;
+ break;
+ case 1:
+ insn->sibScale = 2;
+ break;
+ case 2:
+ insn->sibScale = 4;
+ break;
+ case 3:
+ insn->sibScale = 8;
+ break;
+ }
+
+ base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
+
+ switch (base) {
+ case 0x5:
+ case 0xd:
+ switch (modFromModRM(insn->modRM)) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = SIB_BASE_NONE;
+ break;
+ case 0x1:
+ insn->eaDisplacement = EA_DISP_8;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x2:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x3:
+ debug("Cannot have Mod = 0b11 and a SIB byte");
+ return -1;
+ }
+ break;
+ default:
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readDisplacement - Consumes the displacement of an instruction.
+ *
+ * @param insn - The instruction whose displacement is to be read.
+ * @return - 0 if the displacement byte was successfully read; nonzero
+ * otherwise.
+ */
+static int readDisplacement(struct InternalInstruction* insn) {
+ int8_t d8;
+ int16_t d16;
+ int32_t d32;
+
+ dbgprintf(insn, "readDisplacement()");
+
+ if (insn->consumedDisplacement)
+ return 0;
+
+ insn->consumedDisplacement = true;
+ insn->displacementOffset = insn->readerCursor - insn->startLocation;
+
+ switch (insn->eaDisplacement) {
+ case EA_DISP_NONE:
+ insn->consumedDisplacement = false;
+ break;
+ case EA_DISP_8:
+ if (consumeInt8(insn, &d8))
+ return -1;
+ insn->displacement = d8;
+ break;
+ case EA_DISP_16:
+ if (consumeInt16(insn, &d16))
+ return -1;
+ insn->displacement = d16;
+ break;
+ case EA_DISP_32:
+ if (consumeInt32(insn, &d32))
+ return -1;
+ insn->displacement = d32;
+ break;
+ }
+
+ insn->consumedDisplacement = true;
+ return 0;
+}
+
+/*
+ * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
+ * displacement) for an instruction and interprets it.
+ *
+ * @param insn - The instruction whose addressing information is to be read.
+ * @return - 0 if the information was successfully read; nonzero otherwise.
+ */
+static int readModRM(struct InternalInstruction* insn) {
+ uint8_t mod, rm, reg;
+
+ dbgprintf(insn, "readModRM()");
+
+ if (insn->consumedModRM)
+ return 0;
+
+ if (consumeByte(insn, &insn->modRM))
+ return -1;
+ insn->consumedModRM = true;
+
+ mod = modFromModRM(insn->modRM);
+ rm = rmFromModRM(insn->modRM);
+ reg = regFromModRM(insn->modRM);
+
+ /*
+ * This goes by insn->registerSize to pick the correct register, which messes
+ * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
+ * fixupReg().
+ */
+ switch (insn->registerSize) {
+ case 2:
+ insn->regBase = MODRM_REG_AX;
+ insn->eaRegBase = EA_REG_AX;
+ break;
+ case 4:
+ insn->regBase = MODRM_REG_EAX;
+ insn->eaRegBase = EA_REG_EAX;
+ break;
+ case 8:
+ insn->regBase = MODRM_REG_RAX;
+ insn->eaRegBase = EA_REG_RAX;
+ break;
+ }
+
+ reg |= rFromREX(insn->rexPrefix) << 3;
+ rm |= bFromREX(insn->rexPrefix) << 3;
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ }
+
+ insn->reg = (Reg)(insn->regBase + reg);
+
+ switch (insn->addressSize) {
+ case 2:
+ insn->eaBaseBase = EA_BASE_BX_SI;
+
+ switch (mod) {
+ case 0x0:
+ if (rm == 0x6) {
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ } else {
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_NONE;
+ }
+ break;
+ case 0x1:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_8;
+ insn->displacementSize = 1;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x2:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x3:
+ insn->eaBase = (EABase)(insn->eaRegBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ case 4:
+ case 8:
+ insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
+
+ switch (mod) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
+ switch (rm) {
+ case 0x14:
+ case 0x4:
+ case 0xc: /* in case REXW.b is set */
+ insn->eaBase = (insn->addressSize == 4 ?
+ EA_BASE_sib : EA_BASE_sib64);
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ case 0x5:
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_32;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ break;
+ }
+ break;
+ case 0x1:
+ insn->displacementSize = 1;
+ /* FALLTHROUGH */
+ case 0x2:
+ insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
+ switch (rm) {
+ case 0x14:
+ case 0x4:
+ case 0xc: /* in case REXW.b is set */
+ insn->eaBase = EA_BASE_sib;
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(insn->eaBaseBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ case 0x3:
+ insn->eaDisplacement = EA_DISP_NONE;
+ insn->eaBase = (EABase)(insn->eaRegBase + rm);
+ break;
+ }
+ break;
+ } /* switch (insn->addressSize) */
+
+ return 0;
+}
+
+#define GENERIC_FIXUP_FUNC(name, base, prefix) \
+ static uint8_t name(struct InternalInstruction *insn, \
+ OperandType type, \
+ uint8_t index, \
+ uint8_t *valid) { \
+ *valid = 1; \
+ switch (type) { \
+ default: \
+ debug("Unhandled register type"); \
+ *valid = 0; \
+ return 0; \
+ case TYPE_Rv: \
+ return base + index; \
+ case TYPE_R8: \
+ if (insn->rexPrefix && \
+ index >= 4 && index <= 7) { \
+ return prefix##_SPL + (index - 4); \
+ } else { \
+ return prefix##_AL + index; \
+ } \
+ case TYPE_R16: \
+ return prefix##_AX + index; \
+ case TYPE_R32: \
+ return prefix##_EAX + index; \
+ case TYPE_R64: \
+ return prefix##_RAX + index; \
+ case TYPE_XMM512: \
+ return prefix##_ZMM0 + index; \
+ case TYPE_XMM256: \
+ return prefix##_YMM0 + index; \
+ case TYPE_XMM128: \
+ case TYPE_XMM64: \
+ case TYPE_XMM32: \
+ case TYPE_XMM: \
+ return prefix##_XMM0 + index; \
+ case TYPE_VK1: \
+ case TYPE_VK8: \
+ case TYPE_VK16: \
+ return prefix##_K0 + index; \
+ case TYPE_MM64: \
+ case TYPE_MM32: \
+ case TYPE_MM: \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_MM0 + index; \
+ case TYPE_SEGMENTREG: \
+ if (index > 5) \
+ *valid = 0; \
+ return prefix##_ES + index; \
+ case TYPE_DEBUGREG: \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_DR0 + index; \
+ case TYPE_CONTROLREG: \
+ if (index > 8) \
+ *valid = 0; \
+ return prefix##_CR0 + index; \
+ } \
+ }
+
+/*
+ * fixup*Value - Consults an operand type to determine the meaning of the
+ * reg or R/M field. If the operand is an XMM operand, for example, an
+ * operand would be XMM0 instead of AX, which readModRM() would otherwise
+ * misinterpret it as.
+ *
+ * @param insn - The instruction containing the operand.
+ * @param type - The operand type.
+ * @param index - The existing value of the field as reported by readModRM().
+ * @param valid - The address of a uint8_t. The target is set to 1 if the
+ * field is valid for the register class; 0 if not.
+ * @return - The proper value.
+ */
+GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
+GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
+
+/*
+ * fixupReg - Consults an operand specifier to determine which of the
+ * fixup*Value functions to use in correcting readModRM()'ss interpretation.
+ *
+ * @param insn - See fixup*Value().
+ * @param op - The operand specifier.
+ * @return - 0 if fixup was successful; -1 if the register returned was
+ * invalid for its class.
+ */
+static int fixupReg(struct InternalInstruction *insn,
+ const struct OperandSpecifier *op) {
+ uint8_t valid;
+
+ dbgprintf(insn, "fixupReg()");
+
+ switch ((OperandEncoding)op->encoding) {
+ default:
+ debug("Expected a REG or R/M encoding in fixupReg");
+ return -1;
+ case ENCODING_VVVV:
+ insn->vvvv = (Reg)fixupRegValue(insn,
+ (OperandType)op->type,
+ insn->vvvv,
+ &valid);
+ if (!valid)
+ return -1;
+ break;
+ case ENCODING_REG:
+ insn->reg = (Reg)fixupRegValue(insn,
+ (OperandType)op->type,
+ insn->reg - insn->regBase,
+ &valid);
+ if (!valid)
+ return -1;
+ break;
+ case ENCODING_RM:
+ if (insn->eaBase >= insn->eaRegBase) {
+ insn->eaBase = (EABase)fixupRMValue(insn,
+ (OperandType)op->type,
+ insn->eaBase - insn->eaRegBase,
+ &valid);
+ if (!valid)
+ return -1;
+ }
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readOpcodeRegister - Reads an operand from the opcode field of an
+ * instruction and interprets it appropriately given the operand width.
+ * Handles AddRegFrm instructions.
+ *
+ * @param insn - the instruction whose opcode field is to be read.
+ * @param size - The width (in bytes) of the register being specified.
+ * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
+ * RAX.
+ * @return - 0 on success; nonzero otherwise.
+ */
+static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
+ dbgprintf(insn, "readOpcodeRegister()");
+
+ if (size == 0)
+ size = insn->registerSize;
+
+ switch (size) {
+ case 1:
+ insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ if (insn->rexPrefix &&
+ insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
+ insn->opcodeRegister < MODRM_REG_AL + 0x8) {
+ insn->opcodeRegister = (Reg)(MODRM_REG_SPL
+ + (insn->opcodeRegister - MODRM_REG_AL - 4));
+ }
+
+ break;
+ case 2:
+ insn->opcodeRegister = (Reg)(MODRM_REG_AX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ case 4:
+ insn->opcodeRegister = (Reg)(MODRM_REG_EAX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ case 8:
+ insn->opcodeRegister = (Reg)(MODRM_REG_RAX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readImmediate - Consumes an immediate operand from an instruction, given the
+ * desired operand size.
+ *
+ * @param insn - The instruction whose operand is to be read.
+ * @param size - The width (in bytes) of the operand.
+ * @return - 0 if the immediate was successfully consumed; nonzero
+ * otherwise.
+ */
+static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
+ uint8_t imm8;
+ uint16_t imm16;
+ uint32_t imm32;
+ uint64_t imm64;
+
+ dbgprintf(insn, "readImmediate()");
+
+ if (insn->numImmediatesConsumed == 2) {
+ debug("Already consumed two immediates");
+ return -1;
+ }
+
+ if (size == 0)
+ size = insn->immediateSize;
+ else
+ insn->immediateSize = size;
+ insn->immediateOffset = insn->readerCursor - insn->startLocation;
+
+ switch (size) {
+ case 1:
+ if (consumeByte(insn, &imm8))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm8;
+ break;
+ case 2:
+ if (consumeUInt16(insn, &imm16))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm16;
+ break;
+ case 4:
+ if (consumeUInt32(insn, &imm32))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm32;
+ break;
+ case 8:
+ if (consumeUInt64(insn, &imm64))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm64;
+ break;
+ }
+
+ insn->numImmediatesConsumed++;
+
+ return 0;
+}
+
+/*
+ * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
+ *
+ * @param insn - The instruction whose operand is to be read.
+ * @return - 0 if the vvvv was successfully consumed; nonzero
+ * otherwise.
+ */
+static int readVVVV(struct InternalInstruction* insn) {
+ dbgprintf(insn, "readVVVV()");
+
+ int vvvv;
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ vvvv = vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]);
+ else if (insn->vectorExtensionType == TYPE_VEX_3B)
+ vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
+ else if (insn->vectorExtensionType == TYPE_VEX_2B)
+ vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
+ else if (insn->vectorExtensionType == TYPE_XOP)
+ vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
+ else
+ return -1;
+
+ if (insn->mode != MODE_64BIT)
+ vvvv &= 0x7;
+
+ insn->vvvv = static_cast<Reg>(vvvv);
+ return 0;
+}
+
+/*
+ * readMaskRegister - Reads an mask register from the opcode field of an
+ * instruction.
+ *
+ * @param insn - The instruction whose opcode field is to be read.
+ * @return - 0 on success; nonzero otherwise.
+ */
+static int readMaskRegister(struct InternalInstruction* insn) {
+ dbgprintf(insn, "readMaskRegister()");
+
+ if (insn->vectorExtensionType != TYPE_EVEX)
+ return -1;
+
+ insn->writemask =
+ static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
+ return 0;
+}
+
+/*
+ * readOperands - Consults the specifier for an instruction and consumes all
+ * operands for that instruction, interpreting them as it goes.
+ *
+ * @param insn - The instruction whose operands are to be read and interpreted.
+ * @return - 0 if all operands could be read; nonzero otherwise.
+ */
+static int readOperands(struct InternalInstruction* insn) {
+ int hasVVVV, needVVVV;
+ int sawRegImm = 0;
+
+ dbgprintf(insn, "readOperands()");
+
+ /* If non-zero vvvv specified, need to make sure one of the operands
+ uses it. */
+ hasVVVV = !readVVVV(insn);
+ needVVVV = hasVVVV && (insn->vvvv != 0);
+
+ for (const auto &Op : x86OperandSets[insn->spec->operands]) {
+ switch (Op.encoding) {
+ case ENCODING_NONE:
+ case ENCODING_SI:
+ case ENCODING_DI:
+ break;
+ case ENCODING_REG:
+ case ENCODING_RM:
+ if (readModRM(insn))
+ return -1;
+ if (fixupReg(insn, &Op))
+ return -1;
+ break;
+ case ENCODING_CB:
+ case ENCODING_CW:
+ case ENCODING_CD:
+ case ENCODING_CP:
+ case ENCODING_CO:
+ case ENCODING_CT:
+ dbgprintf(insn, "We currently don't hande code-offset encodings");
+ return -1;
+ case ENCODING_IB:
+ if (sawRegImm) {
+ /* Saw a register immediate so don't read again and instead split the
+ previous immediate. FIXME: This is a hack. */
+ insn->immediates[insn->numImmediatesConsumed] =
+ insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
+ ++insn->numImmediatesConsumed;
+ break;
+ }
+ if (readImmediate(insn, 1))
+ return -1;
+ if (Op.type == TYPE_IMM3 &&
+ insn->immediates[insn->numImmediatesConsumed - 1] > 7)
+ return -1;
+ if (Op.type == TYPE_IMM5 &&
+ insn->immediates[insn->numImmediatesConsumed - 1] > 31)
+ return -1;
+ if (Op.type == TYPE_XMM128 ||
+ Op.type == TYPE_XMM256)
+ sawRegImm = 1;
+ break;
+ case ENCODING_IW:
+ if (readImmediate(insn, 2))
+ return -1;
+ break;
+ case ENCODING_ID:
+ if (readImmediate(insn, 4))
+ return -1;
+ break;
+ case ENCODING_IO:
+ if (readImmediate(insn, 8))
+ return -1;
+ break;
+ case ENCODING_Iv:
+ if (readImmediate(insn, insn->immediateSize))
+ return -1;
+ break;
+ case ENCODING_Ia:
+ if (readImmediate(insn, insn->addressSize))
+ return -1;
+ break;
+ case ENCODING_RB:
+ if (readOpcodeRegister(insn, 1))
+ return -1;
+ break;
+ case ENCODING_RW:
+ if (readOpcodeRegister(insn, 2))
+ return -1;
+ break;
+ case ENCODING_RD:
+ if (readOpcodeRegister(insn, 4))
+ return -1;
+ break;
+ case ENCODING_RO:
+ if (readOpcodeRegister(insn, 8))
+ return -1;
+ break;
+ case ENCODING_Rv:
+ if (readOpcodeRegister(insn, 0))
+ return -1;
+ break;
+ case ENCODING_FP:
+ break;
+ case ENCODING_VVVV:
+ needVVVV = 0; /* Mark that we have found a VVVV operand. */
+ if (!hasVVVV)
+ return -1;
+ if (fixupReg(insn, &Op))
+ return -1;
+ break;
+ case ENCODING_WRITEMASK:
+ if (readMaskRegister(insn))
+ return -1;
+ break;
+ case ENCODING_DUP:
+ break;
+ default:
+ dbgprintf(insn, "Encountered an operand with an unknown encoding.");
+ return -1;
+ }
+ }
+
+ /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
+ if (needVVVV) return -1;
+
+ return 0;
+}
+
+/*
+ * decodeInstruction - Reads and interprets a full instruction provided by the
+ * user.
+ *
+ * @param insn - A pointer to the instruction to be populated. Must be
+ * pre-allocated.
+ * @param reader - The function to be used to read the instruction's bytes.
+ * @param readerArg - A generic argument to be passed to the reader to store
+ * any internal state.
+ * @param logger - If non-NULL, the function to be used to write log messages
+ * and warnings.
+ * @param loggerArg - A generic argument to be passed to the logger to store
+ * any internal state.
+ * @param startLoc - The address (in the reader's address space) of the first
+ * byte in the instruction.
+ * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
+ * decode the instruction in.
+ * @return - 0 if the instruction's memory could be read; nonzero if
+ * not.
+ */
+int llvm::X86Disassembler::decodeInstruction(
+ struct InternalInstruction *insn, byteReader_t reader,
+ const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
+ uint64_t startLoc, DisassemblerMode mode) {
+ memset(insn, 0, sizeof(struct InternalInstruction));
+
+ insn->reader = reader;
+ insn->readerArg = readerArg;
+ insn->dlog = logger;
+ insn->dlogArg = loggerArg;
+ insn->startLocation = startLoc;
+ insn->readerCursor = startLoc;
+ insn->mode = mode;
+ insn->numImmediatesConsumed = 0;
+
+ if (readPrefixes(insn) ||
+ readOpcode(insn) ||
+ getID(insn, miiArg) ||
+ insn->instructionID == 0 ||
+ readOperands(insn))
+ return -1;
+
+ insn->operands = x86OperandSets[insn->spec->operands];
+
+ insn->length = insn->readerCursor - insn->startLocation;
+
+ dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
+ startLoc, insn->readerCursor, insn->length);
+
+ if (insn->length > 15)
+ dbgprintf(insn, "Instruction exceeds 15-byte limit");
+
+ return 0;
+}