diff options
Diffstat (limited to 'lib/Target/X86/X86InstrInfo.cpp')
-rw-r--r-- | lib/Target/X86/X86InstrInfo.cpp | 262 |
1 files changed, 166 insertions, 96 deletions
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp index 6450f2a..6993577 100644 --- a/lib/Target/X86/X86InstrInfo.cpp +++ b/lib/Target/X86/X86InstrInfo.cpp @@ -36,11 +36,13 @@ #include "llvm/Target/TargetOptions.h" #include <limits> +using namespace llvm; + +#define DEBUG_TYPE "x86-instr-info" + #define GET_INSTRINFO_CTOR_DTOR #include "X86GenInstrInfo.inc" -using namespace llvm; - static cl::opt<bool> NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions")); @@ -1511,12 +1513,14 @@ X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, int &FrameIndex) const { - if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && - MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && - MI->getOperand(Op+1).getImm() == 1 && - MI->getOperand(Op+2).getReg() == 0 && - MI->getOperand(Op+3).getImm() == 0) { - FrameIndex = MI->getOperand(Op).getIndex(); + if (MI->getOperand(Op+X86::AddrBaseReg).isFI() && + MI->getOperand(Op+X86::AddrScaleAmt).isImm() && + MI->getOperand(Op+X86::AddrIndexReg).isReg() && + MI->getOperand(Op+X86::AddrDisp).isImm() && + MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 && + MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 && + MI->getOperand(Op+X86::AddrDisp).getImm() == 0) { + FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex(); return true; } return false; @@ -1680,15 +1684,16 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: { // Loads from constant pools are trivially rematerializable. - if (MI->getOperand(1).isReg() && - MI->getOperand(2).isImm() && - MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && + if (MI->getOperand(1+X86::AddrBaseReg).isReg() && + MI->getOperand(1+X86::AddrScaleAmt).isImm() && + MI->getOperand(1+X86::AddrIndexReg).isReg() && + MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && MI->isInvariantLoad(AA)) { - unsigned BaseReg = MI->getOperand(1).getReg(); + unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); if (BaseReg == 0 || BaseReg == X86::RIP) return true; // Allow re-materialization of PIC load. - if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) + if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal()) return false; const MachineFunction &MF = *MI->getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); @@ -1699,13 +1704,14 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, case X86::LEA32r: case X86::LEA64r: { - if (MI->getOperand(2).isImm() && - MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && - !MI->getOperand(4).isReg()) { + if (MI->getOperand(1+X86::AddrScaleAmt).isImm() && + MI->getOperand(1+X86::AddrIndexReg).isReg() && + MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 && + !MI->getOperand(1+X86::AddrDisp).isReg()) { // lea fi#, lea GV, etc. are all rematerializable. - if (!MI->getOperand(1).isReg()) + if (!MI->getOperand(1+X86::AddrBaseReg).isReg()) return true; - unsigned BaseReg = MI->getOperand(1).getReg(); + unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg(); if (BaseReg == 0) return true; // Allow re-materialization of lea PICBase + x. @@ -1722,12 +1728,8 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, return true; } -/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that -/// would clobber the EFLAGS condition register. Note the result may be -/// conservative. If it cannot definitely determine the safety after visiting -/// a few instructions in each direction it assumes it's not safe. -static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, - MachineBasicBlock::iterator I) { +bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) const { MachineBasicBlock::iterator E = MBB.end(); // For compile time consideration, if we are not able to determine the @@ -1998,7 +2000,7 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, unsigned Src2 = MI->getOperand(2).getReg(); bool isKill2 = MI->getOperand(2).isKill(); unsigned leaInReg2 = 0; - MachineInstr *InsMI2 = 0; + MachineInstr *InsMI2 = nullptr; if (Src == Src2) { // ADD16rr %reg1028<kill>, %reg1028 // just a single insert_subreg. @@ -2062,14 +2064,14 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, // convert them to equivalent lea if the condition code register def's // are dead! if (hasLiveCondCodeDef(MI)) - return 0; + return nullptr; MachineFunction &MF = *MI->getParent()->getParent(); // All instructions input are two-addr instructions. Get the known operands. const MachineOperand &Dest = MI->getOperand(0); const MachineOperand &Src = MI->getOperand(1); - MachineInstr *NewMI = NULL; + MachineInstr *NewMI = nullptr; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have better subtarget support, enable the 16-bit LEA generation here. // 16-bit LEA is also slow on Core2. @@ -2080,11 +2082,11 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, switch (MIOpc) { case X86::SHUFPSrri: { assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); - if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; + if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return nullptr; unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); - if (B != C) return 0; + if (B != C) return nullptr; unsigned M = MI->getOperand(3).getImm(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) .addOperand(Dest).addOperand(Src).addImm(M); @@ -2092,11 +2094,11 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, } case X86::SHUFPDrri: { assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!"); - if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; + if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return nullptr; unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); - if (B != C) return 0; + if (B != C) return nullptr; unsigned M = MI->getOperand(3).getImm(); // Convert to PSHUFD mask. @@ -2109,13 +2111,13 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::SHL64ri: { assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); - if (!isTruncatedShiftCountForLEA(ShAmt)) return 0; + if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && !MF.getRegInfo().constrainRegClass(Src.getReg(), &X86::GR64_NOSPRegClass)) - return 0; + return nullptr; NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) .addOperand(Dest) @@ -2125,7 +2127,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::SHL32ri: { assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); - if (!isTruncatedShiftCountForLEA(ShAmt)) return 0; + if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; @@ -2135,7 +2137,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp)) - return 0; + return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addOperand(Dest) @@ -2151,10 +2153,10 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::SHL16ri: { assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); - if (!isTruncatedShiftCountForLEA(ShAmt)) return 0; + if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; if (DisableLEA16) - return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr; NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest) .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); @@ -2163,7 +2165,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, default: { switch (MIOpc) { - default: return 0; + default: return nullptr; case X86::INC64r: case X86::INC32r: case X86::INC64_32r: { @@ -2175,7 +2177,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp)) - return 0; + return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addOperand(Dest) @@ -2189,7 +2191,8 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::INC16r: case X86::INC64_16r: if (DisableLEA16) - return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) + : nullptr; assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest).addOperand(Src), 1); @@ -2206,7 +2209,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp)) - return 0; + return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addOperand(Dest) @@ -2221,7 +2224,8 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::DEC16r: case X86::DEC64_16r: if (DisableLEA16) - return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) + : nullptr; assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest).addOperand(Src), -1); @@ -2242,7 +2246,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp)) - return 0; + return nullptr; const MachineOperand &Src2 = MI->getOperand(2); bool isKill2, isUndef2; @@ -2250,7 +2254,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, SrcReg2, isKill2, isUndef2, ImplicitOp2)) - return 0; + return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addOperand(Dest); @@ -2272,7 +2276,8 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::ADD16rr: case X86::ADD16rr_DB: { if (DisableLEA16) - return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) + : nullptr; assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Src2 = MI->getOperand(2).getReg(); bool isKill2 = MI->getOperand(2).isKill(); @@ -2311,7 +2316,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp)) - return 0; + return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addOperand(Dest) @@ -2327,7 +2332,8 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::ADD16ri_DB: case X86::ADD16ri8_DB: if (DisableLEA16) - return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) + : nullptr; assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addOperand(Dest).addOperand(Src), @@ -2337,7 +2343,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, } } - if (!NewMI) return 0; + if (!NewMI) return nullptr; if (LV) { // Update live variables if (Src.isKill()) @@ -2789,11 +2795,11 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, std::next(I)->eraseFromParent(); Cond.clear(); - FBB = 0; + FBB = nullptr; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { - TBB = 0; + TBB = nullptr; I->eraseFromParent(); I = MBB.end(); UnCondBrIter = MBB.end(); @@ -3549,6 +3555,26 @@ inline static bool isDefConvertible(MachineInstr *MI) { } } +/// isUseDefConvertible - check whether the use can be converted +/// to remove a comparison against zero. +static X86::CondCode isUseDefConvertible(MachineInstr *MI) { + switch (MI->getOpcode()) { + default: return X86::COND_INVALID; + case X86::LZCNT16rr: case X86::LZCNT16rm: + case X86::LZCNT32rr: case X86::LZCNT32rm: + case X86::LZCNT64rr: case X86::LZCNT64rm: + return X86::COND_B; + case X86::POPCNT16rr:case X86::POPCNT16rm: + case X86::POPCNT32rr:case X86::POPCNT32rm: + case X86::POPCNT64rr:case X86::POPCNT64rm: + return X86::COND_E; + case X86::TZCNT16rr: case X86::TZCNT16rm: + case X86::TZCNT32rr: case X86::TZCNT32rm: + case X86::TZCNT64rr: case X86::TZCNT64rm: + return X86::COND_B; + } +} + /// optimizeCompareInstr - Check if there exists an earlier instruction that /// operates on the same source operands and sets flags in the same way as /// Compare; remove Compare if possible. @@ -3615,13 +3641,38 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, // If we are comparing against zero, check whether we can use MI to update // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); - if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() || - !isDefConvertible(MI))) + if (IsCmpZero && MI->getParent() != CmpInstr->getParent()) return false; + // If we have a use of the source register between the def and our compare + // instruction we can eliminate the compare iff the use sets EFLAGS in the + // right way. + bool ShouldUpdateCC = false; + X86::CondCode NewCC = X86::COND_INVALID; + if (IsCmpZero && !isDefConvertible(MI)) { + // Scan forward from the use until we hit the use we're looking for or the + // compare instruction. + for (MachineBasicBlock::iterator J = MI;; ++J) { + // Do we have a convertible instruction? + NewCC = isUseDefConvertible(J); + if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && + J->getOperand(1).getReg() == SrcReg) { + assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); + ShouldUpdateCC = true; // Update CC later on. + // This is not a def of SrcReg, but still a def of EFLAGS. Keep going + // with the new def. + MI = Def = J; + break; + } + + if (J == I) + return false; + } + } + // We are searching for an earlier instruction that can make CmpInstr // redundant and that instruction will be saved in Sub. - MachineInstr *Sub = NULL; + MachineInstr *Sub = nullptr; const TargetRegisterInfo *TRI = &getRegisterInfo(); // We iterate backward, starting from the instruction before CmpInstr and @@ -3634,7 +3685,7 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, RE = CmpInstr->getParent() == MI->getParent() ? MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : CmpInstr->getParent()->rend(); - MachineInstr *Movr0Inst = 0; + MachineInstr *Movr0Inst = nullptr; for (; RI != RE; ++RI) { MachineInstr *Instr = &*RI; // Check whether CmpInstr can be made redundant by the current instruction. @@ -3716,13 +3767,28 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, // CF and OF are used, we can't perform this optimization. return false; } + + // If we're updating the condition code check if we have to reverse the + // condition. + if (ShouldUpdateCC) + switch (OldCC) { + default: + return false; + case X86::COND_E: + break; + case X86::COND_NE: + NewCC = GetOppositeBranchCondition(NewCC); + break; + } } else if (IsSwapped) { // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. // We swap the condition code and synthesize the new opcode. - X86::CondCode NewCC = getSwappedCondition(OldCC); + NewCC = getSwappedCondition(OldCC); if (NewCC == X86::COND_INVALID) return false; + } + if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) { // Synthesize the new opcode. bool HasMemoryOperand = Instr.hasOneMemOperand(); unsigned NewOpc; @@ -3809,19 +3875,19 @@ optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, unsigned &FoldAsLoadDefReg, MachineInstr *&DefMI) const { if (FoldAsLoadDefReg == 0) - return 0; + return nullptr; // To be conservative, if there exists another load, clear the load candidate. if (MI->mayLoad()) { FoldAsLoadDefReg = 0; - return 0; + return nullptr; } // Check whether we can move DefMI here. DefMI = MRI->getVRegDef(FoldAsLoadDefReg); assert(DefMI); bool SawStore = false; - if (!DefMI->isSafeToMove(this, 0, SawStore)) - return 0; + if (!DefMI->isSafeToMove(this, nullptr, SawStore)) + return nullptr; // We try to commute MI if possible. unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1; @@ -3838,12 +3904,12 @@ optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, continue; // Do not fold if we have a subreg use or a def or multiple uses. if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) - return 0; + return nullptr; SrcOperandId = i; FoundSrcOperand = true; } - if (!FoundSrcOperand) return 0; + if (!FoundSrcOperand) return nullptr; // Check whether we can fold the def into SrcOperandId. SmallVector<unsigned, 8> Ops; @@ -3857,22 +3923,22 @@ optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, if (Idx == 1) { // MI was changed but it didn't help, commute it back! commuteInstruction(MI, false); - return 0; + return nullptr; } // Check whether we can commute MI and enable folding. if (MI->isCommutable()) { MachineInstr *NewMI = commuteInstruction(MI, false); // Unable to commute. - if (!NewMI) return 0; + if (!NewMI) return nullptr; if (NewMI != MI) { // New instruction. It doesn't need to be kept. NewMI->eraseFromParent(); - return 0; + return nullptr; } } } - return 0; + return nullptr; } /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr @@ -4007,7 +4073,8 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, unsigned i, const SmallVectorImpl<MachineOperand> &MOs, unsigned Size, unsigned Align) const { - const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; + const DenseMap<unsigned, + std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr; bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect(); bool isTwoAddrFold = false; @@ -4015,7 +4082,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // when X86Subtarget is Atom. if (isCallRegIndirect && (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) { - return NULL; + return nullptr; } unsigned NumOps = MI->getDesc().getNumOperands(); @@ -4026,9 +4093,9 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (MI->getOpcode() == X86::ADD32ri && MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) - return NULL; + return nullptr; - MachineInstr *NewMI = NULL; + MachineInstr *NewMI = nullptr; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. @@ -4063,7 +4130,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, unsigned Opcode = I->second.first; unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; if (Align < MinAlign) - return NULL; + return nullptr; bool NarrowToMOV32rm = false; if (Size) { unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize(); @@ -4071,12 +4138,12 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) - return NULL; + return nullptr; // If this is a 64-bit load, but the spill slot is 32, then we can do // a 32-bit load which is implicitly zero-extended. This likely is due // to liveintervalanalysis remat'ing a load from stack slot. if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) - return NULL; + return nullptr; Opcode = X86::MOV32rm; NarrowToMOV32rm = true; } @@ -4105,7 +4172,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // No fusion if (PrintFailedFusing && !MI->isCopy()) dbgs() << "We failed to fuse operand " << i << " in " << *MI; - return NULL; + return nullptr; } /// hasPartialRegUpdate - Return true for all instructions that only update @@ -4270,14 +4337,14 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl<unsigned> &Ops, int FrameIndex) const { // Check switch flag - if (NoFusing) return NULL; + if (NoFusing) return nullptr; // Unless optimizing for size, don't fold to avoid partial // register update stalls if (!MF.getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && hasPartialRegUpdate(MI->getOpcode())) - return 0; + return nullptr; const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Size = MFI->getObjectSize(FrameIndex); @@ -4290,7 +4357,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, unsigned NewOpc = 0; unsigned RCSize = 0; switch (MI->getOpcode()) { - default: return NULL; + default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; @@ -4299,12 +4366,12 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Size < RCSize) - return NULL; + return nullptr; // Change to CMPXXri r, 0 first. MI->setDesc(get(NewOpc)); MI->getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) - return NULL; + return nullptr; SmallVector<MachineOperand,4> MOs; MOs.push_back(MachineOperand::CreateFI(FrameIndex)); @@ -4322,14 +4389,14 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); // Check switch flag - if (NoFusing) return NULL; + if (NoFusing) return nullptr; // Unless optimizing for size, don't fold to avoid partial // register update stalls if (!MF.getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && hasPartialRegUpdate(MI->getOpcode())) - return 0; + return nullptr; // Determine the alignment of the load. unsigned Alignment = 0; @@ -4352,12 +4419,12 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, Alignment = 4; break; default: - return 0; + return nullptr; } if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; switch (MI->getOpcode()) { - default: return NULL; + default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; @@ -4367,12 +4434,12 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MI->setDesc(get(NewOpc)); MI->getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) - return NULL; + return nullptr; // Make sure the subregisters match. // Otherwise we risk changing the size of the load. if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) - return NULL; + return nullptr; SmallVector<MachineOperand,X86::AddrNumOperands> MOs; switch (LoadMI->getOpcode()) { @@ -4388,7 +4455,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // Medium and large mode can't fold loads this way. if (TM.getCodeModel() != CodeModel::Small && TM.getCodeModel() != CodeModel::Kernel) - return NULL; + return nullptr; // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; @@ -4400,7 +4467,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. - return NULL; + return nullptr; } // Create a constant-pool entry. @@ -4436,14 +4503,14 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, > 4) // These instructions only load 32 bits, we can't fold them if the // destination register is wider than 32 bits (4 bytes). - return NULL; + return nullptr; if ((LoadMI->getOpcode() == X86::MOVSDrm || LoadMI->getOpcode() == X86::VMOVSDrm) && MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize() > 8) // These instructions only load 64 bits, we can't fold them if the // destination register is wider than 64 bits (8 bytes). - return NULL; + return nullptr; // Folding a normal load. Just copy the load's address operands. for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) @@ -4489,7 +4556,8 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. - const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; + const DenseMap<unsigned, + std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr; if (isTwoAddr && NumOps >= 2 && OpNum < 2) { OpcodeTablePtr = &RegOp2MemOpTable2Addr; } else if (OpNum == 0) { // If operand 0 @@ -4671,7 +4739,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, AddrOps.push_back(Chain); // Emit the load instruction. - SDNode *Load = 0; + SDNode *Load = nullptr; if (FoldedLoad) { EVT VT = *RC->vt_begin(); std::pair<MachineInstr::mmo_iterator, @@ -4696,7 +4764,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, // Emit the data processing instruction. std::vector<EVT> VTs; - const TargetRegisterClass *DstRC = 0; + const TargetRegisterClass *DstRC = nullptr; if (MCID.getNumDefs() > 0) { DstRC = getRegClass(MCID, 0, &RI, MF); VTs.push_back(*DstRC->vt_begin()); @@ -5190,14 +5258,14 @@ static const uint16_t *lookup(unsigned opcode, unsigned domain) { for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) if (ReplaceableInstrs[i][domain-1] == opcode) return ReplaceableInstrs[i]; - return 0; + return nullptr; } static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i) if (ReplaceableInstrsAVX2[i][domain-1] == opcode) return ReplaceableInstrsAVX2[i]; - return 0; + return nullptr; } std::pair<uint16_t, uint16_t> @@ -5327,8 +5395,10 @@ namespace { const X86TargetMachine *TM = static_cast<const X86TargetMachine *>(&MF.getTarget()); - assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && - "X86-64 PIC uses RIP relative addressing"); + // Don't do anything if this is 64-bit as 64-bit PIC + // uses RIP relative addressing. + if (TM->getSubtarget<X86Subtarget>().is64Bit()) + return false; // Only emit a global base reg in PIC mode. if (TM->getRelocationModel() != Reloc::PIC_) @@ -5383,7 +5453,7 @@ namespace { char CGBR::ID = 0; FunctionPass* -llvm::createGlobalBaseRegPass() { return new CGBR(); } +llvm::createX86GlobalBaseRegPass() { return new CGBR(); } namespace { struct LDTLSCleanup : public MachineFunctionPass { |