diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineInternal.h')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineInternal.h | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineInternal.h b/lib/Transforms/InstCombine/InstCombineInternal.h new file mode 100644 index 0000000..2fd5318 --- /dev/null +++ b/lib/Transforms/InstCombine/InstCombineInternal.h @@ -0,0 +1,529 @@ +//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// +/// This file provides internal interfaces used to implement the InstCombine. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H +#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H + +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetFolder.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Pass.h" +#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" + +#define DEBUG_TYPE "instcombine" + +namespace llvm { +class CallSite; +class DataLayout; +class DominatorTree; +class TargetLibraryInfo; +class DbgDeclareInst; +class MemIntrinsic; +class MemSetInst; + +/// \brief Specific patterns of select instructions we can match. +enum SelectPatternFlavor { + SPF_UNKNOWN = 0, + SPF_SMIN, + SPF_UMIN, + SPF_SMAX, + SPF_UMAX, + SPF_ABS, + SPF_NABS +}; + +/// \brief Assign a complexity or rank value to LLVM Values. +/// +/// This routine maps IR values to various complexity ranks: +/// 0 -> undef +/// 1 -> Constants +/// 2 -> Other non-instructions +/// 3 -> Arguments +/// 3 -> Unary operations +/// 4 -> Other instructions +static inline unsigned getComplexity(Value *V) { + if (isa<Instruction>(V)) { + if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) || + BinaryOperator::isNot(V)) + return 3; + return 4; + } + if (isa<Argument>(V)) + return 3; + return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; +} + +/// \brief Add one to a Constant +static inline Constant *AddOne(Constant *C) { + return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); +} +/// \brief Subtract one from a Constant +static inline Constant *SubOne(Constant *C) { + return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); +} + +/// \brief Return true if the specified value is free to invert (apply ~ to). +/// This happens in cases where the ~ can be eliminated. If WillInvertAllUses +/// is true, work under the assumption that the caller intends to remove all +/// uses of V and only keep uses of ~V. +/// +static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) { + // ~(~(X)) -> X. + if (BinaryOperator::isNot(V)) + return true; + + // Constants can be considered to be not'ed values. + if (isa<ConstantInt>(V)) + return true; + + // Compares can be inverted if all of their uses are being modified to use the + // ~V. + if (isa<CmpInst>(V)) + return WillInvertAllUses; + + // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1 + // - Constant) - A` if we are willing to invert all of the uses. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) + if (BO->getOpcode() == Instruction::Add || + BO->getOpcode() == Instruction::Sub) + if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1))) + return WillInvertAllUses; + + return false; +} + +/// \brief An IRBuilder inserter that adds new instructions to the instcombine +/// worklist. +class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter + : public IRBuilderDefaultInserter<true> { + InstCombineWorklist &Worklist; + AssumptionCache *AC; + +public: + InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC) + : Worklist(WL), AC(AC) {} + + void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, + BasicBlock::iterator InsertPt) const { + IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt); + Worklist.Add(I); + + using namespace llvm::PatternMatch; + if (match(I, m_Intrinsic<Intrinsic::assume>())) + AC->registerAssumption(cast<CallInst>(I)); + } +}; + +/// \brief The core instruction combiner logic. +/// +/// This class provides both the logic to recursively visit instructions and +/// combine them, as well as the pass infrastructure for running this as part +/// of the LLVM pass pipeline. +class LLVM_LIBRARY_VISIBILITY InstCombiner + : public InstVisitor<InstCombiner, Instruction *> { + // FIXME: These members shouldn't be public. +public: + /// \brief A worklist of the instructions that need to be simplified. + InstCombineWorklist &Worklist; + + /// \brief An IRBuilder that automatically inserts new instructions into the + /// worklist. + typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy; + BuilderTy *Builder; + +private: + // Mode in which we are running the combiner. + const bool MinimizeSize; + + // Required analyses. + // FIXME: These can never be null and should be references. + AssumptionCache *AC; + TargetLibraryInfo *TLI; + DominatorTree *DT; + + // Optional analyses. When non-null, these can both be used to do better + // combining and will be updated to reflect any changes. + const DataLayout *DL; + LoopInfo *LI; + + bool MadeIRChange; + +public: + InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder, + bool MinimizeSize, AssumptionCache *AC, TargetLibraryInfo *TLI, + DominatorTree *DT, const DataLayout *DL, LoopInfo *LI) + : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize), + AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {} + + /// \brief Run the combiner over the entire worklist until it is empty. + /// + /// \returns true if the IR is changed. + bool run(); + + AssumptionCache *getAssumptionCache() const { return AC; } + + const DataLayout *getDataLayout() const { return DL; } + + DominatorTree *getDominatorTree() const { return DT; } + + LoopInfo *getLoopInfo() const { return LI; } + + TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; } + + // Visitation implementation - Implement instruction combining for different + // instruction types. The semantics are as follows: + // Return Value: + // null - No change was made + // I - Change was made, I is still valid, I may be dead though + // otherwise - Change was made, replace I with returned instruction + // + Instruction *visitAdd(BinaryOperator &I); + Instruction *visitFAdd(BinaryOperator &I); + Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); + Instruction *visitSub(BinaryOperator &I); + Instruction *visitFSub(BinaryOperator &I); + Instruction *visitMul(BinaryOperator &I); + Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C, + Instruction *InsertBefore); + Instruction *visitFMul(BinaryOperator &I); + Instruction *visitURem(BinaryOperator &I); + Instruction *visitSRem(BinaryOperator &I); + Instruction *visitFRem(BinaryOperator &I); + bool SimplifyDivRemOfSelect(BinaryOperator &I); + Instruction *commonRemTransforms(BinaryOperator &I); + Instruction *commonIRemTransforms(BinaryOperator &I); + Instruction *commonDivTransforms(BinaryOperator &I); + Instruction *commonIDivTransforms(BinaryOperator &I); + Instruction *visitUDiv(BinaryOperator &I); + Instruction *visitSDiv(BinaryOperator &I); + Instruction *visitFDiv(BinaryOperator &I); + Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted); + Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS); + Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS); + Instruction *visitAnd(BinaryOperator &I); + Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI); + Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS); + Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A, + Value *B, Value *C); + Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A, + Value *B, Value *C); + Instruction *visitOr(BinaryOperator &I); + Instruction *visitXor(BinaryOperator &I); + Instruction *visitShl(BinaryOperator &I); + Instruction *visitAShr(BinaryOperator &I); + Instruction *visitLShr(BinaryOperator &I); + Instruction *commonShiftTransforms(BinaryOperator &I); + Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, + Constant *RHSC); + Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, + GlobalVariable *GV, CmpInst &ICI, + ConstantInt *AndCst = nullptr); + Instruction *visitFCmpInst(FCmpInst &I); + Instruction *visitICmpInst(ICmpInst &I); + Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); + Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS, + ConstantInt *RHS); + Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, + ConstantInt *DivRHS); + Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI, + ConstantInt *DivRHS); + Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, + ConstantInt *CI1, ConstantInt *CI2); + Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A, + ConstantInt *CI1, ConstantInt *CI2); + Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI, + ICmpInst::Predicate Pred); + Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, + ICmpInst::Predicate Cond, Instruction &I); + Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1, + BinaryOperator &I); + Instruction *commonCastTransforms(CastInst &CI); + Instruction *commonPointerCastTransforms(CastInst &CI); + Instruction *visitTrunc(TruncInst &CI); + Instruction *visitZExt(ZExtInst &CI); + Instruction *visitSExt(SExtInst &CI); + Instruction *visitFPTrunc(FPTruncInst &CI); + Instruction *visitFPExt(CastInst &CI); + Instruction *visitFPToUI(FPToUIInst &FI); + Instruction *visitFPToSI(FPToSIInst &FI); + Instruction *visitUIToFP(CastInst &CI); + Instruction *visitSIToFP(CastInst &CI); + Instruction *visitPtrToInt(PtrToIntInst &CI); + Instruction *visitIntToPtr(IntToPtrInst &CI); + Instruction *visitBitCast(BitCastInst &CI); + Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI); + Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); + Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *); + Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, + Value *A, Value *B, Instruction &Outer, + SelectPatternFlavor SPF2, Value *C); + Instruction *FoldItoFPtoI(Instruction &FI); + Instruction *visitSelectInst(SelectInst &SI); + Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); + Instruction *visitCallInst(CallInst &CI); + Instruction *visitInvokeInst(InvokeInst &II); + + Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); + Instruction *visitPHINode(PHINode &PN); + Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); + Instruction *visitAllocaInst(AllocaInst &AI); + Instruction *visitAllocSite(Instruction &FI); + Instruction *visitFree(CallInst &FI); + Instruction *visitLoadInst(LoadInst &LI); + Instruction *visitStoreInst(StoreInst &SI); + Instruction *visitBranchInst(BranchInst &BI); + Instruction *visitSwitchInst(SwitchInst &SI); + Instruction *visitReturnInst(ReturnInst &RI); + Instruction *visitInsertValueInst(InsertValueInst &IV); + Instruction *visitInsertElementInst(InsertElementInst &IE); + Instruction *visitExtractElementInst(ExtractElementInst &EI); + Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); + Instruction *visitExtractValueInst(ExtractValueInst &EV); + Instruction *visitLandingPadInst(LandingPadInst &LI); + + // visitInstruction - Specify what to return for unhandled instructions... + Instruction *visitInstruction(Instruction &I) { return nullptr; } + + // True when DB dominates all uses of DI execpt UI. + // UI must be in the same block as DI. + // The routine checks that the DI parent and DB are different. + bool dominatesAllUses(const Instruction *DI, const Instruction *UI, + const BasicBlock *DB) const; + + // Replace select with select operand SIOpd in SI-ICmp sequence when possible + bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, + const unsigned SIOpd); + +private: + bool ShouldChangeType(Type *From, Type *To) const; + Value *dyn_castNegVal(Value *V) const; + Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const; + Type *FindElementAtOffset(Type *PtrTy, int64_t Offset, + SmallVectorImpl<Value *> &NewIndices); + Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); + + /// \brief Classify whether a cast is worth optimizing. + /// + /// Returns true if the cast from "V to Ty" actually results in any code + /// being generated and is interesting to optimize out. If the cast can be + /// eliminated by some other simple transformation, we prefer to do the + /// simplification first. + bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V, + Type *Ty); + + Instruction *visitCallSite(CallSite CS); + Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL); + bool transformConstExprCastCall(CallSite CS); + Instruction *transformCallThroughTrampoline(CallSite CS, + IntrinsicInst *Tramp); + Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, + bool DoXform = true); + Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); + bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction *CxtI); + bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI); + bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI); + bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI); + Value *EmitGEPOffset(User *GEP); + Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); + Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask); + +public: + /// \brief Inserts an instruction \p New before instruction \p Old + /// + /// Also adds the new instruction to the worklist and returns \p New so that + /// it is suitable for use as the return from the visitation patterns. + Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { + assert(New && !New->getParent() && + "New instruction already inserted into a basic block!"); + BasicBlock *BB = Old.getParent(); + BB->getInstList().insert(&Old, New); // Insert inst + Worklist.Add(New); + return New; + } + + /// \brief Same as InsertNewInstBefore, but also sets the debug loc. + Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { + New->setDebugLoc(Old.getDebugLoc()); + return InsertNewInstBefore(New, Old); + } + + /// \brief A combiner-aware RAUW-like routine. + /// + /// This method is to be used when an instruction is found to be dead, + /// replacable with another preexisting expression. Here we add all uses of + /// I to the worklist, replace all uses of I with the new value, then return + /// I, so that the inst combiner will know that I was modified. + Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { + Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. + + // If we are replacing the instruction with itself, this must be in a + // segment of unreachable code, so just clobber the instruction. + if (&I == V) + V = UndefValue::get(I.getType()); + + DEBUG(dbgs() << "IC: Replacing " << I << "\n" + << " with " << *V << '\n'); + + I.replaceAllUsesWith(V); + return &I; + } + + /// Creates a result tuple for an overflow intrinsic \p II with a given + /// \p Result and a constant \p Overflow value. If \p ReUseName is true the + /// \p Result's name is taken from \p II. + Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result, + bool Overflow, bool ReUseName = true) { + if (ReUseName) + Result->takeName(II); + Constant *V[] = {UndefValue::get(Result->getType()), + Overflow ? Builder->getTrue() : Builder->getFalse()}; + StructType *ST = cast<StructType>(II->getType()); + Constant *Struct = ConstantStruct::get(ST, V); + return InsertValueInst::Create(Struct, Result, 0); + } + + /// \brief Combiner aware instruction erasure. + /// + /// When dealing with an instruction that has side effects or produces a void + /// value, we can't rely on DCE to delete the instruction. Instead, visit + /// methods should return the value returned by this function. + Instruction *EraseInstFromFunction(Instruction &I) { + DEBUG(dbgs() << "IC: ERASE " << I << '\n'); + + assert(I.use_empty() && "Cannot erase instruction that is used!"); + // Make sure that we reprocess all operands now that we reduced their + // use counts. + if (I.getNumOperands() < 8) { + for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) + if (Instruction *Op = dyn_cast<Instruction>(*i)) + Worklist.Add(Op); + } + Worklist.Remove(&I); + I.eraseFromParent(); + MadeIRChange = true; + return nullptr; // Don't do anything with FI + } + + void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + unsigned Depth = 0, Instruction *CxtI = nullptr) const { + return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI, + DT); + } + + bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0, + Instruction *CxtI = nullptr) const { + return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT); + } + unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0, + Instruction *CxtI = nullptr) const { + return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT); + } + void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + unsigned Depth = 0, Instruction *CxtI = nullptr) const { + return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI, + DT); + } + OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS, + const Instruction *CxtI) { + return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT); + } + OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, + const Instruction *CxtI) { + return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT); + } + +private: + /// \brief Performs a few simplifications for operators which are associative + /// or commutative. + bool SimplifyAssociativeOrCommutative(BinaryOperator &I); + + /// \brief Tries to simplify binary operations which some other binary + /// operation distributes over. + /// + /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)" + /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A + /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified + /// value, or null if it didn't simplify. + Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); + + /// \brief Attempts to replace V with a simpler value based on the demanded + /// bits. + Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero, + APInt &KnownOne, unsigned Depth, + Instruction *CxtI = nullptr); + bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero, + APInt &KnownOne, unsigned Depth = 0); + /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded + /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. + Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl, + APInt DemandedMask, APInt &KnownZero, + APInt &KnownOne); + + /// \brief Tries to simplify operands to an integer instruction based on its + /// demanded bits. + bool SimplifyDemandedInstructionBits(Instruction &Inst); + + Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, + APInt &UndefElts, unsigned Depth = 0); + + Value *SimplifyVectorOp(BinaryOperator &Inst); + Value *SimplifyBSwap(BinaryOperator &Inst); + + // FoldOpIntoPhi - Given a binary operator, cast instruction, or select + // which has a PHI node as operand #0, see if we can fold the instruction + // into the PHI (which is only possible if all operands to the PHI are + // constants). + // + Instruction *FoldOpIntoPhi(Instruction &I); + + /// \brief Try to rotate an operation below a PHI node, using PHI nodes for + /// its operands. + Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); + Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); + Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); + Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); + + Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, + ConstantInt *AndRHS, BinaryOperator &TheAnd); + + Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, + bool isSub, Instruction &I); + Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned, + bool Inside); + Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); + Instruction *MatchBSwap(BinaryOperator &I); + bool SimplifyStoreAtEndOfBlock(StoreInst &SI); + Instruction *SimplifyMemTransfer(MemIntrinsic *MI); + Instruction *SimplifyMemSet(MemSetInst *MI); + + Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); + + /// \brief Returns a value X such that Val = X * Scale, or null if none. + /// + /// If the multiplication is known not to overflow then NoSignedWrap is set. + Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); +}; + +} // end namespace llvm. + +#undef DEBUG_TYPE + +#endif |