aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine/InstCombineInternal.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineInternal.h')
-rw-r--r--lib/Transforms/InstCombine/InstCombineInternal.h529
1 files changed, 529 insertions, 0 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineInternal.h b/lib/Transforms/InstCombine/InstCombineInternal.h
new file mode 100644
index 0000000..2fd5318
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineInternal.h
@@ -0,0 +1,529 @@
+//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file provides internal interfaces used to implement the InstCombine.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
+#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
+
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetFolder.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Pass.h"
+#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+
+#define DEBUG_TYPE "instcombine"
+
+namespace llvm {
+class CallSite;
+class DataLayout;
+class DominatorTree;
+class TargetLibraryInfo;
+class DbgDeclareInst;
+class MemIntrinsic;
+class MemSetInst;
+
+/// \brief Specific patterns of select instructions we can match.
+enum SelectPatternFlavor {
+ SPF_UNKNOWN = 0,
+ SPF_SMIN,
+ SPF_UMIN,
+ SPF_SMAX,
+ SPF_UMAX,
+ SPF_ABS,
+ SPF_NABS
+};
+
+/// \brief Assign a complexity or rank value to LLVM Values.
+///
+/// This routine maps IR values to various complexity ranks:
+/// 0 -> undef
+/// 1 -> Constants
+/// 2 -> Other non-instructions
+/// 3 -> Arguments
+/// 3 -> Unary operations
+/// 4 -> Other instructions
+static inline unsigned getComplexity(Value *V) {
+ if (isa<Instruction>(V)) {
+ if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
+ BinaryOperator::isNot(V))
+ return 3;
+ return 4;
+ }
+ if (isa<Argument>(V))
+ return 3;
+ return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
+}
+
+/// \brief Add one to a Constant
+static inline Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// \brief Subtract one from a Constant
+static inline Constant *SubOne(Constant *C) {
+ return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
+}
+
+/// \brief Return true if the specified value is free to invert (apply ~ to).
+/// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
+/// is true, work under the assumption that the caller intends to remove all
+/// uses of V and only keep uses of ~V.
+///
+static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
+ // ~(~(X)) -> X.
+ if (BinaryOperator::isNot(V))
+ return true;
+
+ // Constants can be considered to be not'ed values.
+ if (isa<ConstantInt>(V))
+ return true;
+
+ // Compares can be inverted if all of their uses are being modified to use the
+ // ~V.
+ if (isa<CmpInst>(V))
+ return WillInvertAllUses;
+
+ // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
+ // - Constant) - A` if we are willing to invert all of the uses.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
+ if (BO->getOpcode() == Instruction::Add ||
+ BO->getOpcode() == Instruction::Sub)
+ if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
+ return WillInvertAllUses;
+
+ return false;
+}
+
+/// \brief An IRBuilder inserter that adds new instructions to the instcombine
+/// worklist.
+class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
+ : public IRBuilderDefaultInserter<true> {
+ InstCombineWorklist &Worklist;
+ AssumptionCache *AC;
+
+public:
+ InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
+ : Worklist(WL), AC(AC) {}
+
+ void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
+ BasicBlock::iterator InsertPt) const {
+ IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
+ Worklist.Add(I);
+
+ using namespace llvm::PatternMatch;
+ if (match(I, m_Intrinsic<Intrinsic::assume>()))
+ AC->registerAssumption(cast<CallInst>(I));
+ }
+};
+
+/// \brief The core instruction combiner logic.
+///
+/// This class provides both the logic to recursively visit instructions and
+/// combine them, as well as the pass infrastructure for running this as part
+/// of the LLVM pass pipeline.
+class LLVM_LIBRARY_VISIBILITY InstCombiner
+ : public InstVisitor<InstCombiner, Instruction *> {
+ // FIXME: These members shouldn't be public.
+public:
+ /// \brief A worklist of the instructions that need to be simplified.
+ InstCombineWorklist &Worklist;
+
+ /// \brief An IRBuilder that automatically inserts new instructions into the
+ /// worklist.
+ typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
+ BuilderTy *Builder;
+
+private:
+ // Mode in which we are running the combiner.
+ const bool MinimizeSize;
+
+ // Required analyses.
+ // FIXME: These can never be null and should be references.
+ AssumptionCache *AC;
+ TargetLibraryInfo *TLI;
+ DominatorTree *DT;
+
+ // Optional analyses. When non-null, these can both be used to do better
+ // combining and will be updated to reflect any changes.
+ const DataLayout *DL;
+ LoopInfo *LI;
+
+ bool MadeIRChange;
+
+public:
+ InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
+ bool MinimizeSize, AssumptionCache *AC, TargetLibraryInfo *TLI,
+ DominatorTree *DT, const DataLayout *DL, LoopInfo *LI)
+ : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
+ AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
+
+ /// \brief Run the combiner over the entire worklist until it is empty.
+ ///
+ /// \returns true if the IR is changed.
+ bool run();
+
+ AssumptionCache *getAssumptionCache() const { return AC; }
+
+ const DataLayout *getDataLayout() const { return DL; }
+
+ DominatorTree *getDominatorTree() const { return DT; }
+
+ LoopInfo *getLoopInfo() const { return LI; }
+
+ TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
+
+ // Visitation implementation - Implement instruction combining for different
+ // instruction types. The semantics are as follows:
+ // Return Value:
+ // null - No change was made
+ // I - Change was made, I is still valid, I may be dead though
+ // otherwise - Change was made, replace I with returned instruction
+ //
+ Instruction *visitAdd(BinaryOperator &I);
+ Instruction *visitFAdd(BinaryOperator &I);
+ Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
+ Instruction *visitSub(BinaryOperator &I);
+ Instruction *visitFSub(BinaryOperator &I);
+ Instruction *visitMul(BinaryOperator &I);
+ Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
+ Instruction *InsertBefore);
+ Instruction *visitFMul(BinaryOperator &I);
+ Instruction *visitURem(BinaryOperator &I);
+ Instruction *visitSRem(BinaryOperator &I);
+ Instruction *visitFRem(BinaryOperator &I);
+ bool SimplifyDivRemOfSelect(BinaryOperator &I);
+ Instruction *commonRemTransforms(BinaryOperator &I);
+ Instruction *commonIRemTransforms(BinaryOperator &I);
+ Instruction *commonDivTransforms(BinaryOperator &I);
+ Instruction *commonIDivTransforms(BinaryOperator &I);
+ Instruction *visitUDiv(BinaryOperator &I);
+ Instruction *visitSDiv(BinaryOperator &I);
+ Instruction *visitFDiv(BinaryOperator &I);
+ Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
+ Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
+ Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
+ Instruction *visitAnd(BinaryOperator &I);
+ Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
+ Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
+ Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
+ Value *B, Value *C);
+ Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
+ Value *B, Value *C);
+ Instruction *visitOr(BinaryOperator &I);
+ Instruction *visitXor(BinaryOperator &I);
+ Instruction *visitShl(BinaryOperator &I);
+ Instruction *visitAShr(BinaryOperator &I);
+ Instruction *visitLShr(BinaryOperator &I);
+ Instruction *commonShiftTransforms(BinaryOperator &I);
+ Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
+ Constant *RHSC);
+ Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
+ GlobalVariable *GV, CmpInst &ICI,
+ ConstantInt *AndCst = nullptr);
+ Instruction *visitFCmpInst(FCmpInst &I);
+ Instruction *visitICmpInst(ICmpInst &I);
+ Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
+ Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
+ ConstantInt *RHS);
+ Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS);
+ Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS);
+ Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1, ConstantInt *CI2);
+ Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1, ConstantInt *CI2);
+ Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred);
+ Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond, Instruction &I);
+ Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
+ BinaryOperator &I);
+ Instruction *commonCastTransforms(CastInst &CI);
+ Instruction *commonPointerCastTransforms(CastInst &CI);
+ Instruction *visitTrunc(TruncInst &CI);
+ Instruction *visitZExt(ZExtInst &CI);
+ Instruction *visitSExt(SExtInst &CI);
+ Instruction *visitFPTrunc(FPTruncInst &CI);
+ Instruction *visitFPExt(CastInst &CI);
+ Instruction *visitFPToUI(FPToUIInst &FI);
+ Instruction *visitFPToSI(FPToSIInst &FI);
+ Instruction *visitUIToFP(CastInst &CI);
+ Instruction *visitSIToFP(CastInst &CI);
+ Instruction *visitPtrToInt(PtrToIntInst &CI);
+ Instruction *visitIntToPtr(IntToPtrInst &CI);
+ Instruction *visitBitCast(BitCastInst &CI);
+ Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
+ Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
+ Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
+ Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
+ Value *A, Value *B, Instruction &Outer,
+ SelectPatternFlavor SPF2, Value *C);
+ Instruction *FoldItoFPtoI(Instruction &FI);
+ Instruction *visitSelectInst(SelectInst &SI);
+ Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
+ Instruction *visitCallInst(CallInst &CI);
+ Instruction *visitInvokeInst(InvokeInst &II);
+
+ Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
+ Instruction *visitPHINode(PHINode &PN);
+ Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
+ Instruction *visitAllocaInst(AllocaInst &AI);
+ Instruction *visitAllocSite(Instruction &FI);
+ Instruction *visitFree(CallInst &FI);
+ Instruction *visitLoadInst(LoadInst &LI);
+ Instruction *visitStoreInst(StoreInst &SI);
+ Instruction *visitBranchInst(BranchInst &BI);
+ Instruction *visitSwitchInst(SwitchInst &SI);
+ Instruction *visitReturnInst(ReturnInst &RI);
+ Instruction *visitInsertValueInst(InsertValueInst &IV);
+ Instruction *visitInsertElementInst(InsertElementInst &IE);
+ Instruction *visitExtractElementInst(ExtractElementInst &EI);
+ Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
+ Instruction *visitExtractValueInst(ExtractValueInst &EV);
+ Instruction *visitLandingPadInst(LandingPadInst &LI);
+
+ // visitInstruction - Specify what to return for unhandled instructions...
+ Instruction *visitInstruction(Instruction &I) { return nullptr; }
+
+ // True when DB dominates all uses of DI execpt UI.
+ // UI must be in the same block as DI.
+ // The routine checks that the DI parent and DB are different.
+ bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
+ const BasicBlock *DB) const;
+
+ // Replace select with select operand SIOpd in SI-ICmp sequence when possible
+ bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
+ const unsigned SIOpd);
+
+private:
+ bool ShouldChangeType(Type *From, Type *To) const;
+ Value *dyn_castNegVal(Value *V) const;
+ Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
+ Type *FindElementAtOffset(Type *PtrTy, int64_t Offset,
+ SmallVectorImpl<Value *> &NewIndices);
+ Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
+
+ /// \brief Classify whether a cast is worth optimizing.
+ ///
+ /// Returns true if the cast from "V to Ty" actually results in any code
+ /// being generated and is interesting to optimize out. If the cast can be
+ /// eliminated by some other simple transformation, we prefer to do the
+ /// simplification first.
+ bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
+ Type *Ty);
+
+ Instruction *visitCallSite(CallSite CS);
+ Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL);
+ bool transformConstExprCastCall(CallSite CS);
+ Instruction *transformCallThroughTrampoline(CallSite CS,
+ IntrinsicInst *Tramp);
+ Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
+ bool DoXform = true);
+ Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
+ bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
+ Value *EmitGEPOffset(User *GEP);
+ Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
+ Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
+
+public:
+ /// \brief Inserts an instruction \p New before instruction \p Old
+ ///
+ /// Also adds the new instruction to the worklist and returns \p New so that
+ /// it is suitable for use as the return from the visitation patterns.
+ Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
+ assert(New && !New->getParent() &&
+ "New instruction already inserted into a basic block!");
+ BasicBlock *BB = Old.getParent();
+ BB->getInstList().insert(&Old, New); // Insert inst
+ Worklist.Add(New);
+ return New;
+ }
+
+ /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
+ Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
+ New->setDebugLoc(Old.getDebugLoc());
+ return InsertNewInstBefore(New, Old);
+ }
+
+ /// \brief A combiner-aware RAUW-like routine.
+ ///
+ /// This method is to be used when an instruction is found to be dead,
+ /// replacable with another preexisting expression. Here we add all uses of
+ /// I to the worklist, replace all uses of I with the new value, then return
+ /// I, so that the inst combiner will know that I was modified.
+ Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
+ Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
+
+ // If we are replacing the instruction with itself, this must be in a
+ // segment of unreachable code, so just clobber the instruction.
+ if (&I == V)
+ V = UndefValue::get(I.getType());
+
+ DEBUG(dbgs() << "IC: Replacing " << I << "\n"
+ << " with " << *V << '\n');
+
+ I.replaceAllUsesWith(V);
+ return &I;
+ }
+
+ /// Creates a result tuple for an overflow intrinsic \p II with a given
+ /// \p Result and a constant \p Overflow value. If \p ReUseName is true the
+ /// \p Result's name is taken from \p II.
+ Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
+ bool Overflow, bool ReUseName = true) {
+ if (ReUseName)
+ Result->takeName(II);
+ Constant *V[] = {UndefValue::get(Result->getType()),
+ Overflow ? Builder->getTrue() : Builder->getFalse()};
+ StructType *ST = cast<StructType>(II->getType());
+ Constant *Struct = ConstantStruct::get(ST, V);
+ return InsertValueInst::Create(Struct, Result, 0);
+ }
+
+ /// \brief Combiner aware instruction erasure.
+ ///
+ /// When dealing with an instruction that has side effects or produces a void
+ /// value, we can't rely on DCE to delete the instruction. Instead, visit
+ /// methods should return the value returned by this function.
+ Instruction *EraseInstFromFunction(Instruction &I) {
+ DEBUG(dbgs() << "IC: ERASE " << I << '\n');
+
+ assert(I.use_empty() && "Cannot erase instruction that is used!");
+ // Make sure that we reprocess all operands now that we reduced their
+ // use counts.
+ if (I.getNumOperands() < 8) {
+ for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
+ if (Instruction *Op = dyn_cast<Instruction>(*i))
+ Worklist.Add(Op);
+ }
+ Worklist.Remove(&I);
+ I.eraseFromParent();
+ MadeIRChange = true;
+ return nullptr; // Don't do anything with FI
+ }
+
+ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ unsigned Depth = 0, Instruction *CxtI = nullptr) const {
+ return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
+ DT);
+ }
+
+ bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
+ Instruction *CxtI = nullptr) const {
+ return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
+ }
+ unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
+ Instruction *CxtI = nullptr) const {
+ return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
+ }
+ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ unsigned Depth = 0, Instruction *CxtI = nullptr) const {
+ return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
+ DT);
+ }
+ OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
+ const Instruction *CxtI) {
+ return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
+ }
+ OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
+ const Instruction *CxtI) {
+ return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
+ }
+
+private:
+ /// \brief Performs a few simplifications for operators which are associative
+ /// or commutative.
+ bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
+
+ /// \brief Tries to simplify binary operations which some other binary
+ /// operation distributes over.
+ ///
+ /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
+ /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
+ /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
+ /// value, or null if it didn't simplify.
+ Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
+
+ /// \brief Attempts to replace V with a simpler value based on the demanded
+ /// bits.
+ Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
+ APInt &KnownOne, unsigned Depth,
+ Instruction *CxtI = nullptr);
+ bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
+ APInt &KnownOne, unsigned Depth = 0);
+ /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
+ /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
+ Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
+ APInt DemandedMask, APInt &KnownZero,
+ APInt &KnownOne);
+
+ /// \brief Tries to simplify operands to an integer instruction based on its
+ /// demanded bits.
+ bool SimplifyDemandedInstructionBits(Instruction &Inst);
+
+ Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+ APInt &UndefElts, unsigned Depth = 0);
+
+ Value *SimplifyVectorOp(BinaryOperator &Inst);
+ Value *SimplifyBSwap(BinaryOperator &Inst);
+
+ // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
+ // which has a PHI node as operand #0, see if we can fold the instruction
+ // into the PHI (which is only possible if all operands to the PHI are
+ // constants).
+ //
+ Instruction *FoldOpIntoPhi(Instruction &I);
+
+ /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
+ /// its operands.
+ Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
+
+ Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
+ ConstantInt *AndRHS, BinaryOperator &TheAnd);
+
+ Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
+ bool isSub, Instruction &I);
+ Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
+ bool Inside);
+ Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
+ Instruction *MatchBSwap(BinaryOperator &I);
+ bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
+ Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
+ Instruction *SimplifyMemSet(MemSetInst *MI);
+
+ Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
+
+ /// \brief Returns a value X such that Val = X * Scale, or null if none.
+ ///
+ /// If the multiplication is known not to overflow then NoSignedWrap is set.
+ Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
+};
+
+} // end namespace llvm.
+
+#undef DEBUG_TYPE
+
+#endif