diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp | 469 |
1 files changed, 343 insertions, 126 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp index f3ac44c..b9eb986 100644 --- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp +++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp @@ -11,12 +11,13 @@ // //===----------------------------------------------------------------------===// -#include "InstCombine.h" +#include "InstCombineInternal.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Loads.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/MDBuilder.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; @@ -268,9 +269,8 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { // is only subsequently read. SmallVector<Instruction *, 4> ToDelete; if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { - unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(), - AI.getAlignment(), - DL, AT, &AI, DT); + unsigned SourceAlign = getOrEnforceKnownAlignment( + Copy->getSource(), AI.getAlignment(), DL, AC, &AI, DT); if (AI.getAlignment() <= SourceAlign) { DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); @@ -310,6 +310,7 @@ static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewT LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), LI.getAlignment(), LI.getName()); + MDBuilder MDB(NewLoad->getContext()); for (const auto &MDPair : MD) { unsigned ID = MDPair.first; MDNode *N = MDPair.second; @@ -331,20 +332,86 @@ static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewT case LLVMContext::MD_noalias: case LLVMContext::MD_nontemporal: case LLVMContext::MD_mem_parallel_loop_access: - case LLVMContext::MD_nonnull: // All of these directly apply. NewLoad->setMetadata(ID, N); break; + case LLVMContext::MD_nonnull: + // This only directly applies if the new type is also a pointer. + if (NewTy->isPointerTy()) { + NewLoad->setMetadata(ID, N); + break; + } + // If it's integral now, translate it to !range metadata. + if (NewTy->isIntegerTy()) { + auto *ITy = cast<IntegerType>(NewTy); + auto *NullInt = ConstantExpr::getPtrToInt( + ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); + auto *NonNullInt = + ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); + NewLoad->setMetadata(LLVMContext::MD_range, + MDB.createRange(NonNullInt, NullInt)); + } + break; + case LLVMContext::MD_range: // FIXME: It would be nice to propagate this in some way, but the type - // conversions make it hard. + // conversions make it hard. If the new type is a pointer, we could + // translate it to !nonnull metadata. break; } } return NewLoad; } +/// \brief Combine a store to a new type. +/// +/// Returns the newly created store instruction. +static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { + Value *Ptr = SI.getPointerOperand(); + unsigned AS = SI.getPointerAddressSpace(); + SmallVector<std::pair<unsigned, MDNode *>, 8> MD; + SI.getAllMetadata(MD); + + StoreInst *NewStore = IC.Builder->CreateAlignedStore( + V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), + SI.getAlignment()); + for (const auto &MDPair : MD) { + unsigned ID = MDPair.first; + MDNode *N = MDPair.second; + // Note, essentially every kind of metadata should be preserved here! This + // routine is supposed to clone a store instruction changing *only its + // type*. The only metadata it makes sense to drop is metadata which is + // invalidated when the pointer type changes. This should essentially + // never be the case in LLVM, but we explicitly switch over only known + // metadata to be conservatively correct. If you are adding metadata to + // LLVM which pertains to stores, you almost certainly want to add it + // here. + switch (ID) { + case LLVMContext::MD_dbg: + case LLVMContext::MD_tbaa: + case LLVMContext::MD_prof: + case LLVMContext::MD_fpmath: + case LLVMContext::MD_tbaa_struct: + case LLVMContext::MD_alias_scope: + case LLVMContext::MD_noalias: + case LLVMContext::MD_nontemporal: + case LLVMContext::MD_mem_parallel_loop_access: + // All of these directly apply. + NewStore->setMetadata(ID, N); + break; + + case LLVMContext::MD_invariant_load: + case LLVMContext::MD_nonnull: + case LLVMContext::MD_range: + // These don't apply for stores. + break; + } + } + + return NewStore; +} + /// \brief Combine loads to match the type of value their uses after looking /// through intervening bitcasts. /// @@ -371,6 +438,35 @@ static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { if (LI.use_empty()) return nullptr; + Type *Ty = LI.getType(); + + // Try to canonicalize loads which are only ever stored to operate over + // integers instead of any other type. We only do this when the loaded type + // is sized and has a size exactly the same as its store size and the store + // size is a legal integer type. + const DataLayout *DL = IC.getDataLayout(); + if (!Ty->isIntegerTy() && Ty->isSized() && DL && + DL->isLegalInteger(DL->getTypeStoreSizeInBits(Ty)) && + DL->getTypeStoreSizeInBits(Ty) == DL->getTypeSizeInBits(Ty)) { + if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { + auto *SI = dyn_cast<StoreInst>(U); + return SI && SI->getPointerOperand() != &LI; + })) { + LoadInst *NewLoad = combineLoadToNewType( + IC, LI, + Type::getIntNTy(LI.getContext(), DL->getTypeStoreSizeInBits(Ty))); + // Replace all the stores with stores of the newly loaded value. + for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { + auto *SI = cast<StoreInst>(*UI++); + IC.Builder->SetInsertPoint(SI); + combineStoreToNewValue(IC, *SI, NewLoad); + IC.EraseInstFromFunction(*SI); + } + assert(LI.use_empty() && "Failed to remove all users of the load!"); + // Return the old load so the combiner can delete it safely. + return &LI; + } + } // Fold away bit casts of the loaded value by loading the desired type. if (LI.hasOneUse()) @@ -386,6 +482,181 @@ static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { return nullptr; } +// If we can determine that all possible objects pointed to by the provided +// pointer value are, not only dereferenceable, but also definitively less than +// or equal to the provided maximum size, then return true. Otherwise, return +// false (constant global values and allocas fall into this category). +// +// FIXME: This should probably live in ValueTracking (or similar). +static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, + const DataLayout *DL) { + SmallPtrSet<Value *, 4> Visited; + SmallVector<Value *, 4> Worklist(1, V); + + do { + Value *P = Worklist.pop_back_val(); + P = P->stripPointerCasts(); + + if (!Visited.insert(P).second) + continue; + + if (SelectInst *SI = dyn_cast<SelectInst>(P)) { + Worklist.push_back(SI->getTrueValue()); + Worklist.push_back(SI->getFalseValue()); + continue; + } + + if (PHINode *PN = dyn_cast<PHINode>(P)) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + Worklist.push_back(PN->getIncomingValue(i)); + continue; + } + + if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { + if (GA->mayBeOverridden()) + return false; + Worklist.push_back(GA->getAliasee()); + continue; + } + + // If we know how big this object is, and it is less than MaxSize, continue + // searching. Otherwise, return false. + if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { + if (!AI->getAllocatedType()->isSized()) + return false; + + ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); + if (!CS) + return false; + + uint64_t TypeSize = DL->getTypeAllocSize(AI->getAllocatedType()); + // Make sure that, even if the multiplication below would wrap as an + // uint64_t, we still do the right thing. + if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) + return false; + continue; + } + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { + if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) + return false; + + uint64_t InitSize = DL->getTypeAllocSize(GV->getType()->getElementType()); + if (InitSize > MaxSize) + return false; + continue; + } + + return false; + } while (!Worklist.empty()); + + return true; +} + +// If we're indexing into an object of a known size, and the outer index is +// not a constant, but having any value but zero would lead to undefined +// behavior, replace it with zero. +// +// For example, if we have: +// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 +// ... +// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x +// ... = load i32* %arrayidx, align 4 +// Then we know that we can replace %x in the GEP with i64 0. +// +// FIXME: We could fold any GEP index to zero that would cause UB if it were +// not zero. Currently, we only handle the first such index. Also, we could +// also search through non-zero constant indices if we kept track of the +// offsets those indices implied. +static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, + Instruction *MemI, unsigned &Idx) { + const DataLayout *DL = IC.getDataLayout(); + if (GEPI->getNumOperands() < 2 || !DL) + return false; + + // Find the first non-zero index of a GEP. If all indices are zero, return + // one past the last index. + auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { + unsigned I = 1; + for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { + Value *V = GEPI->getOperand(I); + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) + if (CI->isZero()) + continue; + + break; + } + + return I; + }; + + // Skip through initial 'zero' indices, and find the corresponding pointer + // type. See if the next index is not a constant. + Idx = FirstNZIdx(GEPI); + if (Idx == GEPI->getNumOperands()) + return false; + if (isa<Constant>(GEPI->getOperand(Idx))) + return false; + + SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); + Type *AllocTy = + GetElementPtrInst::getIndexedType(GEPI->getOperand(0)->getType(), Ops); + if (!AllocTy || !AllocTy->isSized()) + return false; + uint64_t TyAllocSize = DL->getTypeAllocSize(AllocTy); + + // If there are more indices after the one we might replace with a zero, make + // sure they're all non-negative. If any of them are negative, the overall + // address being computed might be before the base address determined by the + // first non-zero index. + auto IsAllNonNegative = [&]() { + for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { + bool KnownNonNegative, KnownNegative; + IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, + KnownNegative, 0, MemI); + if (KnownNonNegative) + continue; + return false; + } + + return true; + }; + + // FIXME: If the GEP is not inbounds, and there are extra indices after the + // one we'll replace, those could cause the address computation to wrap + // (rendering the IsAllNonNegative() check below insufficient). We can do + // better, ignoring zero indicies (and other indicies we can prove small + // enough not to wrap). + if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) + return false; + + // Note that isObjectSizeLessThanOrEq will return true only if the pointer is + // also known to be dereferenceable. + return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && + IsAllNonNegative(); +} + +// If we're indexing into an object with a variable index for the memory +// access, but the object has only one element, we can assume that the index +// will always be zero. If we replace the GEP, return it. +template <typename T> +static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, + T &MemI) { + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { + unsigned Idx; + if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { + Instruction *NewGEPI = GEPI->clone(); + NewGEPI->setOperand(Idx, + ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); + NewGEPI->insertBefore(GEPI); + MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); + return NewGEPI; + } + } + + return nullptr; +} + Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); @@ -395,9 +666,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { // Attempt to improve the alignment. if (DL) { - unsigned KnownAlign = - getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()), - DL, AT, &LI, DT); + unsigned KnownAlign = getOrEnforceKnownAlignment( + Op, DL->getPrefTypeAlignment(LI.getType()), DL, AC, &LI, DT); unsigned LoadAlign = LI.getAlignment(); unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign : DL->getABITypeAlignment(LI.getType()); @@ -408,6 +678,12 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { LI.setAlignment(EffectiveLoadAlign); } + // Replace GEP indices if possible. + if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { + Worklist.Add(NewGEPI); + return &LI; + } + // None of the following transforms are legal for volatile/atomic loads. // FIXME: Some of it is okay for atomic loads; needs refactoring. if (!LI.isSimple()) return nullptr; @@ -418,7 +694,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { BasicBlock::iterator BBI = &LI; if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) return ReplaceInstUsesWith( - LI, Builder->CreateBitCast(AvailableVal, LI.getType())); + LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), + LI.getName() + ".cast")); // load(gep null, ...) -> unreachable if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { @@ -473,119 +750,61 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { } // load (select (cond, null, P)) -> load P - if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) - if (C->isNullValue()) { - LI.setOperand(0, SI->getOperand(2)); - return &LI; - } + if (isa<ConstantPointerNull>(SI->getOperand(1)) && + LI.getPointerAddressSpace() == 0) { + LI.setOperand(0, SI->getOperand(2)); + return &LI; + } // load (select (cond, P, null)) -> load P - if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) - if (C->isNullValue()) { - LI.setOperand(0, SI->getOperand(1)); - return &LI; - } + if (isa<ConstantPointerNull>(SI->getOperand(2)) && + LI.getPointerAddressSpace() == 0) { + LI.setOperand(0, SI->getOperand(1)); + return &LI; + } } } return nullptr; } -/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P -/// when possible. This makes it generally easy to do alias analysis and/or -/// SROA/mem2reg of the memory object. -static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { - User *CI = cast<User>(SI.getOperand(1)); - Value *CastOp = CI->getOperand(0); - - Type *DestPTy = CI->getType()->getPointerElementType(); - PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); - if (!SrcTy) return nullptr; - - Type *SrcPTy = SrcTy->getElementType(); - - if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy()) - return nullptr; - - /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" - /// to its first element. This allows us to handle things like: - /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) - /// on 32-bit hosts. - SmallVector<Value*, 4> NewGEPIndices; - - // If the source is an array, the code below will not succeed. Check to - // see if a trivial 'gep P, 0, 0' will help matters. Only do this for - // constants. - if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) { - // Index through pointer. - Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext())); - NewGEPIndices.push_back(Zero); - - while (1) { - if (StructType *STy = dyn_cast<StructType>(SrcPTy)) { - if (!STy->getNumElements()) /* Struct can be empty {} */ - break; - NewGEPIndices.push_back(Zero); - SrcPTy = STy->getElementType(0); - } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) { - NewGEPIndices.push_back(Zero); - SrcPTy = ATy->getElementType(); - } else { - break; - } - } - - SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); - } - - if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy()) - return nullptr; - - // If the pointers point into different address spaces don't do the - // transformation. - if (SrcTy->getAddressSpace() != CI->getType()->getPointerAddressSpace()) - return nullptr; - - // If the pointers point to values of different sizes don't do the - // transformation. - if (!IC.getDataLayout() || - IC.getDataLayout()->getTypeSizeInBits(SrcPTy) != - IC.getDataLayout()->getTypeSizeInBits(DestPTy)) - return nullptr; +/// \brief Combine stores to match the type of value being stored. +/// +/// The core idea here is that the memory does not have any intrinsic type and +/// where we can we should match the type of a store to the type of value being +/// stored. +/// +/// However, this routine must never change the width of a store or the number of +/// stores as that would introduce a semantic change. This combine is expected to +/// be a semantic no-op which just allows stores to more closely model the types +/// of their incoming values. +/// +/// Currently, we also refuse to change the precise type used for an atomic or +/// volatile store. This is debatable, and might be reasonable to change later. +/// However, it is risky in case some backend or other part of LLVM is relying +/// on the exact type stored to select appropriate atomic operations. +/// +/// \returns true if the store was successfully combined away. This indicates +/// the caller must erase the store instruction. We have to let the caller erase +/// the store instruction sas otherwise there is no way to signal whether it was +/// combined or not: IC.EraseInstFromFunction returns a null pointer. +static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { + // FIXME: We could probably with some care handle both volatile and atomic + // stores here but it isn't clear that this is important. + if (!SI.isSimple()) + return false; - // If the pointers point to pointers to different address spaces don't do the - // transformation. It is not safe to introduce an addrspacecast instruction in - // this case since, depending on the target, addrspacecast may not be a no-op - // cast. - if (SrcPTy->isPointerTy() && DestPTy->isPointerTy() && - SrcPTy->getPointerAddressSpace() != DestPTy->getPointerAddressSpace()) - return nullptr; + Value *V = SI.getValueOperand(); - // Okay, we are casting from one integer or pointer type to another of - // the same size. Instead of casting the pointer before - // the store, cast the value to be stored. - Value *NewCast; - Instruction::CastOps opcode = Instruction::BitCast; - Type* CastSrcTy = DestPTy; - Type* CastDstTy = SrcPTy; - if (CastDstTy->isPointerTy()) { - if (CastSrcTy->isIntegerTy()) - opcode = Instruction::IntToPtr; - } else if (CastDstTy->isIntegerTy()) { - if (CastSrcTy->isPointerTy()) - opcode = Instruction::PtrToInt; + // Fold away bit casts of the stored value by storing the original type. + if (auto *BC = dyn_cast<BitCastInst>(V)) { + V = BC->getOperand(0); + combineStoreToNewValue(IC, SI, V); + return true; } - // SIOp0 is a pointer to aggregate and this is a store to the first field, - // emit a GEP to index into its first field. - if (!NewGEPIndices.empty()) - CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices); - - Value *SIOp0 = SI.getOperand(0); - NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, - SIOp0->getName()+".c"); - SI.setOperand(0, NewCast); - SI.setOperand(1, CastOp); - return &SI; + // FIXME: We should also canonicalize loads of vectors when their elements are + // cast to other types. + return false; } /// equivalentAddressValues - Test if A and B will obviously have the same @@ -621,11 +840,14 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); + // Try to canonicalize the stored type. + if (combineStoreToValueType(*this, SI)) + return EraseInstFromFunction(SI); + // Attempt to improve the alignment. if (DL) { - unsigned KnownAlign = - getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()), - DL, AT, &SI, DT); + unsigned KnownAlign = getOrEnforceKnownAlignment( + Ptr, DL->getPrefTypeAlignment(Val->getType()), DL, AC, &SI, DT); unsigned StoreAlign = SI.getAlignment(); unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign : DL->getABITypeAlignment(Val->getType()); @@ -636,6 +858,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { SI.setAlignment(EffectiveStoreAlign); } + // Replace GEP indices if possible. + if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { + Worklist.Add(NewGEPI); + return &SI; + } + // Don't hack volatile/atomic stores. // FIXME: Some bits are legal for atomic stores; needs refactoring. if (!SI.isSimple()) return nullptr; @@ -712,17 +940,6 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { if (isa<UndefValue>(Val)) return EraseInstFromFunction(SI); - // If the pointer destination is a cast, see if we can fold the cast into the - // source instead. - if (isa<CastInst>(Ptr)) - if (Instruction *Res = InstCombineStoreToCast(*this, SI)) - return Res; - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) - if (CE->isCast()) - if (Instruction *Res = InstCombineStoreToCast(*this, SI)) - return Res; - - // If this store is the last instruction in the basic block (possibly // excepting debug info instructions), and if the block ends with an // unconditional branch, try to move it to the successor block. |