aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp203
1 files changed, 120 insertions, 83 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index b9eb986..6b0f268 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -164,62 +164,75 @@ isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
return nullptr;
}
-Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
- // Ensure that the alloca array size argument has type intptr_t, so that
- // any casting is exposed early.
- if (DL) {
- Type *IntPtrTy = DL->getIntPtrType(AI.getType());
- if (AI.getArraySize()->getType() != IntPtrTy) {
- Value *V = Builder->CreateIntCast(AI.getArraySize(),
- IntPtrTy, false);
- AI.setOperand(0, V);
- return &AI;
- }
+static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
+ // Check for array size of 1 (scalar allocation).
+ if (!AI.isArrayAllocation()) {
+ // i32 1 is the canonical array size for scalar allocations.
+ if (AI.getArraySize()->getType()->isIntegerTy(32))
+ return nullptr;
+
+ // Canonicalize it.
+ Value *V = IC.Builder->getInt32(1);
+ AI.setOperand(0, V);
+ return &AI;
}
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
- if (AI.isArrayAllocation()) { // Check C != 1
- if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
- Type *NewTy =
- ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
- AllocaInst *New = Builder->CreateAlloca(NewTy, nullptr, AI.getName());
- New->setAlignment(AI.getAlignment());
-
- // Scan to the end of the allocation instructions, to skip over a block of
- // allocas if possible...also skip interleaved debug info
- //
- BasicBlock::iterator It = New;
- while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
-
- // Now that I is pointing to the first non-allocation-inst in the block,
- // insert our getelementptr instruction...
- //
- Type *IdxTy = DL
- ? DL->getIntPtrType(AI.getType())
- : Type::getInt64Ty(AI.getContext());
- Value *NullIdx = Constant::getNullValue(IdxTy);
- Value *Idx[2] = { NullIdx, NullIdx };
- Instruction *GEP =
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
+ Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
+ AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
+ New->setAlignment(AI.getAlignment());
+
+ // Scan to the end of the allocation instructions, to skip over a block of
+ // allocas if possible...also skip interleaved debug info
+ //
+ BasicBlock::iterator It = New;
+ while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
+ ++It;
+
+ // Now that I is pointing to the first non-allocation-inst in the block,
+ // insert our getelementptr instruction...
+ //
+ Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
+ Value *NullIdx = Constant::getNullValue(IdxTy);
+ Value *Idx[2] = {NullIdx, NullIdx};
+ Instruction *GEP =
GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
- InsertNewInstBefore(GEP, *It);
+ IC.InsertNewInstBefore(GEP, *It);
- // Now make everything use the getelementptr instead of the original
- // allocation.
- return ReplaceInstUsesWith(AI, GEP);
- } else if (isa<UndefValue>(AI.getArraySize())) {
- return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
- }
+ // Now make everything use the getelementptr instead of the original
+ // allocation.
+ return IC.ReplaceInstUsesWith(AI, GEP);
}
- if (DL && AI.getAllocatedType()->isSized()) {
+ if (isa<UndefValue>(AI.getArraySize()))
+ return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+
+ // Ensure that the alloca array size argument has type intptr_t, so that
+ // any casting is exposed early.
+ Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
+ if (AI.getArraySize()->getType() != IntPtrTy) {
+ Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
+ AI.setOperand(0, V);
+ return &AI;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
+ if (auto *I = simplifyAllocaArraySize(*this, AI))
+ return I;
+
+ if (AI.getAllocatedType()->isSized()) {
// If the alignment is 0 (unspecified), assign it the preferred alignment.
if (AI.getAlignment() == 0)
- AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
+ AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
// Move all alloca's of zero byte objects to the entry block and merge them
// together. Note that we only do this for alloca's, because malloc should
// allocate and return a unique pointer, even for a zero byte allocation.
- if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
+ if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
// For a zero sized alloca there is no point in doing an array allocation.
// This is helpful if the array size is a complicated expression not used
// elsewhere.
@@ -237,7 +250,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// dominance as the array size was forced to a constant earlier already.
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
- DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
+ DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
AI.moveBefore(FirstInst);
return &AI;
}
@@ -246,7 +259,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// assign it the preferred alignment.
if (EntryAI->getAlignment() == 0)
EntryAI->setAlignment(
- DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
+ DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
// Replace this zero-sized alloca with the one at the start of the entry
// block after ensuring that the address will be aligned enough for both
// types.
@@ -270,7 +283,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
unsigned SourceAlign = getOrEnforceKnownAlignment(
- Copy->getSource(), AI.getAlignment(), DL, AC, &AI, DT);
+ Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
if (AI.getAlignment() <= SourceAlign) {
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
@@ -439,22 +452,22 @@ static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
return nullptr;
Type *Ty = LI.getType();
+ const DataLayout &DL = IC.getDataLayout();
// Try to canonicalize loads which are only ever stored to operate over
// integers instead of any other type. We only do this when the loaded type
// is sized and has a size exactly the same as its store size and the store
// size is a legal integer type.
- const DataLayout *DL = IC.getDataLayout();
- if (!Ty->isIntegerTy() && Ty->isSized() && DL &&
- DL->isLegalInteger(DL->getTypeStoreSizeInBits(Ty)) &&
- DL->getTypeStoreSizeInBits(Ty) == DL->getTypeSizeInBits(Ty)) {
+ if (!Ty->isIntegerTy() && Ty->isSized() &&
+ DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
+ DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
auto *SI = dyn_cast<StoreInst>(U);
return SI && SI->getPointerOperand() != &LI;
})) {
LoadInst *NewLoad = combineLoadToNewType(
IC, LI,
- Type::getIntNTy(LI.getContext(), DL->getTypeStoreSizeInBits(Ty)));
+ Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
// Replace all the stores with stores of the newly loaded value.
for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
auto *SI = cast<StoreInst>(*UI++);
@@ -489,7 +502,7 @@ static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
//
// FIXME: This should probably live in ValueTracking (or similar).
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
- const DataLayout *DL) {
+ const DataLayout &DL) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist(1, V);
@@ -529,7 +542,7 @@ static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
if (!CS)
return false;
- uint64_t TypeSize = DL->getTypeAllocSize(AI->getAllocatedType());
+ uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Make sure that, even if the multiplication below would wrap as an
// uint64_t, we still do the right thing.
if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
@@ -541,7 +554,7 @@ static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
return false;
- uint64_t InitSize = DL->getTypeAllocSize(GV->getType()->getElementType());
+ uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
if (InitSize > MaxSize)
return false;
continue;
@@ -570,8 +583,7 @@ static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
// offsets those indices implied.
static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
Instruction *MemI, unsigned &Idx) {
- const DataLayout *DL = IC.getDataLayout();
- if (GEPI->getNumOperands() < 2 || !DL)
+ if (GEPI->getNumOperands() < 2)
return false;
// Find the first non-zero index of a GEP. If all indices are zero, return
@@ -603,7 +615,8 @@ static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
GetElementPtrInst::getIndexedType(GEPI->getOperand(0)->getType(), Ops);
if (!AllocTy || !AllocTy->isSized())
return false;
- uint64_t TyAllocSize = DL->getTypeAllocSize(AllocTy);
+ const DataLayout &DL = IC.getDataLayout();
+ uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
// If there are more indices after the one we might replace with a zero, make
// sure they're all non-negative. If any of them are negative, the overall
@@ -665,18 +678,16 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
return Res;
// Attempt to improve the alignment.
- if (DL) {
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Op, DL->getPrefTypeAlignment(LI.getType()), DL, AC, &LI, DT);
- unsigned LoadAlign = LI.getAlignment();
- unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
- DL->getABITypeAlignment(LI.getType());
-
- if (KnownAlign > EffectiveLoadAlign)
- LI.setAlignment(KnownAlign);
- else if (LoadAlign == 0)
- LI.setAlignment(EffectiveLoadAlign);
- }
+ unsigned KnownAlign = getOrEnforceKnownAlignment(
+ Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
+ unsigned LoadAlign = LI.getAlignment();
+ unsigned EffectiveLoadAlign =
+ LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
+
+ if (KnownAlign > EffectiveLoadAlign)
+ LI.setAlignment(KnownAlign);
+ else if (LoadAlign == 0)
+ LI.setAlignment(EffectiveLoadAlign);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
@@ -738,8 +749,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
unsigned Align = LI.getAlignment();
- if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
- isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
+ if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
+ isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
SI->getOperand(1)->getName()+".val");
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
@@ -807,6 +818,30 @@ static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
return false;
}
+static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
+ // FIXME: We could probably with some care handle both volatile and atomic
+ // stores here but it isn't clear that this is important.
+ if (!SI.isSimple())
+ return false;
+
+ Value *V = SI.getValueOperand();
+ Type *T = V->getType();
+
+ if (!T->isAggregateType())
+ return false;
+
+ if (StructType *ST = dyn_cast<StructType>(T)) {
+ // If the struct only have one element, we unpack.
+ if (ST->getNumElements() == 1) {
+ V = IC.Builder->CreateExtractValue(V, 0);
+ combineStoreToNewValue(IC, SI, V);
+ return true;
+ }
+ }
+
+ return false;
+}
+
/// equivalentAddressValues - Test if A and B will obviously have the same
/// value. This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
@@ -845,18 +880,20 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
return EraseInstFromFunction(SI);
// Attempt to improve the alignment.
- if (DL) {
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Ptr, DL->getPrefTypeAlignment(Val->getType()), DL, AC, &SI, DT);
- unsigned StoreAlign = SI.getAlignment();
- unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
- DL->getABITypeAlignment(Val->getType());
-
- if (KnownAlign > EffectiveStoreAlign)
- SI.setAlignment(KnownAlign);
- else if (StoreAlign == 0)
- SI.setAlignment(EffectiveStoreAlign);
- }
+ unsigned KnownAlign = getOrEnforceKnownAlignment(
+ Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
+ unsigned StoreAlign = SI.getAlignment();
+ unsigned EffectiveStoreAlign =
+ StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
+
+ if (KnownAlign > EffectiveStoreAlign)
+ SI.setAlignment(KnownAlign);
+ else if (StoreAlign == 0)
+ SI.setAlignment(EffectiveStoreAlign);
+
+ // Try to canonicalize the stored type.
+ if (unpackStoreToAggregate(*this, SI))
+ return EraseInstFromFunction(SI);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {